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ABSTRACT Machine learning (ML)-based approaches are desirable for discriminating targets from clutter
signals to enhance the performance of active sonar systems. However, a small dataset and imbalanced data
samples between the target and clutter hinder ML applications in active sonar classification. Anomaly
detection (AD), which effectively exploits the imbalance, is adopted to enhance the generalization of
ML-based active sonar classifiers for small and imbalanced datasets. Generally, deep AD focuses on learning
a representation of normal data samples (clutter) and finding a sphere embracing normal data samples in
latent space. However, abnormal samples from artificial objects (underwater targets) have similar physical
experiences as normal clutter samples from geological and biological scattering objects. Therefore, it is
difficult to discriminate between the target and the clutter using conventional deep AD. To overcome
the problem of active sonar classification, we propose semi-supervised learning-based bi-sphere anomaly
detection (BiSAD) to find two spheres, embracing target and clutter samples each, bymodifying conventional
deep AD. Simultaneously, BiSAD searches for the latent space where two sphere centroids locate distantly
to promote generalization. In the generalization test, the receiver operating characteristic (ROC) curve of
BiSAD indicates a detection probability of 0.8 at a false alarm rate of 0.01, and the area under the ROC curve
was 0.989, which was superior to the conventional deep AD and supervised learning-based approaches.

INDEX TERMS Active sonar classification, machine learning, anomaly detection, sonar clutter suppression.

I. INTRODUCTION
Modern active sonar systems for anti-submarine warfare
transmit soundwaves and analyze received signals to estimate
the information of the underwater target. However, in addition
to the target echo reflected from the artificial objects, the
received signal consists of the signal reflected from various
geological and biological scattering objects, such as the sea
surface, sea bottom, and fish school, which is called clutter.
Because a clutter has physical experiences similar to those
of the target echo (sound propagation and scattering in the
ocean), it generates a false alarm when a matched filter is
applied. Therefore, such false alarms make it difficult to
detect the targets. Consequently, the performance of active
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sonar systems will be degraded. To overcome this problem,
an active sonar-classification algorithm that distinguishes
targets from clutter is desired in active sonar systems [1], [2],
[3], [4].

In the past few decades, research on machine learning
(ML)-based algorithms have been conducted for active
sonar classification. Early studies related to active sonar
classification can be found in literature from the late 1980s.
Gorman et al. [5], [6] performed an experiment to distinguish
between a metal cylinder and a cylindrical rock located
on a sandy seabed using a shallow neural network with a
normalized spectral envelope as the input. Shin et al. [7]
and Andrea Trucco [8] conducted active sonar classification
using a classify-before-detection strategy based on a pattern-
recognition paradigm. Murphy et al. performed active sonar
classification using a Gaussian-based classifier with aural
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features that mimicked the human auditory system [9].
Seo et al. performed active sonar classification using a
support vector machine with multilayer features from the
range-bearing domain [10]. Tongjing Sun et al. proposed
Fisher discriminant dictionary learning combining Fisher’s
discriminant criterion and a dictionary learning-based sparse
representation classification algorithm [11].

Recently, with the rapid development of deep learning
technology, there have been increasing attempts to adopt
it to active sonar classification. Several studies have been
conducted on active sonar classifiers based on convolutional
neural networks (CNN) trained with a supervised learning
approach [12], [13]. Yule Chen et al. conducted data
augmentation using a generative adversarial network to
overcome the problem of a supervised learning approach in
the small number of samples [14]. Research on unsupervised
approaches has also been conducted [15]. Wang et al. pro-
posed a multidomain network comprising a shared network
and attention modules using images from different signal
processing as inputs [16].

However, the generalization performance of active sonar
classifiers remains low and limited, primarily because the
active sonar dataset suffers from a small number of data
samples owing to the difficulty of sea trials and the confi-
dentiality of data samples. A small number of data samples
has an adverse effect on the performance of conventional
ML-based algorithms, which are guaranteed to be performed
when large amounts of data samples are used. Additionally,
the active sonar dataset also suffers from severely imbalanced
data samples between the target and clutter because the
received signal contains an abundance of clutter and few
target signals. Therefore, it is necessary to understand the
characteristics of the active sonar dataset and adopt an
appropriate approach to solve the active sonar classification
problem.

