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ABSTRACT Density peaks clustering (DPC) is a simple and efficient density-based clustering algorithm
without complex iterative procedures. However, DPC needs to manually choose clustering centers via a
decision graph, which often can’t identify real centers and breaks the continuous flow of the algorithm.
In addition, DPC is highly sensitive to the cut-off distance and suffers from the domino chain reaction.
To surmount the aforementioned deficiencies, an improved density peaks clustering based on potential model
and diffusion strength (DPC-PMDS) is proposed in this paper. Firstly, we utilize the potential and centrality
of data points to calculate the density instead of the cut-off distance. Secondly, inspired by the information
diffusion in social networks, we define the influence of data points and the diffusion strength between data
points, and realize the diffusion of label from each center to the core data points while selecting clustering
centers. Through this process, the core structure of each cluster is obtained and the centers are accurately
identified. Finally, the distances from the boundary points to each cluster computed based on centrality
are applied to assign boundary points to avoid chain reaction. Extensive experiments on synthetic, UCI
and Olivetti Faces datasets demonstrate that DPC-PMDS can achieve excellent clustering results over other
state-of-art algorithms, especially on datasets with complex shapes and uneven density distribution.

INDEX TERMS Density peaks clustering, potential model, diffusion strength, center detection.

I. INTRODUCTION
Clustering is an unsupervisedmethod that divides a collection
of data points into some non-empty groups based on the dis-
tance or similarity between data points. There are partition-
based [1], hierarchy-based [2], grid-based [3], model-based
[4], and density-based [5] Clustering algorithms. Cluster-
ing has many applications, such as image segmentation
[6], [7], pattern recognition [8], recommender system [9],
gene expression [10], and intrusion detection [11].

The density-based clustering method considers that the
cluster center is surrounded by high-density points, and the
points at the edge area of the cluster are low-density points.
DBSCAN is representative of density-based clustering meth-
ods. It can find clusters with various shapes, which makes up
for the shortcoming of K-means that can only find spherical
clusters [12]. However, DBSCAN takes two parameters: the
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neighborhood radius Eps and the minimum number MinPts
of points, the values of which exert tremendous influence on
the algorithm results.

The density peaks clustering (DPC) algorithm [13] is
a novel density-based clustering algorithm. DPC computes
each data point’s density and relative distance δ to construct
a decision graph and selects the data points with high δ and
relatively high density as the cluster centers. Each remaining
point is assigned to the same cluster as its nearest neighbor
with higher density. DPC has great advantages in dealing with
non-spherical data distribution datasets. DPC algorithm does
not require iteration, relies on few parameters, and operates
efficiently. Nevertheless, DPC has the following limitations:
(1) highly sensitive to the choice of cut-off distance param-
eter [14], (2) using decision graph to select cluster centers
manually [15], and (3) affected by the problem of chain
reaction [14].

To alleviate these problems, numerous improved density
peaks clustering algorithms have been proposed. In order to
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select the cut-off distance effectively, Jiang et al. [16] put for-
ward a method to calculate the cut-off distance based on the
Gini coefficient and k-nearest neighbors. Gao et al. [17] con-
structed an optimization function using the uncertainty of the
target dataset to optimize the cut-off distance for various clus-
tering tasks. There are also some researchers who design new
density to avoid setting the cut-off distance. Lotfi et al. [18]
proposed a method called DPC-DBFN that uses fuzzy kernel
and k-nearest neighbors to compute the local density for
improving the separability of clusters. Sun et al. [19] devel-
oped a new local density that utilizes KNN-based neighbor-
hood and mutual neighbor degree. To enhance the precision
of selecting cluster centers, Guo et al. [20] propounded DPC-
CE that estimates the connectivity information between local
centers with a graph-based strategy and re-evaluates the sim-
ilarity between local centers by a distance punishment, which
can ensure that the true cluster centers stand out in the deci-
sion graph. Li et al. [21] set two new thresholds to select can-
didate centers and proposed a new cluster fusion strategy to
achieve the correct clustering of clusters withmultiple density
peaks. Flores et al. [15] came up with a method that can auto-
matically select cluster centers by detecting gaps between
data points in a one-dimensional decision graph. To eliminate
the chain reaction, the FHC-LDP algorithm proposed by
Guan et al. [22] uses the idea of hierarchical clustering to
establish a hierarchical structure of sub-clusters by consid-
ering the association between data points. Xie et al. [14] pre-
sented two sample assignment strategies based on K-nearest
neighbors, one is to assign non-outliers using a breadth-
first search. The second is to assign outliers and points not
assigned in the first assignment process using fuzzy weighted
K-nearest neighbors.

