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ABSTRACT In practical process industries, the measurements coming from different sources are collected at
different sampling rates, thereby soft sensors developed using uniformly sampled measurements may result
in poor prediction performance. Besides, industrial processes are inherently stochastic and most of them
present dynamic characteristic. To cope with these issues, a multi-rate probabilistic slow feature regression
(MR-PSFR) model is proposed in this paper for dynamic feature learning and soft sensor development in
industrial processes. In the MR-PSFR, both input and output observation datasets with different sampling
rates are used to extract the slow features, which can separate slowly and fast changing features and have a
better interpretation of the outputs. Then, the expectation-maximization algorithm is modified to derive the
model parameters of MR-PSFR and the quality prediction strategy for multi-rate processes is constructed.
Finally, the proposed method is investigated through a numerical example and a real industrial process. The
simulation results show that the extracted slow features better represent the intrinsic characteristics of the
processes and the proposed model has better prediction performance for multi-rate dynamic processes than
other methods.

INDEX TERMS Soft sensor, feature learning, multi-rate probabilistic slow feature regression, expectation-
maximization algorithm, multi-rate dynamic process.

I. INTRODUCTION
In industrial processes, accurate measurement of quality vari-
ables is of great significance for process control, monitoring
and optimization. At present, quality variables are mainly
measured by online sampling and off-line analysis in the
laboratory. The measurement process is time-consuming and
the related detection equipment is expensive, so it is not
conducive to realize the real-time monitoring and control
of the industrial process [1], [2], [3], [4]. As a supplement
of traditional measurement methods, soft sensor technology
can solve this problem. Data-driven soft sensors can estimate
quality variables accurately and economically by establishing
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mathematical models between key quality variables and eas-
ily measurable auxiliary variables [5], [6], [7]. With the
wide application of distributed control system (DCS), a large
amount of process data reflecting the real process state has
been collected and stored. On this basis, various data-driven
soft sensors have been developed and successfully applied in
practical industrial processes [8], [9], [10], [11].

However, most traditional soft sensor methods assume a
consistent sampling rate for all the observations. In most
chemical processes, the sampling rates of the process and
quality variables may vary among a large range. Those impor-
tant quality variables are tested at the laboratory with a much
lower sampling rate, such as the melt index of polypropylene,
the content of butane, the endpoint of crude oil. They may be
collected among a few hours or days. On the other hand, basic
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process variables such as pressure, flow rate and temperature,
can be measured online using high-rate sensors, resulting in
the multi-rate characteristic of the industrial process [12],
[13]. The data imbalance between the quality variables and
the process variablesmakes it challenging to build an accurate
estimation model for quality variables.

For quality prediction, the traditional method is to con-
vert the multi-rate sampling data into single-rate sampling
data. Usually, the data preprocessing techniques include up-
sampling and down-sampling. The up-sampling method uses
high sampling rate data to estimate the uncollected data with
low sampling rate by establishing a regression model. In the
down-sampling method, all variables are recorded at the low-
est sampling rate by subsampling. Lu et al. [14] proposed a
multi-rate dynamic modeling method for quality prediction at
a faster rate based on themultiway partial least squares (PLS),
in which the original dual sampled data is transformed into a
three-dimensional matrix. Marjanovic et al. [15] presented a
real-time monitoring scheme of an industrial batch process
using the down-sampling methods. However, there are still
some limitations for these methods. The prediction accuracy
of the up-sampling methods relies on the regression model
and the down-sampling methods result in loss of significant
data information and distortion of process dynamics.

Therefore, it is more appropriate to directly use the multi-
sampling-rate measurements without down-sampling or up-
sampling. Data fusion techniques have provided an effective
way for directly using multi-sample rate data [16]. Under
the conditions of multi-rate sampling, the data fusion tech-
nology based on Kalman filter is introduced into soft sensor
maintenance, and the fusion of soft sensor model estimation
and process measurement is realized [17]. Huang et al. [18]
have used deep learning (DL) methods to fuse signals
with different sampling rates and proposed a multi-rate
sampling data fusion method for fault diagnosis. As an
alternative, the semi-supervised methods have been used
for quality prediction in the dual-rate process [19], [20].
Zhu et al. [21] proposed a semi-supervised learning approach
based on quantum statistic for industrial soft sensor develop-
ment. Shao et al. [22] developed a semi-supervised Dirichlet
mixture of Gaussians models, in which a fully Bayesian
model structure is designed to implement semi-supervised
tasks. Jin et al. [23] presented a semi-supervised soft sen-
sor using evolutionary optimization-based pseudo label-
ing. Lima et al. [24] developed an industrial semi-supervised
dynamic soft-sensor modeling approach based on deep
relevant representation learning. Unfortunately, these
semi-supervised methods only consider sampling rate incon-
sistencies between quality variables and process variables,
and none of them can handle process data with three or more
sampling rates. Recently, some of the semi-supervised proba-
bilisticmodels have been extended to themulti-rate form. The
multi-rate probabilistic principal component analysis (PPCA)
and multi-rate factor analysis (MRFA) models have been
developed for fault detection in multi-rate processes [25],
[26]. Moreover, Zhou et al. proposed a multi-rate principal

component regression model (MRPCR) for soft sensor appli-
cations in chemical process [27].