Deep anomaly detection (AD) can effectively exploit
the imbalanced dataset, making it suitable to enhance the
generalization performance of the active sonar classifier [17].
Conventional deep AD focuses on learning a representation
of normal data samples (here, clutter data samples in the
active sonar dataset) and attempts to fit normal data samples
in a compact sphere manifold in latent space [18]. After
learning, deep AD distinguishes abnormal data samples
(here, target data samples in the active sonar dataset) by
measuring the distance between the centroid of the sphere and
the data samples in the latent space. However, abnormal target
data samples from artificial objects have similar physical
experiences as normal clutter data samples from geological
and biological objects. Therefore, the abnormal target data
samples and the normal clutter data samples have similar
characteristics, such that the abnormal target data samplemay
be included within the decision boundary of the normality.
Consequently, it is difficult to discriminate between the target
and clutter using only normal data samples.

A deep AD using anomaly data samples has also been
proposed [19]; however, the generalization performance

of active sonar classification remains low because prior
knowledge of active sonar data samples are not fully
considered.

To overcome the problem of active sonar classifica-
tion and advance generalization performance, we propose
semi-supervised learning-based bi-sphere anomaly detection
(BiSAD), which finds two spheres, including target and
clutter samples, respectively, by modifying the conventional
deep AD. Simultaneously, BiSAD searches for the latent
space, where the centroids of spheres are at a long distance,
to increase the generalization performance.

The remainder of this paper is organized as follows. Sec. II
describes the problem of active sonar targets and clutter
classification. Sec. III summarizes the ML-based training
and testing strategies and Sec. IV presents BiSAD for active
sonar classification. Sec. V describes the preliminaries of
ML-based active sonar classification. Sec. VI describes the
results of the ML-based classifiers using sea experimental
data that include scattered signals from underwater artificial
objects. Finally, we conclude this paper in Sec. VII.

II. PROBLEM DESCRIPTION
A. OVERVIEW OF THE SCHEME OF THE ACTIVE SONAR
DETECTION AND CLASSIFICATION
Fig. 1 shows a scheme for active sonar detection and classifi-
cation. There are two strategies: classify-after-detection and
classify-before-detect.

Fig. 1(a) depicts the classify-after-detect strategy [9]. The
received beam signal is filtered using a matched filter with a
replica of the transmitted pulse. A threshold was applied to
detect the target signal. However, it is inappropriate to use a
fixed threshold because the clutter level fluctuates according
to changes in the oceanic environment, which causes the
problem of detecting the target with a different false alarm
rate. Therefore, a normalization algorithm that adapts the
threshold to obtain a fixed false alarm rate should be applied
to the matched filter output [20]. Since modern active
sonar systems have a high range-bearing resolution, multiple
signals can be detected for a single object. A clustering
algorithm was employed to group multiple detected signals
from the same object [21]. The output of clustering is called
a contact.

Meanwhile, Fig. 1(b) depicts the classification-before-
detect strategy [7], [8], [22]. Unlike the classify-after-detect
strategy requiring pre-processing, classifiers are directly
applied to the received beam signal in classify-before-detect.
Therefore, the classify-before-detect strategy can utilize
redundant information by extracting proper acoustic features
from raw beam signals. Recent developments in ML-based
algorithms have enabled the adoption of the classify-before-
detection strategy in active sonar systems.

B. ACTIVE SONAR TARGET AND CLUTTER CLASSIFICATION
Figs. 2(a), (b), and (c) display examples of the results of
the beamforming process, matched filter (MF), and contacts,
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FIGURE 1. Scheme for the active sonar detection and classification. (a) Classify-after-detect strategy: matched filter, normalization, and clustering are
sequentially performed on the received beam signal. The results obtained in this process are called contacts. As the contacts contain many nontargets,
a classification process is required to remove them. (b) Classify-before-detect strategy: detection and classification are simultaneously performed on raw
beam signal, which removes the pre-processing in the classify-after-detect.

respectively. These results are generated by sea experimental
data with a single underwater target and shallow water (the
specification of the sea trial data will be described in Sec.V-A
in detail).