The algorithms mentioned above have modified DPC in
different aspects, but there is still a lot of work to be done
when dealing with datasets with complex shapes and uneven
density distribution. In this paper, we propose a novel density
peaks clustering algorithm based on the potential model and
diffusion strength called DPC-PMDS. Firstly, the potential
of data points is computed, and the centrality of data points is
obtained based on the nneigh information. Then a new density
calculation method is proposed to better find the density
peaks. Secondly, inspired by the information diffusion in
social networks, the influence of data points and the diffusion
strength between points are presented to select cluster centers
accurately. And the initial clusters are generated by merging
core points via label diffusion rule, which can well reflect the
core distribution structure of the clusters and contributes to
the correct assignment of the boundary points. Finally, the
labels of the boundary points are obtained based on their
distances from each cluster to avoid chain reaction. The main
contributions of DPC-PMDS are the following three points:

1) Using the potential model and centrality without cut-off
distance to calculate density. The density calculated by
the new method can better reflect the structure of the
dataset and make the density peaks stand out compared
with the original potential.

2) The label diffusion rule is used for label propagation
of core points, which can enhance the effectiveness
of selecting cluster centers and avoid a cluster with
multiple peaks from being split into multiple clusters.

3) To avoid the chain reaction, a new distance-based
assignment method that efficiently assigns boundary
points is presented.

The rest of this paper is as follows. Section 2 shows the
DPC algorithm and the potential model. Section 3 presents
the DPC-PMDS algorithm proposed in this paper. Section 4
shows the experiments and analysis. Finally, the conclusion
in Section 5 summarizes our work.

II. RELATED WORKS
In this section, we briefly introduce DPC and the potential
model and illustrate their weaknesses with examples.

A. DENSITY PEAKS CLUSTERING ALGORITHM
DPCfirst calculates the density and relative distance of points
to find the density peaks [13]. For large-scale datasets, the
local density ρi of data point i is estimated by the cut-off
kernel:

ρi =
∑
j

χ
(
dij − dc

)
, (1)

where dc is the predefined cut-off distance and dij is the
Euclidean distance between point i and point j. For x =
dij − dc, if x < 0, χ (x) = 1, otherwise χ (x) = 0. For
small datasets, ρi is computed by Gaussian kernel:

ρi =
∑
j

e

(
−
dij
dc

)2
. (2)

The relative distance δi is calculated as follows:

δi =


min
∃j:ρj>ρi

(
dij
)

max
∀j:ρj≤ρi

(
dij
) . (3)

After computing ρi and δi, DPC takes the (ρi, δi) values of all
data points to build a decision graph, and manually finds the
points with high δ and relatively high ρ as cluster centers.
A second method is to select the data points with larger
γi = ρiδi value as cluster centers. Finally, DPC assigns each
remaining point to the same cluster as its nearest point with
higher density.
Although DPC has great performance on a wide range

of datasets, it still has several limitations. First of all, the
accuracy of DPC algorithm is heavily dependent on the cut-
off distance. Second, DPC manually selects the points with
high density and high relative distance as cluster centers
without considering the relationship between density peaks.
On the dataset with uneven density distribution and complex
shape, DPC may ignore the centers of low-density clusters
and select redundant centers of high-density clusters. This
subjective approach also breaks the continuity of the algo-
rithm. Third, DPC is affected by the chain reaction problem,
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FIGURE 1. Decision graph and clustering results obtained with the cut-off kernel for dc = 0.23% and
dc = 0.24%.

i.e., if a data point is incorrectly assigned, it may lead to the
misallocation of its nearby data points, resulting in erroneous
propagation of clustering labels. These limitations can be
exemplified by the Jain dataset. Jain contains two clusters
with significantly different density distributions. Fig.1 shows
the decision graph and clustering results obtained with the
cut-off kernel for dc = 0.23% and dc = 0.24%. The colored
points in the decision graph correspond to the centers of
the corresponding colored clusters in the result graph. From
Fig.1(a) and Fig.1(b), it can be seen that the value of dc
have a great influence on the results. Fig.1(b) shows that the
cluster centers selected by DPC via decision graph are all in
the bottom cluster, because the density peaks in the bottom
cluster have much higher density and relative distance than
the upper cluster. Furthermore, in Fig.1(a), it is obvious that
the assignment of data points is affected by the chain reaction
problem.

B. THE POTENTIAL MODEL
Lu et al. [23] put forward a clustering method called Cluster-
ing by Sorting Potential Values (CSPV) based on a potential
model. The potential model considers the data points follow-
ing Newton’s law of universal gravitation and sets the mass
of all points to 1. The gravitational force between point i and
point j is obtained as:

EFij
(
Erij
)
=

G
r̂ij
r2ij

if rij ≥ η

0 if rij < η

, (4)

where Erij and r̂ij are the vector and unit vector from point i to
point j, respectively, and rij is the Euclidean distance between
i and j. G is the gravitational constant. The parameter η is used
to avoid the problem of singularity when rij is zero.

In the potential model, only the relative value of the poten-
tial is considered, so G is set to 1 for the convenience of
calculation. The simplified potential at point i from point j
is calculated as:

8ij
(
rij
)
=

∫
∞

rij

EFij (Er) · r̂dr =

{
−

1
rij

if rij ≥ η

−
1
η

if rij < η
. (5)

The potential of point i is:

8i =
∑
j6=i

8ij
(
rij
)
. (6)

Lu et al. [24] used the distance matrix of the dataset to select
the parameter η to satisfy the condition of Scale-Invariance:

MinDi = min
rij 6=0,j=1,···n

(
rij
)
, (7)

η = mean (MinDi) /S, (8)

where MinDi is the minimum distance from point i to all the
other points, and n is the number of points. S is a scale factor,
generally set to 10.