Besides, in order to improve the prediction performance
of the model for multi-rate process, it is necessary to con-
sider the process dynamics. However, the traditional dynamic
process modeling methods focus on uniformly sampled data
sets [28], [29]. To address this issue, the state of each mea-
surement type is estimated using two Kalman filters, and the
estimates are fused considering the correlation between them
in the next step [30]. Aiming at the dual-rate characteristic
of the system, Cao et al. [31] used the separation of multi-
dynamic and static characteristics to predict the quality vari-
able. But these models based on dual-rate system cannot be
extended to three or more sampling rate systems. Further-
more, as a dynamic extension of the MRFA model, Cong
et al. [32] proposed a multi-rate linear Gaussian state space
model (MLGSS) for dynamic process monitoring. Although
MLGSS can effectively extract dynamic latent variables in
themulti-rate process, themodel does not consider any output
information. In the above literature, multi-rate dynamic mod-
eling has found applications in fault detection and diagnosis.
Its application to soft sensors has only gained recent attention
with few industrial applications. Moreover, there are still
some aspects which need to be improved. Firstly, we intend to
extract the latent features of multi-rate processes that change
slowly and reflect the internal trend of the process, because
noise is usually included in the rapidly changing features.
Secondly, in order to make full use of process information
for quality prediction, the output information of the process
is taken into account during the latent variable extraction.
Finally, a more common model structure, model training
procedure and the corresponding quality prediction strategy
should be derived for any multi-rate dynamic processes.

To address these issues, the traditional probabilistic slow
feature analysis is utilized and extended to its multi-rate
form. And a multi-rate probabilistic slow feature regression
(MR-PSFR) model is proposed for dynamic feature learning
and industrial soft sensor development in this paper. Slow
feature analysis (SFA) and probabilistic SFA (PSFA) are
effective tools for dynamic modeling of industrial processes.
By extracting latent features that vary slowly in time (i.e.,
slow features), they are able to capture all the dynamic
information contained in the observations during modeling.
Thus, a dimensionality reduction model with less noise can
be obtained [33], [34], [35]. In the proposed MR-PSFR
model, the whole input and output observations with differ-
ent sampling rates are used to extract slow features (SFs),
where both the internal correlations between the individual
sampling rate and the internal correlations between different
sampling rates are all considered.Moreover, the SFs extracted
from MR-PSFR can separate slowly and fast changing latent
features, and they can have a better interpretation of the
outputs. Next, the Expectation-Maximization (EM) algorithm
is modified to derive the model parameters of MR-PSFR.
Finally, based on the establishedmodel, the quality prediction
strategy for multi-rate processes is constructed.
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The rest of the paper is organized as follows. Section 2
gives a brief introduction of SFA and PSFA. Section 3
presents a detailed explanation of the MR-PSFR model,
followed by the model parameter estimation using EM
method and the corresponding quality prediction strategy.
Section 4 shows two case studies on a numerical example and
an industrial process application. Finally, conclusion is made
in Section 5.

II. RELATED WORK
A. SLOW FEATURE ANALYSIS
SFA is an unsupervised learning method proposed byWiskott
and Sejnowski [36]. The core idea of SFA is to extract some of
the most slowly changing components from the time series as
essential features. It aims to find a set of nonlinear functions{
gj(·), 1 ≤ j ≤ q

}
tomap a d-dimensional input signal x(t) to

a q-dimensional feature space. The outputs of these functions
are called SFs, which are denoted as sj(t) := gj(x(t)) (1 ≤ j ≤
q). The SFA algorithm is to solve the following optimization
problem:

min
gj(·)

1(·) := min
gj(·)

〈
ṡ2j (t)

〉
t

(1)

subject to 〈
sj(t)

〉
t = 0, (zero mean) (2)〈

s2j (t)
〉
t
= 1, (unit variance) (3)

∀i 6= j,
〈
si(t)sj(t)

〉
t = 0, (decorrelation and order) (4)

where 1(·) represents an indicator of changing rate of fea-
tures, ṡj(t) = sj(t) − sj(t − 1) means the first-order time
difference of s(t), and 〈·〉t denotes the expectation over time.
Constraints (2) and (3) ensure the normalization of the out-
put signal and avoid the appearance of the constant value
solution, whereas constraint (4) ensures that each component
of the output signal is uncorrelated and avoids redundant
signals.