In the beamforming output of Fig. 2(a), the target signal is
identified using prior information on the target location and
is marked with the red arrow. Reverberation appeared in the
earlier part of the time, making multiple clutter. Furthermore,
strong signals (orange arrows) were observed randomly,
which also resulted in clutter.

In the MF output of Fig. 2(b), it can be observed that
the target signal is emphasized and the noise level is
suppressed. However, multiple clutter signals remained along
the target signal, primarily because many of the scattered
signals have a similar experience to the target; therefore, the
clutter signal is also highly correlated with the replica of
MF.

In Fig. 2(c) shows the clustering results. Although MF,
normalization, and clustering were applied, many contacts
were observed. Classification is required because these
contacts do not guarantee that they are certain targets.

Generally, classification is performed by sonar operators
because they are known to be capable of distinguishing
the target from a clutter [9], [23]. More specifically, the
sonar operator can distinguish subtle differences between the
target and clutter from a raw audio signal extracted from
the selected beam signal data. This means that the human
auditory system can extract aural and perceptual information
from a raw audio signal. However, leaving the sonar operator
solely responsible for the classification of numerous contacts
is risky for human error, besides, it is slow to process
and unavailable for around-the-clock surveillance. Therefore,
an automatic active sonar classifier that can effectively
distinguish the target from clutter using a raw audio signal
is required.

III. VARIOUS ML-BASED TRAINING AND TESTING
STRATEGIES
A. SUPERVISED LEARNING
ML-based approaches are commonly used to solve clas-
sification problems for various research fields [24]. Many
ML-based approaches are supervised learning approaches
that require a large number of labeled samples, and the
class of each data sample is known. Fig. 3 illustrates
the architecture of the supervised learning approach. For the
labeled dataset χ = {xi, yi}Ni=1 = χ0 ∪ χ1 where χ0 and
χ1 are the normal and abnormal dataset, respectively, and N
is the number of total data samples, the supervised learning
approach can be represented as:

z = φ(x;Wφ) (1)

p = a (f (z)) (2)

where φ : x → z represents an encoder function for
feature learning with weight parameter Wφ , z indicates
a latent vector which encodes feature of input vector, f
denotes a fully-connected layer which connects latent vector
and output, a represents softmax activation function, and
p corresponds to the output that indicates the probability
of each classes. Typically, the architecture of supervised
learning is trained by minimizing cross-entropy loss using
the gradient-descent method [24]. The anomaly score of
supervised learning ssup(x) is calculated as follows:

ssup(x) =
p1
p0

(3)

where p0 and p1 denote the element of output vector p which
indicate normal and abnormal probabilities, respectively.

Recent networks of supervised learning approaches
become deeper and more complex because the complexity of
the networks has a better ability to fit dataset than shallow
networks [25], [26], [27], [28]. However, the deeper and
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FIGURE 2. Results of the classify-after-detect strategy. (a) Beamforming
output, (b) matched filter output, and (c) contacts. The beam and time
domain in (a) and (b) are converted to range (X-axis) and cross-range
(Y-axis) domain. In the beamforming output, it is evident that target
signal (red arrow) and clutter signals (orange arrows) appeared. Clutter
signals originated from reverberation and randomly located strong
reflection. In the matched filter output, the target signal is emphasized
owing to the effect of correlation; however, multiple clutter signals still
remain. Following normalization and clustering, many contacts appear.

more complex networks require more memory size and
have risk of overfitting, leading to decreased and unstable
generalization performance. In general tasks of supervised
learning approaches, a large size of the dataset that contains
the overall data distribution is used to prevent the problem
of supervised learning approaches [24]. In the active sonar

FIGURE 3. Scheme of supervised learning. Input data sample x were
encoded to latent vector z using the encoder function. Output y was
composed of a fully-connected layer and softmax activation function,
where its index indicates the probability of each class. The cross-entropy
loss function is typically used and the gradient descent method is applied
to train entire networks.

classification, however, obtaining a large labeled dataset is
difficult due to the cost and confidentiality of underwater
defense systems. Furthermore, it is difficult to implement
bulk networks in active sonar systems. Consequently, the
large complexity of the networks makes it hard to apply to
practical applications [29].