The Parzen window function, a nonparametric estimation
method, is used to demonstrate that the total potential value
is negatively proportional to the estimated probability density
[24]. Thereby, the smaller the potential of a data point, the
higher its density.
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FIGURE 2. Potential contour map of the Jain dataset.

Fig.2 shows the contour map of potential of the Jain
dataset. The darker the color in Fig.2, the lower the potential,
i.e., the higher the density. The potential is calculated from a
global perspective, so the potential does not display the data
distribution of the dataset with uneven density well. As can
be seen from Fig.2, the potential of high-density clusters is
extremely high, while the potential of low-density clusters is
extremely low. The boundaries of clusters are not clear, and
density peaks of low-density clusters also do not stand out
well in the figure.

III. THE PROPOSED METHOD
In this section, the detailed procedure of the DPC-PMDS
algorithm is presented.

A. DENSITY CALCULATION
In this subsection, the density is calculated by considering
potential and centrality. The values of potential are negative,
and the smaller the potential, the higher the corresponding
density. Therefore, we first calculate the density by changing
the sign of the potential and normalizing it:

ρi =
−8i

max
j=1,···n

(
8j
) . (9)

Because low-density clusters can’t be identified well with the
density calculated by the original potential, we improve it
by considering the centrality of data points. For any point j
except the point with the highest density, we use nneighj to
denote the nearest neighbor with higher density of j:

nneighj =
{
i| min
∃i:ρi>ρj

(
dji
)}
. (10)

The centrality of point i is defined as follows:

ci = |Ai| + 1, Ai =
{
j|nneighj = i

}
, (11)

where | · | is the cardinality of the set. The centrality ci is
greater than or equal to 1. A large value of cimeans that i is the
nearest neighbor with higher density ofmany points around it,
i.e., point i has a relatively high density in its neighborhood.
ci = 1 means that no point has the nearest neighbor with

higher density equal to i, which indicates that the density of
point i is relatively small in its neighborhood. Therefore, the
larger the ci, the more likely that point i is a density peak.
We take ci as the weight and multiply it with ρi, then the
calculation formula of new density is:

ρ′i = ci × ρi. (12)

Fig.3 is the contour map of the new density of the Jain
dataset. The darker the color in Fig.3, the higher the density.
Compared with Fig.2, it can be found that the new density can
better reflect the data distribution and facilitate the selection
of density peaks.

FIGURE 3. Density contour map of the Jain dataset.

B. DIFFUSION STRENGTH
In this subsection, the influence of data points and the diffu-
sion strength of two data points will be introduced.

In social networks, information diffusion is carried out
via interactions between nodes (links in the network), i.e.,
information of nodes is diffused through paths composed of
edges. Each information diffusion network can be considered
as a tree-like structure. The root node, the publisher of infor-
mation, diffuses information to the leaf nodes. Generally,
the influence of nodes and the relationship between nodes
affect information diffusion [25]. Inspired by the informa-
tion diffusion in social networks, we regard the assignment
of clustering labels as a label diffusion process. The core
points of each cluster are linked via label diffusion rule to
avoid selecting excessive centers of high-density clusters and
neglecting centers of low-density clusters. Before introducing
the label diffusion rules, the definitions of influence and
diffusion strength are given.

The influence of a point is related to its distance from its
surrounding points. The definition of the influence of point i
is:

Ii = X̄i + 2Si, (13)

where X̄i and Si are the mean and standard deviation of the
distance from the point to its surrounding points, respectively.

VOLUME 10, 2022 128607



J. Che et al.: Density Peaks Clustering Based on Potential Model and Diffusion Strength

They are calculated as:

X̄i =
1
s

∑
j∈sNNi

dij, (14)

Si =

√√√√ 1
s− 1

∑
j∈sNNi

(
dij − X̄i

)2
, (15)

sNN (xi) is a set of nearest neighbors of i:

sNNi =
{
j|dij ≤ dis

}
, (16)

where dis is the Euclidean distance between data points i and
the sth nearest neighbor of i. s is equal to the maximum value
of the centrality c of all data points plus a parameter α, i.e.,
s = max(c) + α. α is an integer greater than −max(c).
The larger α, the larger X̄i. Thus the value of α is positively
correlated with the influence of the data points. The greater
the influence of data points, the greater their ability to diffuse
labels to surrounding points.