When the mapping functions
{
gj(·), 1 ≤ j ≤ q

}
are linear,

the SFs can be derived in linear form:

s(t) =WTx(t) (5)

where W = [w1 w2 · · ·wq] ∈ Rd×q is the mapping matrix.
When the number of SFs is the same as that of inputs, i.e.
d = m, the above optimization solution problem is equiva-
lent to the following generalized eigenvalue decomposition
problem: 〈

ẋẋT
〉
t
W =

〈
xxT

〉
t
W� (6)

where � is a diagonal matrix that contains the generalized
eigenvalues {ωj} on its diagonal, which are exactly the opti-
mal values of objectives in Eq.(1), that is, 1(·) = ωj. W =
[w1 w2 · · ·wq] is the corresponding generalized eigenvector
matrix [37].

FIGURE 1. The model structure of PSFA.

B. PROBABILISTIC SFA
SFA has been extended in a probabilistic framework to PSFA
by Turner and Sahani [38]. The model structure of PSFA
is depicted in Figure 1 and the model formula is given as
follows: {

s(t) = Fs(t − 1)+ es(t)
x(t) = Hs(t)+ ex(t)

(7)

where the state transition matrix F is defined as F =

diag{λ1, · · · , λq}, H ∈ Rd×q is the emission matrix, es(t) is
the state noise and follows a Gaussian distribution es(t) ∼
N (0,3), where the covariance matrix 3 = diag{1 −
λ21, · · · , 1− λ

2
q}, ex(t) is the observation noise and follows a

Gaussian distribution ex(t) ∼ N (0,6), where the covariance
matrix 6 = diag{σ 2

1 , · · · , σ
2
d } and σ

2
j is the variance of the

jth dimension SF.
The independence assumption of SFs reflects the decorre-

lation nature of constraint (4). It can also be verified that the
SFs derived from PSFA still satisfy the constraints (2) and (3),
which are

E[sj(t)] = 0, Var{sj(t)} = 1, 1 ≤ j ≤ q (8)

The transition parameter λj, which satisfies 0 ≤ λj < 1,
controls the correlation level between adjacent data points
sj(t) and sj(t − 1). In fact, the indicator 1(·) is calculated
as 1(sj) = 2(1 − λj), which means that the larger λj is, the
stronger the correlation between sj(t) and sj(t − 1) is. sj(t)
tends to have slower variation with a smaller 1(·), and vice
versa.

As can be seen from Figure 1, the temporally correlated
latent variables s(t) are derived from input variables x(t),
which can only capture the dynamics in x(t) [33], [39].
It is noticed that the output observations could also contain
dynamics which are beneficial to the prediction of future
outputs. Moreover, the PSFA is trained using the uniformly
sampling data. When faced with the problem of multiple
sampling rates, quality prediction based on the PSFA model
is not satisfactory. Based on the above considerations, the
traditional PSFA is extended to its multi-sampling-rate form
with consideration of output information in the next section.

III. MR-PSFR BASED QUALITY PREDICTION METHOD
A. MULTI-RATE PROBABILISTIC SLOW FEATURE
REGRESSION MODEL
Suppose a multi-rate process contains M kinds of sampling
rates for the process variables X and N kinds of sampling
rates for the quality variables Y. Given a multi-rate data set
{X,Y} = {xt ∈ Rt , yt ∈ Rt }Tt=1, the multi-rate probabilistic
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slow feature regression model (MR-PSFR) is given as
st = Fst−1 + es
x(m)t = H(m)st + e(m)x , m = 1, 2, · · · ,M

y(n)t = U(n)st + e(n)y , n = 1, 2, · · · ,N

(9)

in which x(m)t and y(n)t denote observations at sample
time t from different sampling rates. The observations of
process variables at sampling time are denoted as xt =[
x
(
o1t
)T x

(
o2t
)T
· · · x

(
oktt
)T]T

, in which o1t to oktt rep-

resent different sampling rates and it is readily to obtain
that 1 ≤ o1t < o2t < · · · < oktt ≤ M . Similarly,
the measurements of quality variables are denoted as yt =[
y
(
b1t
)T y

