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ABSTRACT Visual Simultaneous Localization and Mapping (SLAM) plays an important role in computer
vision and robotic field. With the development of Convolutional Neural Network (CNN), most scholars
currently fuse CNNwith visual SLAM to reduce the impact of dynamic objects on visual SLAM. To address
the impact of semantic segmentation networks with lower precision and quad-tree algorithm with over-
uniform distribution of feature points on the location accuracy of SLAM, we proposed an STDC-SLAM:
Short-Term Dense Concatenate Network SLAM, which was based on ORB-SLAM3. In the proposed
system, a real-time STDC network was used for semantic thread to segment dynamic objects. On the
one hand, we designed a segmentation refinement module to optimize the semantic segmentation maps
using images depth information. On the other hand, we improved the Qtree-ORB algorithm by reducing
the iterations of low-quality feature points in the rejection thread. We have evaluated our SLAM in public
data sheets and compared it with ORB-SLAM3, DynaSLAM, PSPNet-SLAM. Experiments showed that
our SLAM improved in localization accuracy compared to DynaSLAM and in processing speed compared
to DynaSLAM and PSPNet-SLAM.

INDEX TERMS STDC-SLAM, dynamic, semantic segmentation, Qtree-ORB algorithm.

I. INTRODUCTION
Simultaneous Localization and Mapping (SLAM) is an algo-
rithm that enables a mobile robot to simultaneously locate its
own position and construct a map of its surroundings without
a priori information [1], [2]. SLAM is mainly used in mobile
robots, driverless cars, Augmented Reality (AR). Traditional
SLAM has extremely high static requirements for the envi-
ronment. And excellent performance can only be achieved
in ideal static environments, such as ORB-SLAM2 [3],
ORB-SLAM3 [4], MonoSLAM [5], LSD-SLAM [6]. In par-
ticular, ORB-SLAM3 uses the Oriented Fast and Rotated
Brief (ORB) [7] algorithm, which has superior performance.
Therefore ORB-SLAM3 is used as the base framework of our
SLAM.

Although visual SLAM has made great progress, there are
still some problems that need to be solved. For example, the
robustness of SLAM can be seriously affected by dynamic
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objects when mobile robots work in dynamic environments.
Also, many existing visual SLAM algorithms assume the
environment to be static, ignoring the influence of dynamic
objects [8], [9]. The application scope of traditional SLAM
is limited by the dynamic objects in the real environment.
To apply SLAM in dynamic environments, many scholars
have combined Convolutional Neural Network (CNN) with
traditional SLAM, such as PSPNet-SLAM [10], Blitz-SLAM
[11], DS-SLAM [12]. SLAM fused with CNN can achieve
semantic understanding of the environment. Meanwhile, the
influence of dynamic targets on SLAM can be removed
using CNN.

The accuracy and robustness of SLAM in dynamic envi-
ronments are improved with the incorporation of CNN. How-
ever, the time-consuming CNN limits the application of
SLAM.With the development of CNN, more andmore excel-
lent networks are proposed, such as SegNet [13], PSPNet
[14], BiSeNet [15], STDC [16]. Compared with other seman-
tic segmentation networks, Short-Term Dense Concatenate
(STDC) network uses detail guidance module to improve
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segmentation accuracy. And the detail guidance module is
removed in the inference phase to speed up the processing
speed of the network.

In this paper, we propose a real-time semantic SLAM sys-
temwhich selects the STDC network as the semantic segmen-
tation network in semantic thread. The system based on the
ORB-SLAM3 algorithm framework. In the semantic thread,
we use the STDC network to obtain the segmentation map.
Meanwhile, we design a segmentation refinement module to
optimize the segmentation map. This module combines the
segmentation map with depth information of the same frame.
In the rejection thread, we improve the Qtree-ORB algorithm
in ORB-SLAM3 to further improve the location accuracy of
the system.

In summary, we highlight our main contribution below:

• Weproposed the algorithm framework of STDC-SLAM,
and introduced the STDC network as a semantic thread
on the basis of ORB-SLAM3. The network can effi-
ciently segment dynamic objects by detail guidance.
The detail guidance is used only in the inference phase,
so that the network can segment dynamic objects in
continuous frames more quickly and reliably.

• A segmentation refinement module is proposed in the
semantic thread. This module combines the segmenta-
tion map with the depth information of the same frame
to optimize this segmentation map, and improve the seg-
mentation accuracy of the system for dynamic objects.