Next, the computation formula for measuring diffusion
strength from point i to point j will be described. The influ-
ence of a data point represents its label diffusion ability. The
larger Ii and Ij, the larger diffusion strength from point i to
point j. X̄i represents the mean distance between data point
i and its neighbors. If X̄i and X̄j are very different, it means
that the distribution characteristics of points around them are
very different and point i and j are very likely not close to
each other. Hence, the diffusion strength between points i
and j should be small. In addition, the diffusion strength from
points in the boundary region to other points should be small
to avoid propagating cluster labels to other clusters. Let ci
denote the cluster center of the cluster where point i is located.
If the difference between X̄i and X̄ci is large, point i is likely
to be a boundary point far from the cluster center, so the
diffusion strength of point i to other points should be small.
Thereby, the diffusion strength from point i to point j is:

dsij =
min

(
X̄i, X̄j

)
max

(
X̄i, X̄j

) · min
(
X̄i, X̄ci

)
max

(
X̄i, X̄ci

) · ( Ii + Ij
2

)
, (17)

dsij indicates the ability of point i to diffuse labels to point j.
The larger dsij is, the more likely point i is to diffuse its own
label to point j.

C. CENTER IDENTIFICATION AND CORE POINT
LABLE DIFFUSION
In this subsection, the label diffusion rule is defined, the pro-
cess of automatically determining cluster centers and assign-
ing core points is described.

The decision value γ is the probability of each data point
becoming a cluster center and the decision value of data point
i is calculated by:

γi =
ρ′i

max(ρ′)
×

δi

max(δ)
. (18)

The data points are sorted in descending order according
to the γ value.

We assume that point i already has a cluster label. Based
on the diffusion strength, the label diffusion rule is defined as
follows:

CRij =

{
1 if dij ≤ dsij ∧ j ∈ sNNi
0 if dij > dsij ∨ j /∈ sNNi

, (19)

where dsij is the diffusion strength from point i
to point j, and dij is the Euclidean distance between point i
and point j. CRij = 1 means that point i can propagate its
label to j, point j is within the diffusion range of i. Otherwise,
CRij = 0 means that i cannot propagate its label to j, i.e., j is
not within the diffusion range of i.
Then the diffusion range of data point i can be obtained

through the label diffusion rule:

DRi =
{
j|CRij = 1

}
. (20)

A point can propagate its label to points that are within its
diffusion range.

As mentioned above, if there are two or more data points
with high δ and high ρ in the same cluster, selecting the center
by decision graph or γ value may split a cluster into multiple
clusters. In addition, the cluster centers with lower density
in the dataset are easily ignored. To address this problem,
we propose a strategy to select centers by γ values and the
label diffusion rule, which can select the centers of low-
density clusters and connect core points of each cluster.

Firstly, we select the point with the largest γ value as the
first cluster center, and then add the points within the diffu-
sion range of the cluster center to the cluster. Next, we iterate
through the newly added points and assigned the points within
their diffusion range to the cluster. This traversal process
continues until the diffusion ranges of all points assigned to
the cluster are traversed and no new points can be assigned
to the cluster. Then we select the unassigned point with the
largest γ value as the new cluster center, and loop the above
steps of assigning points according to the label diffusion rule
until the number of cluster centers reaches the number of
clusters we want. In this process, the points assigned by the
label diffusion rule are called core points and the remaining
points are boundary points. Finally, the cluster center and core
points of each cluster are obtained, i.e., the initial clusters are
generated. The specific steps are shown in Algorithm 1.

We take the Flame and Jain datasets as an example, the
results of selecting the center and assigning core points of
Flame and Jain according to Algorithm 1 are shown in Fig.4.
Points colored black in the graph are boundary points that
are not assigned through the label diffusion rule, and the
points marked with black triangles are the cluster centers. The
directed line segment shows the process of label diffusion.
In each cluster, the labels start from the cluster center and
spread to the surrounding points. As can be found in Fig.4, the
algorithm correctly selects the cluster centers and connects
the core points of each cluster. On the Flame dataset, the two
clusters have intersection and the points at the junction of the
two clusters are the boundary points. On the Jain dataset, the
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Algorithm 1 Center Identification and Core Point Label
Diffusion
Input: Dataset X , the number of clusters npeak.
Output: Cluster centers and the clustering results of core
points Ccore.
1. Let NCLUST = 0.
2. while NCLUST 6= npeak and there are unassigned

points in the dataset
3. Select the unassigned point with the largest γ

value as the cluster center to create a new cluster.
4. NCLUST = NCLUST + 1.
5. Create a queue Q and put the clustering center

into the queue Q.
6. while Q is not empty
7. Take the head node q1 of Q.
8. Find all the unassigned points within the

diffusion range of q1, assign these points to
the cluster where q1 is located and put them
in the queue Q.

9. Delete q1 in Q.
10. end
11. Delete Q
12. end
13. Output the cluster centers and the clustering results of
core points.

two clusters have no intersection and most of the points of
both clusters are considered as core points.

D. BOUNDARY POINTS ASSIGNMENT
The core points of each cluster are connected by the label
diffusion rule, there are still some boundary points that are not
assigned because they do not conform to the label diffusion
rule. In this subsection, a distance-based assignment method
is used to obtain the labels of the boundary points to avoid the
chain reaction.

For any boundary point i, we calculate its distance to each
cluster through the sum of its distance to the ci nearest points
of each cluster separately. Then i is assigned to the cluster
with the minimum distance. Fig.5 shows the final clustering
results of the Flame dataset and the Jain dataset. From Fig.5,
it can be seen that the algorithm proposed in this paper obtains
the correct clustering results on the Flame and Jain datasets.