To overcome the limitations of supervised learning with
the bulk networks, we use prior information that the sonar
dataset is imbalanced as explained in the previous section.
The AD approaches are suitable for the imbalanced dataset
consisting of a large number of normal class and a small
number of abnormal class. Therefore, we are now considering
the AD approaches, which may enable shallow networks
to have a similar or better performance, compared to the
supervised learning approaches and we will explain it next
subsection.

B. ANOMALY DETECTION: UNSUPERVISED LEARNING
Deep support vector data description (SVDD) is a form of
well-known deep AD based on an unsupervised learning
approach [18]. It finds a sphere embracing the normal data
samples in latent space. Fig. 4(a) shows the architecture of
deep SVDD. Deep SVDD was performed in two steps. First,
the autoencoder (AE) is used to pre-train the weights of
the encoder function to form the latent space of the normal
data samples and calculate the centroid; the weights are
adjusted to make outputs sames as inputs and it is well-known
strategies in the deep AD approach [18]. The pre-training can
be conducted to minimize the following loss:

z = φ
(
x;Wφ

)
, (4)

{WAE
φ ,WAE

ψ } = argmin
Wφ ,Wψ

l
(
ψ
(
z;Wψ

))
, (5)

where φ : x → z represents an encoder function for
feature learning with weight parameter Wφ , ψ : z → x̂
represents a decoder function for decoding the latent vector
to reconstructed vector x̂ with weight parameter Wψ , and
l represents a loss function for AE, which is typically mean
square error.WAE

φ andWAE
ψ represent pre-trained weights of

the encoder and decoder functions, respectively. The centroid
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FIGURE 4. Description of the deep SVDD. (a) Network architecture of the
deep SVDD. First, AE is pre-trained using only normal data samples to
form the latent space. Following pre-training, centroid of the sphere of
normal data samples is calculated. The weights of pre-trained encoders
are used to initialize the training encoder. In the main training process,
Deep SVDD attempts to concentrate the normal data samples to the
centroid of the sphere using only normal data samples. After training, the
anomaly score can be calculated. (b) The manifold learning concept of the
deep SVDD. Normal clutter data samples (blue dots) are concentrated on
the centroid c0 of a normal sphere (blue sphere).

of the normal data samples c0 in the latent space can be
calculated as:

c0 =
1
N0

N0∑
i=1

zAEi , (6)

zAEi = φ
(
xi;WAE

φ

)
, (7)

where xi is ith normal data sample, andN0 denotes the number
of normal data samples.

In the following step, to embrace the normal data samples
using the sphere in latent space, deep SVDD minimizes the
following loss:

{W∗φ} = argmin
Wφ

1
N0

N0∑
i=1

||φ(xi;Wφ)− c0||2. (8)

The encoder φ whose weights are initialized from AE pre-
training, WAE

φ , is adjusted to derive the sphere. W∗φ denote
the trained weights of the encoder function.

FIGURE 5. Description of the deep SAD. (a) Network architecture of the
deep SAD. Pre-training of AE using normal data samples is identical to
deep SVDD. However, in the main training process, deep SAD
concentrates the normal clutter samples on the centroid of the sphere
while penalizing the abnormal target data samples. Following the
training, the anomaly score can be calculated the same as deep SVDD.
(b) The concept of manifold learning of the deep SAD. Normal clutter data
samples (blue dots) are concentrated on the centroid c0 of a normal
sphere (blue sphere) while abnormal target data samples (red dots) move
away from the centroid.

Following training, the anomaly score of deep AD
approach sAD(x) can be calculated by measuring a distance
of encoded latent vector for the input data sample from the
sphere centroid c0 and it is denoted as:

sAD(x) = ||φ(x;W∗φ)− c0||2. (9)

Fig. 4(b) illustrates the concept of the manifold of SVDD.
A manifold is formed, such that the normal data samples
are concentrated at the centroid of the sphere. However, the
abnormal data samples are far from the centroid of the sphere.
Therefore, distance from the centroid of the normal sphere
can measure the anomaly of the data samples.