(
b2t
)T
· · · y

(
bJtt
)T]T

, in which b1t to bJtt repre-

sents different sampling rates of yt , and 1 ≤ b1t < b2t < · · · <
bJtt ≤ N . The key factor of the MR-PSFR model is the slow
feature st ∈ Rq, which follows Gaussian distribution. The
slow feature st is determined and shared by all the multi-rate
measurements. F = diag{λ1, · · · , λq} is the state transition
matrix, H(m)

∈ Rd(m)×q (m = 1, 2, · · · ,M ) are the emission
matrix of the process variables under each sampling rate,
and U(n)

∈ Rd(n)×q (n = 1, 2, · · · ,N ) are the emission
matrix of the quality variables under each sampling rate,
where d(m) and d(n) represent the variable dimensions of
process variables and quality variables at different sampling
rates, respectively. The state noise es follows a Gaussian
distribution es ∼ N (0,3), where the covariance matrix 3 =
diag{1−λ21, · · · , 1−λ

2
q}. e

(m)
x and e(n)y are Gaussian noises of

the process variables and quality variables, which are e(m)x ∼

N (0, 6(m)
x ), m = 1, 2, · · · ,M and e(n)y ∼ N (0, 0(n)

y ), n =
1, 2, · · · ,N , where 6(m)

x and 0(n)
y are the noise variances.

The model structure diagram of MR-PSFR is depicted in
Figure 2, where M = 2 and N = 2 are specified as an
example. The whole observations with different sampling
rates are used to extract SFs, where both the internal corre-
lations between the individual sampling rate and the internal
correlations between different sampling rates are all consid-
ered.Moreover, the extracted SFs take into account the output
information of the process and can have a better interpretation

of the output. The unknown model parameter set is 2 ={
λj, 1 ≤ j ≤ q, H(m), 6

(m)
x ,U(n), 0

(n)
y

}
, (m = 1, 2, · · · ,M ;

n = 1, 2, · · · ,N ). In the next section, the EM algorithm is
modified to derive the model parameters of MR-PSFR.

FIGURE 2. MR-PSFR model structure diagram.

B. MODEL PARAMETER ESTIMATION USING EM
The model parameters
2 =

{
λj, 1 ≤ j ≤ q, H(m), 6

(m)
x ,U(n), 0

(n)
y

}
, (m =

1, 2, · · · ,M ; n = 1, 2, · · · ,N ) in MR-PSFR are derived
using the EM algorithm. Given observations Do = {X,Y} =
{x1, · · · , xT , y1, · · · , yT } and latent variables Dhid =

{s1, · · · , sT }, where xt =
[
x
(
o1t
)T x

(
o2t
)T
· · · x

(
oktt
)T]T

and yt =
[
y
(
b1t
)T y

(
b2t
)T
· · · y

(
bJtt
)T]T

, the global

log-likelihood of the complete data is derived as (10), shown
at the bottom of the page.

Assuming that the prior distribution of SFs is standard
Gaussian distribution: p(s1) = N (0, Iq), the first term in
Eq. (10) is derived as

ln p (s1) = const−
1
2
sT1 s1 (11)

Then, the second term in Eq. (10) is calculated as

ln p (X,Y, s|2)

= ln


p (s1) p

(
x
(o11)
1 , · · · , x

(o
k1
1 )

1 |s1

)
p
(
y
(b11)
1 , · · · , y

(b
J1
1 )

1 |s1

)
∏T

t=2
p (st |st−1) p

(
x(o

1
t )

t , · · · , x(o
kt
t )

t |st

)
p
(
y(b

1
t )

t , · · · , y(b
Jt
t )

t |st

)
= ln p (s1)+

T∑
t=2

ln p (st |st−1)+
T∑
t=1

ln p
(
x(o

1
t )

t , · · · , x(o
kt
t )

t |st

)

+

T∑
t=1

ln p
(
y(b

1
t )

t , · · · , y(b
Jt
t )

t |st

)
(10)
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T∑
t=2

ln p (st |st−1) = const−
T − 1
2

q∑
j=1

log
(
1− λ2j

)

−
1
2

T∑
t=2

q∑
j=1

1

1− λ2j

(
sj(t)

− λjsj(t − 1)
) 2

(12)

For the process variables, it can be proved that the covari-
ance of the conditional distribution of the input observed
samples with respect to the latent vector can be expressed

as 6(ot ) = diag
(
6

(o1t )
x ; 6

(o2t )
x ; · · · ; 6

(oktt )
x

)
. Similarly,

for the quality variables, the covariance of the conditional
distribution of the output observed samples with respect to the

latent vector is 0(bt ) = diag
(
0
(b1t )
y ; 0

(b2t )
y ; · · · ; 0

(bJtt )
y

)
.