• In the rejection thread, we improve the rejection mod-
ule of ORB-SLAM3. On the one hand, this module
can reject dynamic feature points using segmentation
maps. On the other hand, the Qtree-ORB algorithm is
improved to reject redundant feature points and retain
more high-quality feature points.

In the rest of this paper, we firstly discuss the related
work. Next, our proposed system is described in detail. Then,
the effectiveness of the system is proved with experimental
results. Finally, we conclude and discuss the paper.

II. RELATED WORK
SLAM is divided into laser SLAM and visual SLAM accord-
ing to the class of sensors. Visual SLAM is widely applied
compared to laser sensors because it can obtain more envi-
ronmental information by using cameras. With the develop-
ment of visual SLAM, it is further divided into traditional
visual SLAM and dynamic visual SLAM. Traditional visual
SLAM strongly assumes the environment as static for the
convenience of the algorithm, such as MonoSLAM [5], LSD-
SLAM [6], ORB-SLAM [17]. MonoSLAM creates a sparse
map online using a probabilistic statistical framework and
uses the ExtendedKalman Filter (EKF) algorithm to optimize
the camera position. The algorithm has good performance by
randomly selecting search frames for feature points extraction
and using image blocks for feature matching. However, the
extracted sparse features are unstable and easily lead to track-
ing failure. Klein andMurray [18] propose a PTAMalgorithm

that firstly realized the parallel processing of tracking and
map building. This algorithm is a keyframe-based monocular
SLAM, which only needs to optimize the key images when
performing camera pose optimization. In addition, PTAM
separates the front and back ends and proposes a nonlinear
optimization method. It is important for the development of
subsequent visual SLAM. In 2015, Mur-Artal et al. propose
ORB-SLAM based on PTAM. ORB-SLAM uses feature
points extracted by ORB algorithm for feature matching. The
system shows higher localization accuracy in tests compared
to PTAM and can work in real time on the CPU. ORB-SLAM
has better performance compared to other traditional visual
SLAM. Subsequently, the authors have successively pro-
posed ORB-SLAM2 [3] and ORB-SLAM3 [4]. Traditional
visual SLAM can achieve real-time and stability in static
environments, but its strong assumptions limit its application
scope.

Since the real environment is often accompanied by a large
number of dynamic objects, visual SLAM needs to identify
and reject dynamic objects. So that, the visual SLAM only
tracks the static environment and constructs the static envi-
ronmentmap. To identify dynamic targets in the environment,
Kundu et al. [19] use the fundamental matrix to estimate the
distance between the matching feature and the epipolar line
in two adjacent frames. When the distance reached a pre-
determined threshold, the object was considered as a dynamic
one. This method uses a geometric approach to identify
dynamic targets in dynamic environments, but its accuracy
is low. Wang et al. [20] identify independent moving objects
in the scene by the polar geometric constraints of matched
points in two adjacent frames and the clustering information
of the depth map provided by the RGB-D camera. However,
this method depends on the positional transformation matrix
between two adjacent frames, and its error is large in highly
dynamic scenes. Y. Fan et al. [21] propose two mathematical
geometric constraints to localize the dynamic regions in the
scene. Firstly, the information of the dynamic regions is set
as blank. Then one of the image sequences is used as the
projection plane. Finally, the fused image is obtained by
projecting other image sequences to this plane. However, the
robustness of the SLAM in dynamic scenes is not well solved
by geometric methods alone. Fang and Dai [22] detects and
removes dynamic objects using the optical flow method,
which improves the accuracy of the positional estimation.
However, this method has limited improvement on the overall
performance of the SLAM system. Bakkay et al. [23] uses a
scene flow method based on optical flow method to detect
dynamic objects and uses a region growing algorithm to sep-
arate dynamic and static objects. This method improves the
accuracy of feature points matching. However, the real-time
performance is poor.