E. THE TIME COMPLEXITY
This section gives the computational complexity of the
DPC-PMDS algorithm. The time complexity of DPC-PMDS
depends on five main steps: 1) calculating the distance
between data points and the potential of each data point, with
a time complexity of O(n2), 2) calculating the centrality and
density of data points with a time complexity of no more than
O(n2), 3) searching for the nearest s points to calculate the
diffusion strength of data points requires O(n2), 4) obtaining
the cluster centers and connecting the core points within the

Algorithm 2 DPC-PMDS
Input: Dataset X = {x1, x2, · · · xn}, cluster number npeak .
Output: Cluster centers and cluster label vector of data
points.
1. Normalize the dataset X
2. Calculate the distance matrix using Euclidean distance
3. Calculate the density ρi from Eq.(9)
4. Calculate ci from Eq. (11)
5. Calculate new density ρ′i from Eq.(12)
6. Calculate the relative density δi from Eq. (3)
7. Calculate diffusion strength dsijfrom Eq. (17)
8. Calculate γi from Eq. (18) and sort the data points in

descending order by γ value.
9. Select cluster centers and assign core points according

to Algorithm 1.
10. Handle boundary points. Each boundary point is

assigned to the cluster with the minimum distance.
11. Output the cluster centers and cluster label vector.

same cluster according to the γ value and label diffusion rule,
the time complexity of this process will not exceed O(n2), 5)
assigning the boundary points according to the distance to the
nearest ci points of each cluster, the time complexity isO(n2).
Therefore, the time complexity of the DPC-PMDS algorithm
proposed in this paper is O(n2) as that of DPC algorithm.

IV. EXPERIMENTS
In this section, for the sake of evaluating the performance
of DPC-PMDS, we compare DPC-PMDS with DPC [13],
PHA [24],1 and state-of-the-art clustering methods including
DPC-DBFN [18],2 DPC-CE [20]3 and FHC-LDP [22]4 on a
variety of datasets. The time complexity of the PHA, DPC-
DBFN and DPC-CE algorithms is O(n2), and the time com-
plexity of the FHC-LDP is O(n log(n)). The Accuracy(ACC)
[26], Normalized Mutual Information (NMI) [27], Rand
Index(RI) [28] and Adjusted Rand Index (ARI) [29] are
used to evaluate the performance of clustering algorithms.
We implement the proposed PDC-PMDS and other five
comparison algorithms in a desktop computer with Intel(R)
Xeon(R) CPU E5-2430 0 @ 2.20 GHz 2.20 GHz, Win-
dows 10 Professional Edition 64-bit OS. All the clustering
methods’ codes are written, run, and tested by MATLAB
R2017b.

A. DATASETS
The synthetic datasets includingAggregation [30], Flame [31],
Jain [32], Spiral [33], Pathbased [33], Compound [34], R15
[35], D31 [35], threecircles [36], CMC [37], S1 [38], and
Unbalance [39] are used in this paper. These twelve synthetic

1https://ww2.mathworks.cn/matlabcentral/fileexchange/46134-fast-
hierarchical-clustering-method-pha?s_tid=srchtitle_PHA_1

2https://github.com/abdulrahmanlotfi/DPC-DBFN
3https://github.com/WJ-Guo/DPC-CE
4https://github.com/Guanjunyi/FHC-LDP-a-variant-of-density-peak-

clustering-DPC
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FIGURE 4. Results of selecting cluster centers and assigning core point of dataset Flame and Jain.

FIGURE 5. Clustering results of Flame and Jain datasets.

datasets can evaluate the ability of DPC-PMDS to identify
clusters of datasets with diverse shapes and uneven density
distributions. Additionally, eight UCI datasets (available at
https://archive.ics.uci.edu/ml/datasets.php) and the Olivetti
Faces [40] dataset are used to further evaluate the perfor-
mance of DPC-PMDS on real-world datasets with different
data volumes and dimensions. The UCI datasets contain Iris,
Seeds, DNA, Diabetes, Thyroid, Abalone, Cloud, and Robot
navigation. Tables 1 and 2 show the number of instances,
the number of attributes, and the number of clusters for each
dataset.

B. PARAMETERS
In order to obtain a fair comparison, the parameters are set
according to the description of the parameters in the original
paper of the comparison algorithms. For DPC algorithm, dc
is usually chosen so that the average number of neighbors is
around 1% to 2% of the total number of points in the dataset.

TABLE 1. Synthetic datasets used in this paper.

We expand this scope to 0.5% to 3% and run the algorithm
multiple times in steps of 0.5 to take the optimal value. The
PHA algorithm has only one parameter S, which defaults to
10. For DPC-DBFN algorithm with parameter k , the value of
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TABLE 2. UCI datasets used in this paper.

k is selected from 1 to 40 to get the optimal value. DPC-CE
contains three parameters, which are set to dc = 2%, Tr =
0.25, and Pr = 0.3 in the original paper. The parameter k of
FHC-LDP is also set according to the original paper. When
the number of data points n < 500, we set 5 ≤ k ≤ 20,
when 500 ≤ n < 10000, we set 1%n ≤ k ≤ 3%n, when
n ≥ 10000, we set 20 ≤ k ≤ 2%n. The specific parameter
settings of each algorithm are shown in Table 3.