Then, the third term and fourth term in Eq. (10) are derived as

T∑
t=1

ln p
(
x(o

1
t )

t , · · · , x(o
kt
t )

t |st

)

= const−
1
2

T∑
t=1

ln
∣∣∣6(ot )

∣∣∣
−

1
2

T∑
t=1

[(
xt −H(ot )st

)T (
6(ot )

)−1 (
xt −H(ot )st

)]
(13)

T∑
t=1

ln p
(
y(b

1
t )

t , · · · , y(b
Jt
t )

t |st

)

= const−
1
2

T∑
t=1

ln
∣∣∣0(bt )

∣∣∣
−

1
2

T∑
t=1

[(
yt − U(bt )st

)T (
0(bt )

)−1 (
yt − U(bt )st

)]
(14)

in which the emission matrix of the process
variables and the quality variables are defined as H(ot ) =

[H(o1t ); H(o2t ); · · · ;H(oktt )] and
U(bt ) = [U(b1t ); U(b2t ); · · · ;U(bJtt )], respectively.
Substituting Eqs. (11)-(14) into Eq. (10), the Q-function

can be formally derived by considering the conditional expec-
tation of (10) as (15), shown at the bottom of the page,
where 2old represents the model parameters obtained in the
previous iteration.

1) M-STEP
In the M-step, the new parameters2new can be calculated by
maximizing the Q-function:

2new
= arg max

θ
Es|X,Y,2old {ln p (X,Y, s|2)} (16)

Taking the derivative of the Q-function with respect to λj,
we derive

∂Q
∂λj
=

(T − 1)λj
1− λ2j

−
λj

1− λ2j

{
T∑
t=2

E
[
s2j (t − 1)

]
−

T∑
t=2

E
[
sj(t)sj(t − 1)

]}

−
λj(

1− λ2j
)2 T∑

t=2

E
[(
sj(t)− λjsj(t − 1)

)2]
= 0

(17)

Further, the updating equation (17) can be simplified as:

(T − 1)λ3j −
T∑
t=2

E
[
sj(t)sj(t − 1)

]
· λ2j + (

T∑
t=2

E
[
s2j (t)

]
+

T∑
t=2

E
[
s2j (t − 1)

]
− T + 1)λj

−

T∑
t=2

E
[
sj(t)sj(t − 1)

]
= 0 (18)

Q
(
2,2old

)
= Es|X,Y,2old {ln p (X,Y, s|2)}

= const−
1
2

{
T∑
t=1

ln
∣∣∣6(ot )

∣∣∣+ T∑
t=1

ln
∣∣∣0(bt )

∣∣∣}

−E

T − 1
2

q∑
j=1

log
(
1− λ2j

)
+

1
2

T∑
t=2

q∑
j=1

1

1− λ2j

(
sj(t)− λjsj(t − 1)

) 2
−

1
2

T∑
t=1

{
xTt (6

(ot ))−1xt − 2(H(ot ))T (6(ot ))−1xtE[st ]

+tr
(
(H(ot ))T (6(ot ))−1H(ot )E[stsTt ]

)
−

1
2

T∑
t=1

{
yTt (0

(bt ))−1yt − 2(U(bt ))T (0(bt ))−1ytE[st ]

+tr
(
(U(bt ))T (0(bt ))−1U(bt )E[stsTt ]

) (15)
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By solving Eq. (18) and constraining the roots in the range
[0,1], the updated λj can be obtained.
Parameters H(m), 6

(m)
x ,U(n), 0

(n)
y are updated by taking

derivative of the Q-function with respect to each parameter
and equating them to zero, which is given as

H(m)new
=

∑
(m)

x(m)t E[st ]

∑
(m)

E[stsTt ]

−1 (19)

6(m)new
x =

1
N (m)

∑
(m)

(
x(m)t (x(m)t )T − 2H(m)newE[st ](x

(m)
t )T

+H(m)newE[stsTt ](H
(m)new)T

)
(20)

U(n)new
=

∑
(n)

y(n)t E[st ]

∑
(n)

E[stsTt ]

−1 (21)

0(n)new
y =

1
N (n)

∑
(n)

(
y(n)t (y(n)t )T − 2U(n)newE[st ](y

(n)
t )T

+U(n)newE[stsTt ](U
(n)new)T

)
(22)

where m = 1, 2, · · · ,M; n = 1, 2, · · · ,N . N (m) and N (n)

represent the sample numbers for the process variables and
the quality variables at sampling rates m and n, respectively.