In recent years, CNN have been widely used in com-
puter vision. Its parameters are trained by a large amount of
data to make pixel-level prediction of images. For example,
SegNet [13], PSPNet [14], BiSeNet [15], STDC [16]. They
are trained with datasets to perform semantic recognition

129420 VOLUME 10, 2022



Z. Hu et al.: STDC-SLAM: A Real-Time Semantic SLAM Detect Object by STDC Network

of the environment, such as identifying people, cars, ani-
mals, sidewalks, etc. Combining CNN with SLAM has
been a popular research direction to solve the problems of
SLAM in dynamic environments [24], [25] by using CNN to
understand the environments semantically, such as PSPNet-
SLAM [10], Blitz-SLAM [11], DS-SLAM [12], DynaSLAM
[26], DDL-SLAM [27] and so on. PSPNet network is used
in PSPNet-SLAM to perform semantic segmentation of
dynamic objects in the scene. In addition, an optimal error-
compensated single-response matrix is designed in the geo-
metric thread to improve the accuracy of dynamic points
detection. DS-SLAM adds an independent thread to perform
SegNet semantic segmentation and obtain semantic infor-
mation. And the tracking thread performs feature extraction
and moving consistency detection. Then the tracking thread
uses the semantic information from the semantic thread to
perform dynamic feature points rejection. In DynaSLAM,
the combination of multi-view geometry and Mask RCNN is
used to detect and filter dynamic objects, which reduces the
localization accuracy of SLAM and improves the robustness
of the SLAM system. Ai and Rui et al. propose a DDL-SLAM
using DUNet [28] network for semantic segmentation and
combining multi-view geometry to detect dynamic objects,
which greatly improves the localization accuracy of SLAM.
These SLAM use various CNN to recognize the environment
and reject dynamic objects in the environment. These meth-
ods improve the robustness, accuracy and stability of SLAM
systems. However, the processing speed of segmentation is
required to fulfill the real-time performance to enable SLAM
to be applied in real-world applications, such as driverless
cars and mobile robots.

Feature-based visual SLAM optimizes the position and the
3D coordinates of feature points by extracting feature points
of each frame for feature points matching. The main fea-
ture points extraction algorithms are Scale Invariant Feature
Transform (SIFT) [29], Speed-UP Robust Feature (SUFER)
[30], ORB, etc. The SIFT algorithm has good scale invari-
ance and rotation invariance, but its running time is long.
SUFER is developed based on SIFT, which greatly improves
the processing speed compared to SIFT, but its real-time
performance is still not excellent because it is time consum-
ing to compute its feature descriptors. The ORB algorithm
is proposed based on Features from Accelerated Segment
Test (FAST) [31] and Binary Robust Independent Elementary
Features (BRIEF) [32], and solves the problem that the FAST
algorithm does not have rotational invariance by adding an
orientation module to the FAST feature points. To address the
problem of non-uniform distribution of feature points in the
standard ORB algorithm, Raúl et al. propose an ORB-SLAM
algorithm that uses a quadtree to homogenize the distribu-
tion of feature points and also adopts an adaptive threshold
method to improve the ORB algorithm. Although this method
improves the uniformity of feature points distribution, it still
has the problem of too many iterations and over-uniformity.
Moreover, this method extracts some low-quality feature
points, which reduces the localization accuracy of SLAM.

Sun et al. [33] propose a multi-probe based A-ORB algo-
rithm. Although this algorithm has high robustness, the num-
ber of extracted feature points is small and the uniformity
of feature points distribution is poor. Li et al. [34] use
a multi-task feature extraction network to extract feature
points in a scene by combining SLAM with a deep learning
approach. Although this algorithm has significant advantages
over traditional feature points extraction methods in complex
scenes, it sacrifices real-time performance and relies on GPU
acceleration.

In this paper, we propose an STDC-SLAM that adds a
parallel semantic thread to the ORB-SLAM3 algorithm. This
thread uses a real-time semantic segmentation network for
semantic recognition of the environment and removes the
influence of dynamic objects on the SLAM algorithm. In the
semantic thread, we use the STDC network as the semantic
segmentation network. In order to improve the segmenta-
tion accuracy of the system for dynamic objects, we pro-
pose a segmentation refinement module that combines the
original segmentation map with the depth information of
the corresponding image to obtain a new segmentation map
with higher segmentation accuracy. In the rejection thread,
we have improved the rejection module. We use the opti-
mized segmentation map to eliminate the feature points on
the dynamic objects. Then, the redundant feature points are
removed from the remaining static feature points by the
improved Qtree-ORB algorithm. This improved algorithm
improves the overall quality of feature points by reduc-
ing the iterations of low-quality feature points. On the one
hand, a sufficient number of high-quality feature points are
retained after the dynamic feature points are removed by
the corresponding segmentation map. On the other hand, the
remaining feature points satisfy the uniformity requirement.
In total, our system combines STDC network, segmentation
refinement module and improved Qtree-ORB algorithm into
ORB-SLAM3, showing its excellent robustness and real-time
performance.