TABLE 3. Parameters setting of algorithms used in this paper.

C. RESULTS ON SYNTHETIC DATASETS
In this subsection, experiments are conducted on 12 synthetic
datasets. The visual clustering results of DPC, PHA, DPC-
DBFN, DPC-CE, FHC-LDP and the method proposed in this
paper (DPC-PMDS) are shown in Fig.6-17. The ACC, NMI,
RI, and ARI metrics of all algorithms are given in Table 4.
The optimal values of the evaluation metrics on each dataset
are bolded.

Fig.6 and Fig.7 show the clustering results on the Aggre-
gation and Flame datasets. The points marked with black
triangles are the cluster centers. On the Aggregation dataset,
the clustering results of PHA, FHC-LDP, andDPC-PMDS are
completely correct with the value of each evaluation metric
is 1. DPC, DPC-DBFN, and DPC-CE have errors for the
assignment of a few points. Flame is a dataset with overlap-
ping area between clusters. From Fig.7, it can be seen that
DPC and PHA obviously cannot separate the two clusters,
DPC-DBFN has inaccurate assignment for the points in the
junction part of two clusters. The clustering results of DPC-
CE, FHC-LDP, and DPC-PMDS are completely correct.

Fig.8 and Fig.9 show the clustering results on the Jain and
Spiral datasets. These two datasets have clusters with irreg-
ular shape and data points with uneven density distribution.
And there is no intersection between clusters. The clustering
results of DPC-CE, FHC-LDP, and DPC-PMDS on these two
datasets are correct because DPC-CE is based on the local

central connectivity information estimation strategy of the
graph, FHC-LDP considers the association between adjacent
points, and the DPC-PMDS algorithm proposed in this paper
considers the diffusion strength when finding the clustering
centers. On the Jain dataset, DPC and DPC-DBFN cannot
identify the correct cluster centers, and PHA also cannot sepa-
rate the two clusters. On the Spiral dataset, although DPC and
DPC-DBFN can identify the correct cluster centers, there is
a problem with the assignment strategy. The potential-based
hierarchical clustering method PHA also obtains the correct
clustering results.

Fig.10 and Fig.11 show the clustering results on the Path-
based and Compound datasets. These two datasets have clus-
ters with large density differences and intersections. The
clustering result of DPC-PMDS on these two datasets is sig-
nificantly better than other algorithms. On Pathbased dataset,
the evaluation metrics of DPC-PMDS is 1, while that of
all other algorithms is far less than 1. On the Compound
dataset, the DPC-PMDS algorithm identifies cluster centers
and correctly assigns most of the points. DPC, PHA, DPC-
DBFN and FHC-LDP cannot identify the correct clusters.
DPC-CE has erroneous assignment for low-density clusters.

Fig.12 and Fig.13 show the clustering results on the D31
and R15 datasets. These two datasets havemore instances and
clusters than the previous datasets, and the clusters in these
two datasets are mainly spherical in shape. The clustering
results of the algorithms on these two datasets are similar.
On the D31 dataset, DPC-PMDS does not perform as well as
DPC-DBFN, DPC-CE and FHC-LDP, but it is not much dif-
ferent from them, and it outperforms the other two algorithms.
On the R15 dataset, the clustering results of DPC-PMDS and
DPC-DBFN are the best.

Fig.14 and Fig.15 show the clustering results on the Three-
circles and CMC datasets. The points in the central region of
these two datasets have a higher density than the surrounding
points. From Fig.14, it can be seen that DPC and DPC-
DBFN cannot separate clusters correctly, which is because
just choosing points with high density and relative distance as
centers on this dataset will choose the wrong cluster centers.
PHA incorrectly combines two clusters in the central region
into one cluster. The clustering results of DPC-CE, FHC-
LDP, and DPC-PMDS are completely correct. On the CMC
dataset, the clustering results of DPC-PMDS and FHC-LDP
are correct. PHA cannot distinguish different clusters and
DPC cannot identify the correct cluster centers. DPC-DBFN
and DPC-CE can identify the correct cluster centers, but the
points are inaccurately assigned.

Fig.16 and Fig.17 show the clustering results on S1 and
Unbalance datasets. The number of instances for these two
datasets is 5000 and 6500, respectively, which can verify the
performance of the algorithm on large-scale datasets. On the
S1 dataset, the result of DPC-PMDS is optimal among all
algorithms. The shape of clusters on the Unbalanced dataset
is simple, and there is no intersection between clusters. All the
algorithms except the PHA algorithm have correct clustering
results on this dataset.
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FIGURE 6. Clustering results of (a) DPC, (b)PHA, (c)DPC-DBFN, (d)DPC-CE, (e)FHC-LDP and (f) the proposed method (DPC-PMDS) clustering
methods on the Aggregation dataset.