2) E-STEP
The parameter update formulas inM-step require three expec-
tation terms: E [st ], E[stsTt ] and E[sts

T
t−1]. The forward filter-

ing and backward smoothing algorithm are used to estimate
the expectations of SFs. For the multi-rate data set, some
modifications to the forward filtering algorithm are required.
Given the posterior distribution of the SF at time t − 1,
p(st−1|x1:t−1, y1:t−1) = N (gt−1,Gt−1), in which gt−1 is
the mean value and Gt−1 is the covariance matrix, we need
to calculate the posterior distribution of the SF at time t ,
p(st |xt , yt , x1:t−1, y1:t−1). According to the model structure
of MR-PSFR, the joint probability distribution of st , xt and
yt can be obtained:

p(st , xt , yt |x1:t−1, y1:t−1)

= N

 µsµx
µy

 ,
6ss 6sx 6sy
6xs 6xx 6xy
6ys 6yx 6yy

 (23)

where µs = Fgt−1, µx = H(ot )Fgt−1, µy = U(bt )Fgt−1,
6ss = FGt−1FT + 3, 6xx = H(ot )6ss(H(ot ))T + 6(ot ),

6yy = U(bt )6ss(U(bt ))T + 0(bt ), 6xs = H(ot )6ss, 6ys =

U(bt )6ss, 6xy = H(ot )6ss(U(bt ))T .
Based on the Bayes rule, the expectation and variance

of the posterior distribution p(st |xt , yt , x1:t−1, y1:t−1) are
derived as

gt = µs +
(
(H(ot ))T (6(ot ))−1H(ot )

+ (U(bt ))T (0(bt ))−1U(bt ) +6−1ss

)−1
×

(
(H(ot ))T (6(ot ))−1(xt − µx)

+ (U(bt ))T (0(bt ))−1(yt − µy)
)

(24)

Gt =

(
(H(ot ))T (6(ot ))−1H(ot )

+ (U(bt ))T (0(bt ))−1U(bt ) +6−1ss

)−1
(25)

The initial distribution parameters of the SF g1 andG1 can
be given as

g1 =
(
(H(ot ))T (6(ot ))−1H(ot )

+ (U(bt ))T (0(bt ))−1U(bt ) + I
)−1

×

(
(H(ot ))T (6(ot ))−1x1 + (U(bt ))T (0(bt ))−1y1

)
(26)

G1 =

(
(H(ot ))T (6(ot ))−1H(ot )

+ (U(bt ))T (0(bt ))−1U(bt ) + I
)−1

(27)

Subsequently, the backward smoothing is performed accord-
ing to the following formulas:

ĝt = GtFT6−1ss (ĝt+1 − Fgt )+ gt (28)

Ĝt = GtFT6−1ss (Ĝt+16
−1
ss − I)FGt +Gt (29)

Finally, the evaluation of the three expectation terms are
obtained as

E[st ] = ĝt (30)

E[stsTt ] = Ĝt + ĝt ĝTt (31)

E[stsTt−1] = Gt−1FT6−1ss Ĝt + ĝt ĝTt−1 (32)

By iteratively updating and recalculating the E-step and
M-step until convergence, the optimal model parameter set
can be obtained. The latent state SFs can be inferred as
the mean value gt of the conditional probability distribution
p(st |x1:t , y1:t ) = N (gt ,Gt ).

C. MR-PSFR BASED QUALITY PREDICTION
Based on the MR-PSFR model, the quality prediction strat-
egy for multi-rate processes is proposed. Suppose we have
obtained an online data sample xnew at time tnew and it con-
tains R different sample rates:

xnew =

[(
x(o

1
new)

new

)T (
x(o

2
new)

new

)T
· · ·

(
x(o

R
new)

new

)T]T
(33)

in which 1 ≤ o1new < o2new < · · · < oRnew ≤ M .
The online emission matrix and the online covariance

matrix are constructed as

H(onew) = [H(o1new); H(o2new); · · · ;H(oRnew)] (34)

6(onew) = diag
(
6

(o1new)
x ; 6

(o2new)
x ; · · · ; 6

(oRnew)
x

)
(35)

It is assumed that the SFs in the previous sampling time
follows a Gaussian distribution, which can be denoted as
N (sprev|gprev,Gprev). Then, according to the forward filtering
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algorithm, the prediction of the SFs at time tnew is obtained
as

ŝnew = Fgprev +6ss(H(onew))T

×

(
H(onew)6ss(H(onew))T +6(onew)

)−1
× (xnew −H(onew)Fgprev) (36)

where 6ss = FGprevFT +3.
By substituting Eq. (36) into the output equation in Eq.