III. SYSTEM DESCRIPTION
Figure 1 gives an overview of our system. Our system added
a parallel semantic thread based on ORB-SLAM3. Firstly,
the RGB information and depth information of images are
imported from the RGB-D camera. Secondly, the extrac-
tion thread extracts the feature points of the input image.
Meanwhile, the semantic thread segments the input image
by the pre-trained STDC network. Then, the segmentation
refinement module combines the segmentation map with the
depth information of the corresponding image. Finally, the
rejection thread uses the feature points map and the optimized
segmentation map to reject dynamic feature points.

A. SEMANTIC SEGMENTATION STDC NETWORK
STDC networks are used as a semantic segmentation network
for semantic understanding and segmentation of dynamic
objects in realistic environments. The STDC network frame-
work is given in Figure 2. The network is composed of
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FIGURE 1. Overview of the STDC-SLAM system. The system is built on the
ORB-SLAM3 framework, and we propose a semantic thread. Images
contain RGB information and depth information, and SRM denotes
Segmentation Refinement Module.

three main parts: Network Architecture, Training Loss, and
Detail Ground-truth Generation. The Network Architecture is
shown in Figure 2(a). It consists of five stages and one pooling
layer. Each stage is composed of several STDC modules
[10], shown in Figure 3(a). Figures 3(b) and 3(c) show the
structure of the STDCmodule, which fuses featuremaps from
four different connectivity layers. The structure preserves
scalable respective fields and multi-scale information. The
STDC network uses Attention Refine Module (ARM) to
obtain context information. Meanwhile, the Feature Fusion
Module (FFM) is used to combine the context information
and spatial information to obtain the segmentation prediction.

To improve the segmentation accuracy, STDC network
propose a Detail Guidance module to guide the low-level
layers to learn the spatial information as shown in Figure 2(b).
First, the detail map ground-truth is generated from the seg-
mentation ground-truth by Laplacian operator as shown in
Figure 2(c). As illustrated in Figure 2(a), the Detail Head
is inserted in Stage 3 to generate the detail feature map.
Then, the detail ground-truth is used as the guidance of
detail feature map to guide the low-level layers to learn the
feature of spatial details. Finally, the learned detail features
are fused with the context features from the deep block of the
decoder for segmentation prediction. Note that the Training
Loss and the Detail Ground-truth Generation are discarded in
the inference phase. Therefore, STDC network has a higher
segmentation accuracy and achieves real-time performance
for segmentation task.

B. SEGMENTATION REFINEMENT MODULE
We use the STDC network as a semantic segmentation net-
work to segment out dynamic objects in the environment.
However, the network still has the problem of incomplete
segmentation of dynamic objects. This problem affects the
accuracy and stability of SLAM. To solve this problem,
we propose a Segmentation Refinement Module (SRM)that
combines the segmentation map with the depth information
of the same frame to improve the segmentation accuracy.

We divide the classes segmented by STDC network into
two main classes, static class and dynamic class. To reduce
the influence of dynamic feature points on the stability of the
SLAM system, as well as to consider the real-time perfor-
mance of the SLAM system, we select the direct calibration
method. This method artificially sets the highly dynamic
objects in the environment as dynamic objects. For example,

Algorithm 1 Segmentation Refinement Algorithm
Input: Depth image ID,Original dynamic set Do;
Output: New dynamic set Dn;
1: for (ui,vi) in Do do
2: di = ID(ui,vi);
3: Mask = {(ui-8,vi-8),. . . ,(ui,vi),. . . ,(ui+8,vi+8)};
4: for (xj,yj) in Mask do
5: dj = ID(xj,yj);
6: if |di − dj| ≤ τ then
7: Insert((xj,yj),Dn);
8: end if
9: end for

10: end for

people, animals, cars, etc. Other objects are set as static
objects. The dynamic class set Do includes all dynamic pixel
point coordinates {(u1,v1),. . . ,(uk ,vk )}.