FIGURE 7. Clustering results of (a) DPC, (b)PHA, (c)DPC-DBFN, (d)DPC-CE, (e)FHC-LDP and (f) the proposed method (DPC-PMDS) clustering
methods on the Flame dataset.

Table 4 shows the optimal clustering results of all algo-
rithms on the 12 synthetic datasets. DPC-PMDS is optimal
among all algorithms on all datasets except the D31 dataset.

The values of ACC, NMI, RI, and ARI for DPC-PMDS on
Aggregation, Flame, Jain, Spiral, Pathbased, Threecircles,
CMC, and Unbalance datasets are all 1. On the Compound
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FIGURE 8. Clustering results of (a) DPC, (b)PHA, (c)DPC-DBFN, (d)DPC-CE, (e)FHC-LDP and (f) the proposed method (DPC-PMDS) clustering
methods on the Jain dataset.

FIGURE 9. Clustering results of (a) DPC, (b)PHA, (c)DPC-DBFN, (d)DPC-CE, (e)FHC-LDP and (f) the proposed method (DPC-PMDS) clustering
methods on the Spiral dataset.

dataset, ACC, NMI, RI, and ARI of DPC-PMDS are signif-
icantly greater than other algorithms. On the R15 dataset,

the evaluation metrics of DPC-PMDS and DPC-DBFN are
marginally higher than the other algorithms. On the S1
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FIGURE 10. Clustering results of (a) DPC, (b)PHA, (c)DPC-DBFN, (d)DPC-CE, (e)FHC-LDP and (f) the proposed method (DPC-PMDS) clustering
methods on the Pathbased dataset.

FIGURE 11. Clustering results of (a) DPC, (b)PHA, (c)DPC-DBFN, (d)DPC-CE, (e)FHC-LDP and (f) the proposed method (DPC-PMDS) clustering
methods on the Compound dataset.

datasets, DPC-PMDS also has slightly better performance
than the other algorithms. On the D31 dataset, the clustering
results of DPC-PMDS are also acceptable.

In general, the DPC-PMDS algorithm proposed in this
paper obtains the best clustering result on 12 synthetic
datasets, and DPC-PMDS performs better on datasets with
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FIGURE 12. Clustering results of (a) DPC, (b)PHA, (c)DPC-DBFN, (d)DPC-CE, (e)FHC-LDP and (f) the proposed method (DPC-PMDS) clustering
methods on the D31 dataset.

FIGURE 13. Clustering results of (a) DPC, (b)PHA, (c)DPC-DBFN, (d)DPC-CE, (e)FHC-LDP and (f) the proposed method (DPC-PMDS) clustering
methods on the R15 dataset.

complex shapes and uneven density distribution compared to
the other algorithms.

D. RESULTS ON UCI DATASETS
In this subsection, experiments are conducted on eight UCI
datasets. Table 5 shows the best clustering results of all

algorithms on the eight UCI datasets, and the optimal values
of the evaluation metrics are in bold.

These UCI datasets contain different dimensions and num-
bers of instances, among which Seeds and Thyroid have
210 and 215 instances with 7 and 5 features, respectively.
Diabetes has 768 instances with 8 features, and Cloud has
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FIGURE 14. Clustering results of (a) DPC, (b)PHA, (c)DPC-DBFN, (d)DPC-CE, (e)FHC-LDP and (f) the proposed method (DPC-PMDS) clustering
methods on the Threecircles dataset.

FIGURE 15. Clustering results of (a) DPC, (b)PHA, (c)DPC-DBFN, (d)DPC-CE, (e)FHC-LDP and (f) the proposed method (DPC-PMDS) clustering
methods on the CMC dataset.

1024 instances and 10 features. On Seeds, Diabetes, Thyroid,
and Cloud datasets, the values of ACC, NMI, RI, and ARI
of DPC-PMDS are significantly higher than those of other

algorithms, which indicates that DPC-PMDS has better clus-
tering result compared to other algorithms. The Iris dataset
contains 4 features and 150 instances. On the Iris dataset,
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FIGURE 16. Clustering results of (a) DPC, (b)PHA, (c)DPC-DBFN, (d)DPC-CE, (e)FHC-LDP and (f) the proposed method (DPC-PMDS) clustering
methods on the S1 dataset.

FIGURE 17. Clustering results of (a) DPC, (b)PHA, (c)DPC-DBFN, (d)DPC-CE, (e)FHC-LDP and (f) the proposed method (DPC-PMDS) clustering
methods on the Unbalance dataset.

the clustering result of DPC-PMDS is slightly lower than
that of FHC-LDP but better than that of other algorithms.
DNA is a high-dimensional dataset with 2000 instances

and 180 features. On the DNA dataset, the NMI value
of DPC-PMDS is much higher than that of other algo-
rithms, and the maximum values of ARI, RI, and ACC are
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TABLE 4. Clustering results of algorithms on twelve synthetic datasets.