(9), the prediction of quality variables at time tnew can be
estimated as

y(n)new = U(n)ŝnew, n = 1, 2, · · · ,N (37)

Thus, the quality variables at time tnew for different sam-
pling rates is obtained. To quantitatively evaluate the perfor-
mance of the soft sensor model, the root mean square error
(RMSE) is used as an assessment index, which is defined as

RMSE =

√√√√ 1
K

K∑
i=1

(yi − ŷi)2 (38)

whereK is the size of the testing dataset, yi is the real value of
the output variable and ŷi is the predicted value of the output
variable.

IV. CASE STUDY
In this section, the proposed MR-PSFR method is applied to
a numerical example and a R2S anaerobic reactor unit in the
wastewater treatment process.

A. NUMERICAL EXAMPLE
A multi-rate dynamic model is simulated, in which the hid-
den variable h(t) is two-dimensional. The observed process
variables x(t) include three sampling rates, and there are four
process variables at each sampling rate. The observed quality
variables y(t) include two sampling rates and two quality
variables at each sampling rate. The simulated model is set
as follows:

h(t + 1) = Ah(t)+ eh(t + 1)
x(t + 1) = Hh(t + 1)+ ex(t + 1)
y(t + 1) = Uh(t + 1)+ ey(t + 1)

(39)

in which t = 1, 2, · · · ,T − 1 is the sampling time, eh(t),
ex(t) and ey(t) are Gaussian white noise with zero means and
variance 0.01. It is defined as H = [H1; H2; H3] and U =
[U1;U2], which are given as follows:

A =

[
0.8 0.5
0.4 −0.6

]
, U1 =

[
0.87 0.52
0.49 0.40

]
,

U2 =

[
−0.17 0.58
−0.20 0.75

]

H1 =


0.49
−0.01
0.3
−0.12

0.71
−1
0.72
1.1

 ,H2 =


0.28
0.62
1.63
1.36

−0.13
0.98
−0.67
−1.12

 ,

FIGURE 3. SFs extracted by MR-PSFR in numerical example.

TABLE 1. RMSE prediction errors of four models in numerical example.

H3 =


1
−0.5
−0.62
1.56

−1.13
−0.64
0.08
0.62

 (40)

Data series with 2000 samples are simulated from the
abovementioned numerical setting. To carry out soft sensor
modeling, the first 1000 samples are used as the training data
while the rest 1000 samples are used for testing. Assuming
that the sampling interval is Ts, process variables x1 ∼ x4
are sampled every Ts, x5 ∼ x8 are sampled every 2Ts, and
x9 ∼ x12 are sampled every 5Ts. For quality variables,
y1 ∼ y2 are sampled every 5Ts, and y3 ∼ y4 are sampled
every 10Ts. For performance comparison, the proposed MR-
PSFR model is compared with the probabilistic principal
components regression (PPCR) [40], probabilistic slow fea-
ture regression (PSFR) [33] and MRPCR [27] models. The
MRPCR model is built using the same multi-rate dataset,
while the PPCR and PSFR models are developed based on
the down-sampling method. The latent variables’ dimension
of all the models is selected to be 2 with the numerical setting.

The two SFs extracted by MR-PSFR with corresponding
λi are displayed in Figure 3, where λi reflects the slowness
of the corresponding SF. The RMSE prediction errors for
y1 ∼ y4 using different models are presented in Table 1.
It is obvious that the performance of MR-PSFR is superior to
other approaches considered, which has the minimum RMSE
for all outputs. In terms of y1, the RMSE of the proposed
model has percentage decreases of 33.73% compared to the
PPCR model, percentage decreases of 24.57% compared to
the PSFR model and percentage decreases of 12.54% com-
pared to the MRPCR model. Figure 4 shows the detailed
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FIGURE 4. Prediction results for output y1 in numerical example.

TABLE 2. Explanations of process variables in r2s reactor.

prediction results for output y1 by the fourmodels, where blue
lines represent the real value and the red lines represent the
predicted value. As can be seen from the figure, the prediction
accuracy of MRPCR is better than that of PPCR and PSFR
due to the use of multi-sampling rate datasets. Furthermore,
the prediction performance has been greatly improved by the
MR-PSFR model, especially for those samples 10th–17th,
100th–112th, and 178th–190th.

The experiments are performed on a personal computer
with the configuration shown as follows. Operating system:
Windows 10 (64-bit); CPU: Intel Core i7-10700 (2.90 GHz);
RAM: 16.0 GB andMATLAB 2017b software. The computa-
tion time of the PPCR, PSFR,MRPCR andMR-PSFRmodels
are 0.49s, 0.56s, 2.98s and 3.24s, respectively.