Based on the continuity of depth of the objects, we reclas-
sify the static pixel points around each dynamic pixel point
according to the depth difference. Firstly, the dynamic pixel
point (ui,vi)(1≤i≤k) is taken as the center point and the depth
value di of this pixel point is recorded. Then, the coordinates
of 389 pixel points {(x1,y1),. . . ,(x389,y389)} are determined
using amask of size 17×17. Finally, if the difference between
the depth value dj(1≤j≤389) of the static pixel point (xj,yj)
and the depth value di of the dynamic pixel point (ui,vi) is
less than or equal to the threshold τ , the pixel point is added
to the new dynamic class set Dn, as follows:{

|di − dj| ≤ τ (xj, yj) ∈ Dn

else (xj, yj) /∈ Dn
(1)

where τ is a preset threshold value, and we set τ =
500 (0.1m), according to Blitz-SLAM[6]. The segmen-
tation refinement algorithm is shown in Algorithm 1.
The algorithm takes the depth image ID and the original
dynamic set Do as input. Firstly, the depth value di of the
coordinate point (ui,vi) in Do is calculated by ID(ui, vi),
and a Mask of size 17 × 17 containing 389 coordinate
points centered on the point (ui,vi) is obtained, such as
{(ui−8,vi−8),. . . ,(ui,vi),. . . ,(ui+8,vi+8)}. Then the depth
value dj of coordinate points (xj,yj) in Mask is calculated by
ID(xj, yj). If the difference between dj and di is less than or
equal to τ , (xj,yj) is inserted into the new dynamic set Dn.

C. IMPROVED QTREE-ORB ALGORITHM
In the ORB-SLAM3 system, the ORB algorithm is used in
the extraction thread to extract feature points from the input
frames, and the quad-tree algorithm is used in the rejection
thread to reject redundant feature points in the feature maps.
These two algorithms are collectively called the Qtree-ORB
algorithm. By this algorithm, the remaining feature points
can be uniformly distributed in the feature maps. However,
the Qtree-ORB algorithm has suffered from over-uniform
distribution of feature points and retaining a large number
of low-quality feature points. These problems reduce the
accuracy of pose estimation in SLAM system.
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FIGURE 2. Overview of the STDC Segmentation network. ARM denotes Attention Refine module, and FFM
denotes Feature Fusion Module in [10].

FIGURE 3. (a) General STDC network architecture. ConvX operation refers
to the Conv-BN-ReLU. (b) Short-Term Dense Concatenate module (STDC
module). M denotes the dimension of input channels, N denotes the
dimension of output channels. Each block is a ConvX operation with
different kernel size. (c) STDC module with stride=2.

In this paper, we propose an improved Qtree-ORB algo-
rithm to improve the overall quality of feature points by
reducing the iterations of low-quality feature points.

Before extracting the feature points, we construct the
image pyramid by dividing the input image into M layers
considering the scale transformation of the feature points,
as follows:

M = Round[Max(W ,H )/100] (2)

where W , H denote the width and height of the input image
respectively, and Round denotes the rounding function, Max
denotes the maximum value function. The total area S of the
image pyramid is calculated by Equation 3, as follows:

S = HW (s2)0 + HW (s2)1 + . . .+ HW (s2)(M−1)

= HW
1− (s2)M

1− s2
= C

1− (s2)M

1− s2
(3)

where s denotes the preset scaling factor, and C denotes the
original image area of the first layer.

To distribute the feature points uniformly on the feature
map, the number of feature points per unit area is set to X
obtained by Equation 4:

X =
N
S
=

N

C 1−(s2)M

1−s2

=
N (1− s2)

C(1− (s2)M )
(4)

where N denotes the total number of feature points. The
number of feature points Ni in the i-th (0≤i≤(M−1)) layer
is calculated by Equation 5, as follows:

Ni =
N (1− s2)

C(1− (s2)M )
C(s2)i =

N (1− s2)
1− (s2)M

(s2)i (5)

The feature points extraction algorithm is shown in Algo-
rithm 2. Feature points in each layer of the image pyra-
mid are extracted by Algorithm 2. Firstly, the i-th layer of
the pyramid images Li is divided into multiple regions of
equal size, such as {A1,. . . ,AL}. Then, the Features From
Accelerated Segment Test (FAST) algorithm with different
thresholds is used to extract the feature points. The set of
high-quality feature pointsPH is extracted separately for each
region by the FAST algorithm with high threshold TH , such
as FAST(Aj,TH ). If the total number of extracted high-quality
feature points NH is greater than or equal to the number
of feature points in i-th layer Ni, the extraction of feature
points in this layer is ended. Conversely, the set of low-quality
feature points PL is extracted for each region separately using
the FAST algorithmwith low threshold TL . When the number
of all feature points N S is greater than or equal to Ni, the
extraction of feature points in this layer is ended. According
to ORB-SLAM3, we set TH=20 and TL=7.
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Algorithm 2 Feature Points Extraction Algorithm
Input: I -th layer of the image pyramid Li,