FIGURE 18. Clustering results of DPC-PMDS on the Olivetti Faces dataset.

achieved by DPC-DBFN, DPC-CE, and FHC-LDP, respec-
tively. Abalone is a large-scale dataset with 4177 instances
and 7 features. On the Abalone dataset, DPC-PMDS has
the highest NMI and ARI values. Although the values of
ACC and RI of DPC-PMDS are slightly lower than those of
FHC-LDP, they are higher than those of other algorithms.

Robot navigation is a large-scale high-dimensional dataset
containing 5456 instances and 24 features, and the NMI
value of DPC-PMDS is the highest on this dataset. The
experimental results show that the clustering result of the
DPC-PMDS algorithm proposed in this paper is overall opti-
mal on the UCI dataset, and the DPC-PMDS algorithm can
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TABLE 5. Clustering results of algorithms on eight UCI datasets.

FIGURE 19. NMI and RI values of DPC-PMDS with different α values on synthetic datasets.

handle large-scale and high-dimensional real-world datasets
relatively well.

E. RESULTS ON OLIVETTI FACES DATASET
The Olivetti Faces dataset has a total of 400 different face
images, with 92×112 features per instance. It is a commonly
used dataset for clustering. We selected its top 100 images

for experiments to verify the performance of the proposed
algorithm on the image dataset. The values of ACC, NMI,
RI, and ARI of DPC-PMDS on the top 100 face images of the
Olivetti Faces dataset are 0.9900, 0.9857, 0.9962, and 0.9768,
respectively. Fig.18 shows the visualization results. Different
colors represent different clusters. From Fig.18, it can be
seen that only one face is not successfully assigned. Thereby
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DPC-PMDS algorithm can obtain valid clustering results on
the Olivetti Faces dataset.

F. SENSITIVITY ANALYSIS OF THE PROPOSED METHOD
In this subsection, the effect of the parameter α on the clus-
tering result of the DPC-PMDS algorithm will be analyzed.
Fig.19 shows the NMI and RI values of DPC-PMDS with
different values of α on the synthetic datasets.

According to the previous section, it can be known that the
value of α determines the diffusion strength value, and the
diffusion strength determines the size and structure of the ini-
tial clusters. Therefore, if the value of α is too small, i.e., the
diffusion strength is too small, the initial clusters generated
according to the label diffusion rule cannot contain enough
core points. Then some points will be assigned incorrectly on
non-spherical datasets with complex shapes, which is because
the boundary points are assigned by a distance-based strategy.
In Fig. 19, we can see that when the α takes a small value, the
clustering results on the Pathbased, Compound, Jain, Spiral,
Threecircles, and CMC datasets are not optimal.

Through experiments, we find that the parameter α has dif-
ferent effects on datasets with different characteristics. From
Fig.19(a) and Fig.19(c), it can be found that for the dataset
with intersections between clusters, a slightly smaller value of
α in general leads to better clustering results. This is because
if the value of α is large, the large diffusion strength will cause
excessive label diffusion and easily connect the points of
multiple clusters. This situation is especially obvious on the
dataset with intersections between clusters. From Fig. 19(b)
and Fig. 19(d), it can be found that for the dataset with
no intersection between clusters, better results are generally
obtained with a slightly larger value of α. This is because on
datasets without clusters intersection, a slightly larger α will
facilitate label diffusion so that the initial cluster can better
reflect the cluster structure.

In summary, the parameter α is less sensitive on spherical
clusters. On a dataset that the clusters do not intersect, a
slightly larger α can get better clustering results. On a dataset
with clusters intersection, the value of α should be slightly
smaller.

V. CONCLUSION
In this paper, an improved density peaks clustering algorithm
based on the potential model and diffusion strength is pro-
posed. The main purpose of this paper is to avoid the depen-
dence of DPC on the parameter dc, to improve the accuracy
of the selection of cluster centers on datasets with complex
shapes and uneven density distribution, and to reduce the
chain reaction. The potential and centrality of data points
are used to calculate the density. We present the concept of
diffusion strength and the label diffusion rule. By considering
the diffusion strength, DPC-PMDS can accurately select the
cluster centers of datasets with uneven density distribution.
The initial clusters consisting of centers and core points can
reflect the core structure of clusters well. The motivation

for this study is that obtaining the core structure of clusters
usually leads to great clustering results.

The performance of DPC-PMDS is compared with DPC,
PHA, DPC-DBFN, DPC-CE, and FHC-LDP algorithms on
synthetic and UCI datasets, and the performance of DPC-
PMDS on image dataset is examined with the first 100 face
images from the Olivetti Faces dataset. The experimental
results indicate that the proposed DPC-PMDS algorithm
exhibits good clustering effectiveness on all datasets.

This work can be further improved in the following two
directions. The first is the adaptive selection of parameter
since the optimal value of parameter is different for datasets
with different characteristics. DPC-PMDS uses Euclidean
distance for similarity calculation of data points, which is
not suitable for high-dimensional datasets. Therefore, we will
look for new similaritymeasure suitable for high-dimensional
datasets to further improve the effectiveness of the algorithm.
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