B. R2S ANAEROBIC REACTOR UNIT
The MR-PSFR model is applied to a real R2S anaerobic
reactor unit in the papermaking wastewater treatment pro-
cess. Figure 5 gives the detailed flowchart of the wastewater

FIGURE 5. The flowchart of the wastewater treatment process.

FIGURE 6. SFs extracted by MR-PSFR in wastewater treatment process.

treatment process. Papermaking wastewater treatment plant
first carries out primary treatment for wastewater. The
wastewater is passed successively through bar screener,
blending pond and preliminary clarifier to remove large
number of sediments, suspended solids and floating oil in
the wastewater. Then it is fed into an anaerobic reactor for
secondary treatment. The anaerobic and aerobic reaction of
microorganisms is used to biodegrade wastewater. By adding
suitable microbial products, the sludge yield and chemical
Oxygen demand (COD) concentration can be significantly
reduced. After secondary treatment, the wastewater goes
through anoxic pool and secondary clarifier successively.
Finally, it becomes clarified water to be recycled or directly
discharged into the nearby water body.

Based on our engineering experience, 22 typical process
variables are collected as the input data and five major quality
indicators are chosen as the output data. Table 2 list the
detailed process variable description. It can be seen that U1 ∼

U3 are sampled online per hour, U4 ∼ U15 are sampled online
per 2 h and U16 ∼ U22 are off-line assayed every 24 h.
Besides, the chosen output variables are chemical Oxygen
demand (COD), volatile fatty acid (VFA), PH, suspended
solids (SS) 1# and 2# in the anaerobic reactor outlet, all of
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TABLE 3. RMSE prediction errors of four models in wastewater treatment
process.

FIGURE 7. Prediction results for outlet COD in wastewater treatment
process.

which are collected every 24 h by offline analyzing in the
laboratory. Firstly, the data of 74 days under normal working
conditions are collected as the training set and the MR-PSFR
model is constructed. It can be found that 1776 samples
of U1 ∼ U3, 888 samples of U4 ∼ U15, 74 samples of
U16 ∼ U22 and 74 samples of the five quality indicators
are collected. For comparison, the PPCR, PSFR and MRPCR
models are also built using the same way as the numerical
example. The latent variables of MR-PSFR and MRPCR
are 10 and 8 respectively using the cross validation. And
the latent variables of PPCR and PSFR are both 7. The ten
slowest SFs extracted by MR-PSFR with corresponding λi
are displayed in Figure 6, where λi reflects the slowness of
the corresponding SF. It can be seen that the extracted SFs
can separate slowly and fast changing latent features.

Subsequently, 72 days of test data from the same unit are
collected to evaluate the predictive performance of the pro-
posed model. The RMSE prediction errors for the five qual-
ity indicators using PPCR, PSFR, MRPCR and MR-PSFR
are summarized in Table 3. Obviously, the proposed model
performs better than the alternatives for all the five quality
indicators. According to the prediction results of outlet COD,
the RMSE of the proposed model has percentage decreases of
40.51% compared to the PPCR model, percentage decreases
of 27.68% compared to the PSFR model and percentage
decreases of 24.81% compared to the MRPCR model. The
detailed prediction results for outlet COD using different
models are illustrated in Figure 7. Note that the concentration

of outlet COD is normalized. As can be seen from the figure,
the prediction performance of MR-PSFR is the best among
all models, and it can track the dynamic trend of the process.
Especially for those samples 14th–19th, 21th–26th, and 55th–
62th, the MR-PSFR has a far better prediction result than
the alternatives. The reason is that the proposed method has
utilized the sufficient process and quality variables instead of
dropping some useful information, and the extracted SFs can
capture all the dynamic information contained in observations
during the modeling process. It can be inferred that the MR-
PSFR model is an effective soft sensor for quality prediction
in multi-rate dynamic processes.

V. CONCLUSION
In this paper, amulti-rate probabilistic slow feature regression
model is proposed for dynamic feature learning and soft
sensor development in industrial processes. In theMR-PSFR,
both input and output observation datasets with different sam-
pling rates are used to extract the slow features. Then, an effi-
cient EM-based learning algorithm is developed for training
the model and the quality prediction strategy for multi-rate
processes is constructed based on MR-PSFR. Finally, two
case studies are carried out on a numerical example and
a real R2S anaerobic reactor unit in the wastewater treat-
ment process. The simulation results show that the extracted
slow features better represent the intrinsic characteristics of
the processes and the proposed model has better prediction
performance for multi-rate dynamic processes than other
methods. In the future, more data-driven methods will be
considered and applied to adapt to various irregular data sets
in practice.
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