Number of feature points in i-th layer Ni;
Output: High-quality points set PH ,

Low-quality points set PL ;
1: {A1, . . . ,AL} in Li;
2: for Aj in Li do
3: PHj = FAST(Aj,TH );
4: Insert(PHj ,P

H );
5: end for
6: NH = CalculatePointsNumber(PH );
7: if NH

≤ Ni then
8: for Aj in Li do
9: PLj = FAST(Aj,TL );

10: Insert(PLj ,P
L );

11: NL = CalculatePointsNumber(PL );
12: N S = NH

+ NL ;
13: if N S

≥ Ni then
14: break;
15: end if
16: end for
17: end if

After the feature extraction process, we use the optimized
segmentation maps to reject dynamic feature points. Feature
points on dynamic objects are removed directly from the
feature points set.

In the rejection thread, ORB-SLAM3 uses a quad-tree
algorithm to reject the redundant feature points. However, this
method retains a large number of low-quality feature points
and reduces the feature matching accuracy of the system.
To address this problem, we propose an improved quad-tree
algorithm. The algorithm reduces the iterations of low-quality
feature points. Firstly, the input layer is divided into 4 nodes.
Then, we determine the number of high-quality and low-
quality feature points contained in each node, respectively.
There are 3 cases as follows:

1) A node is split further into 4 nodes, when the number
of feature points in this node is greater than 1 and the
number of high-quality feature points in this node is
greater than or equal to 1.

2) A node is removed when the number of feature points
in the node is equal to 0.

3) A node is no longer divided and is saved, when the
feature points in the node are other cases.

Finally, we set the number of feature points required for
the i-th layer to NT

i . When the total number of nodes is
greater than NT

i , all node division operations are finished
and one feature point with the largest Harris in each node
is retained. Conversely, the above steps are continued. The
improved quad-tree algorithm is shown in Algorithm 3. The
algorithm takes the i-th layer of the pyramid images Li and
the set of high-quality feature points PH as input. Firstly, the
nodes set Node is initialized and the number of nodes N n

is calculated by the CalculateNodesNumber function. In the
loop body, the number of feature points N p

j and the number

Algorithm 3 Improved Quad-Tree Algorithm

Input: I -th layer Li, High-quality points set PH ;
Output: Retained feature points set PR;
1: Node = InitializeNodesSet(Li);
2: N n = CalculateNodesNumber(Node);
3: while N n

≤ NT
i do

4: for Node(j) in Node do
5: N p

j = CalculatePointsNumber(Node(j));
6: NH

j = CalculateHighPointsNumber(Node(j));
7: if N p

j > 1 and NH
j ≥ 1 then

8: Nodes = SplitNode(Node(j));
9: Insert(Nodes,Node);

10: else if N p
j = 0 then

11: Remove(Node(j), Node);
12: else
13: Node(j) ∈ Node;
14: end if
15: end for
16: N n = CalculateNodeNumber(Noden);
17: end while
18: PR = Harris(Node);

of high-quality feature points NH
j in Node(j) are calculated

respectively. Node(j) is split into 4 new nodes and they is
inserted into Node if NP is greater than 1 and NH is greater
than or equal to 1. Node(j) is removed from Node if NP is
equal to 0. In other cases, Node(j) remains unchanged and
still belongs to Node. Finally, only one feature point with the
highest Harris value is retained in each node by the Harris
function.

The improved quad-tree algorithm slightly reduces the
uniformity of feature points, but retains a larger number of
high-quality feature points.

IV. EXPERIMENT AND ANALYSIS
In this section, we experiment the proposed STDC-SLAM
on the TUM dataset. Firstly, we introduce the TUM dataset
and explain the performance judging criteria of the SLAM
system. Then, ablation experiments are conducted to demon-
strate the effectiveness of each module. Finally, we compare
the performance of STDC-SLAM with other existing state-
of-the-art methods on dynamic datasets.

A. TUM DATASET
The TUMdataset is an excellent dataset for evaluating camera
positioning accuracy, and it provides an accurate ground-truth
for the sequences.1 It contains 39 sequences recorded by an
RGB-D camera at 30fps with a resolution of 640 × 480.
To demonstrate the effectiveness of STDC-SLAM, we use
3 dynamic sequences and 3 static sequences from the TUM
dataset to evaluate the performance of STDC-SLAM in a
realistic environment, namely w_rpy, w_halfphere, w_xyz,
fr1_desk, fr1_desk2, and fr1_room.

1https://vision.in.tum.de/data/datasets/rgbd-dataset/download
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TABLE 1. RMSE(m) of ATE of different systems. OS3 denotes ORB-SLAM3,
S denotes STDC network, and Q denotes improved Qtree-ORB algorithm.

B. JUDGING CRITERIA
To quantitatively evaluate the advantages of the algorithm in
this paper, we evaluate the overall performance of the system
using Absolute Trajectory Error (ATE). The ATE indicates
the global consistency of the trajectory. The Root Mean
Square Error (RMSE) reflects the accuracy of the system,
while RMSE is computed by:

RMSE =

√√√√√ n∑
i=1

(Xg,i − Xc,i)2

n
(6)

where n means the number of observations, i denotes the i-th
observation. Xg,i is the ground truth of the i-th observation,
while Xc,i is the computation result of the i-th observation.
Therefore, the RMSE value of ATE is obtained from each
sequence to judge the positional accuracy in this paper.

C. ABLATION EXPERIMENTS
This section describes the ablation experiments that demon-
strate the effectiveness of each part of our proposed method.

1) EFFECTIVENESS OF STDC NETWORK COMBINED WITH
ORB-SLAM3
We add the STDC network to ORB-SLAM3 as the backbone
network of semantic threads. It compares the performance
with the original ORB-SLAM3 system in dynamic and static
sequences, and the results are shown in columns 2 and 3 of
Table 1. In the dynamic sequences w_rpy, w_halfsphere,
and w_xyz, the RMSE of ORB-SLAM3 incorporated into
STDC (OS3+S) are less than 0.1m. Compared with the orig-
inal ORB-SLAM3 (OS3), OS3+S is able to operate stably
in the dynamic environments. In addition, OS3+S has the
same effect as OS3 in the static environment experiments.
The results show that ORB-SLAM3 incorporating the STDC
network exhibits higher accuracy under dynamic sequences
relative to the original ORB-SLAM3 and still shows good
stability on static sequences.

Figure 4 shows the experimental results of the original
ORB-SLAM3 and theORB-SLAM3 incorporating the STDC
network on the sequence w_xyz from the TUM dataset.
It can be seen that the ORB-SLAM3 incorporating the
STDC network effectively eliminates the feature points on
the human.

FIGURE 4. The experimental results of the original ORB-SLAM3 and the
ORB-SLAM3 incorporating the STDC network on the sequence w_xyz from
the TUM dataset.

2) EFFECTIVENESS OF SRM
The feature points on the dynamic objects are effectively
eliminated by using the STDC network. However, there are
a small number of dynamic feature points that are not elimi-
nated, as shown in the red box in Figure 5(b). The Segmen-
tation Refinement Module (SRM) is incorporated into our
system to further eliminate these remaining dynamic feature
points. The experimental results are shown in Figure 5(c).

We experiment ORB-SLAM3 incorporating the seman-
tic segmentation network and SRM under 6 sequences.
The results are shown in column 4 of Table 1. In column
4 of Table 1, the RMSE of ORB-SLAM3 incorporating
the STDC and SRM modules (OS3+S+SRM) is reduced by
22.5%, 48.1%, and 35.3%, relative to OS3+S in the dynamic
sequence, respectively. In addition, OS3+S+SRM still has a
stable effect in static sequences. The effectiveness of the SRM
module is proved.

3) EFFECTIVENESS OF IMPROVED QTREE-ORB ALGORITHM
To demonstrate the effectiveness of the improved Qtree-
ORB algorithm, we compare the original ORB-SLAM3
with the ORB-SLAM3 with the improved Qtree-ORB algo-
rithm on the TUM static sequences fr1_desk, fr1_desk2,
and fr1_room. The results are shown in column 6 of
Table 1. We find that ORB-SLAM3, which only improves
the Qtree-ORB algorithm (OS3+Q), still runs unstable in
dynamic sequences. However, in static sequences, the RMSE
of OS3+Q is reduced by 11.1%, 8.0%, and 22.2%, compared
to OS3, respectively. Also, We separately record the num-
ber of high-quality and low-quality feature points as well
as the uniformity of feature points distribution in experi-
ments. To quantify the distribution uniformity, the calcu-
lation method of literature [35] was used and the results
are shown in Table 2. The average number of high-quality
and low-quality feature points is 155 and 63, respectively,
when extracting feature points per frame using the original
ORB-SLAM3. However, when extracting the same num-
ber of feature points using the improved ORB-SLAM3,
we find that the number of low-quality feature points is
significantly reduced, and the average number of low-quality
feature points is 35. In addition, the uniformity of feature
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FIGURE 5. The experimental results of different ORB-SLAM3 systems on the same frame. (a) ORB-SLAM3.
(b) ORB-SLAM3 incorporating the STDC network. (c) ORB-SLAM3 incorporating the STDC network and SRM.

TABLE 2. The distribution of feature points of different frames on
sequence fr1_desk. H, L respectively denotes the number of high-quality
and low-quality feature points, T denotes Total number of feature points,
U denotes the uniformity of feature point distribution. U value is larger,
the uniformity is worse.

point distribution of the improved algorithm is only slightly
reduced compared to the original algorithm. The results show
that although the improved Qtree-ORB algorithm slightly
reduces the uniformity of feature points distribution, it retains
more high-quality feature points and improves the overall
quality of feature points.

Finally, we incorporated the STDC network, the SRM, and
the improved Qtree-ORB algorithm into ORB-SLAM3, and
named it STDC-SLAM. The system was experimented on
both dynamic and static datasets, and the results are shown
in column 5 of Table 1. The results show that STDC-SLAM
improves the location accuracy by more than 82% over
ORB-SLAM3 on dynamic sequences and by more than 8%
on static sequences.

Figure 6 shows the experimental results of STDC-SLAM
on the sequence w_halfphere from the TUM dataset. It can
be seen that the system can effectively reject dynamic feature
points.

D. COMPARE WITH STATE-OF-THE-ARTS
Based on the same experimental environment, we com-
pare the ATE and time consumption of STDC-SLAM with
DynaSLAM and PSPNet-SLAM. The results are shown in
Table 3 and Table 4. We find that the localization accu-
racy of STDC-SLAM improves on three sequences relative
to DynaSLAM, as shown in Table 3. The RMSE of our
system in the sequence w_rpy is reduced by 17% com-
pared to DynaSLAM. Although the localization accuracy
of STDC-SLAM is not improved in dynamic sequences
compared with PSPNet-SLAM, the processing speed of

FIGURE 6. The experimental results of STDC-SLAM on the sequence
w_halfphere from the TUM dataset.

TABLE 3. Comparisons of RMSE[m] for our system against the
state-of-the-arts in dynamic sequences of TUM RGB-D dataset.

TABLE 4. Comparisons of time consumption [ms] for our system against
the state-of-the-art in dynamic sequences of TUM RGB-D dataset.

STDC-SLAM is much faster than DynaSLAM and PSPNet-
SLAM, as shown in Table 4. The comparison of the esti-
mated trajectories between STDC-SLAM and other SLAM
are shown in Figure 7, and STDC-SLAM has higher stability
while satisfying the real-time requirements.

V. CONCLUSION
Based on ORB-SLAM3 and STDC network, we have pro-
posed STDC-SLAM. In the semantic thread, we use STDC
network as a semantic segmentation network and add a seg-
mentation refinement module to optimize the segmentation
results by using the depth information of the image. This
module improves the segmentation accuracy of the system for
dynamic objects. In the rejection thread, we have improved
the Qtree-ORB algorithm of ORB-SLAM3. The improved
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FIGURE 7. The comparison of the estimated trajectories between STDC-SLAM and other SLAM.

Qtree-ORB algorithm improves the location accuracy and
robustness of the system. Finally, the effectiveness of each
module is verified on the TUM dataset, and the absolute tra-
jectory error and time consumption are compared with other
excellent SLAM systems. The results show that our proposed
system has higher localization accuracy and satisfies the real-
time performance.

Although our proposed system has made some progress in
accuracy and real-time, there are still some tasks we need
to do. On the one hand, the segmentation accuracy of the
semantic segmentation network needs to be further improved.
On the other hand, our proposed system easily leads to track-
ing failure in a highly dynamic environment. In the future,
we need to improve the accuracy of the semantic segmenta-
tion network, and continue to experiment STDC-SLAM on

different datasets to improve the robustness of the system in
dynamic environments.
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