C. ANOMALY DETECTION: SEMI-SUPERVISED LEARNING
Although deep SVDD shows promising results in various
fields [30], [31], [32], it has limited classification (or
detection) performance because only normal data samples are
used during training.

Recently, a semi-supervised approach to deep AD that uti-
lizes labeled abnormal data samples was proposed, which is
called deep semi-supervised anomaly detection (SAD) [19].
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Fig. 5(a) displays the architecture of deep SAD. As in deep
SVDD, deep SAD comprises two steps: pre-training the AE
and learning the manifold. In the first step, pre-training was
performed using normal data samples, which was the same
as that in the deep SVDD. However, in the second step, deep
SAD uses a loss function that is different from that in deep
SVDD. The loss function searches for the sphere embracing
the dominant normal samples in the latent space, while it
penalizes (penalizing means pushing the samples from the
centroid; as in [19]) a small number of abnormal samples
from the sphere centroid. The loss function in a deep SAD
is expressed as

{W∗φ} = argmin
Wφ

1
N

N∑
i=1

(
||φ(xi;Wφ)− c0||2

)yi
. (10)

yi =

{
1 if xi ∈ χ0
−1 if xi ∈ χ1

. (11)

Following the training, anomaly score s(x) can be calcu-
lated using (9) as in the deep SVDD. Fig. 5(b) illustrates the
concept of the manifold of deep SAD. A manifold is formed
such that the normal and abnormal samples are located near
and far from the centroid of the sphere, respectively. The
distances of the abnormal data samples from the sphere
centroid are greater than those in the deep SVDD owing to
the loss function that repels them from the sphere centroid.
Therefore, a deep SAD has an enhanced generalization
performance.

IV. BI-SPHERE ANOMALY DETECTION FOR ACTIVE
SONAR CLASSIFICATION
In the conventional deep AD approaches, such as deep
SVDD and SAD, it learns to make a single compact sphere
manifold by considering the majority of the normal data
samples. In particular, in deep SAD, minor abnormal data
samples assist in forming the sphere, including the normal
data samples, resulting in better generalization.

However, it is noteworthy that the abnormal target samples
have similar experiences of propagation and scattering from
the artificial objects in active sonar systems. Therefore, the
corresponding latent vectors should be in close proximity.
The similarity between abnormal target samples can be
exploited to enhance the generalization of deep AD. Accord-
ingly, we propose bi-sphere anomaly detection (BiSAD) in
which an additional sphere embracing abnormal data samples
is added to the latent space based on the properties of active
sonar data. BiSAD has two spheres to embrace respectively
normal and abnormal samples to improve generalization
performance and finds the latent space where the distance
between the centroids of the two spheres is maximized.
Because the bi-sphere concept of BiSAD is motivated by the
characteristics of the active sonar dataset, it can be expected
that the generalization performance will be improved.

Fig. 6(a) shows the architecture of BiSAD. BiSAD com-
prises two steps, similar to conventional deepAD approaches.
However, the details of each stepwere different. First, AEwas

FIGURE 6. Description of the BiSAD. (a) Network architecture of BiSAD.
AE is pre-trained using normal and abnormal data samples both. In the
main training process, BiSAD uses two encoders: Encoder φA which learns
the centroids of two spheres and encoder φB which learns the manifold.
Following the training, the anomaly score can be calculated the same as
conventional deep AD approaches. (b) The concept of manifold learning
of the BiSAD. Normal clutter data samples (blue dots) are concentrated
on the centroid c0 of a normal sphere (blue sphere) while moving away
from the centroid c1 of an abnormal sphere (red sphere). Abnormal target
data samples are used to train BiSAD in the opposite direction to normal
clutter data samples. Simultaneously, BiSAD is trained so that the
centroids of the two spheres move away from each other.

pre-trained to form a latent space using both normal and
abnormal data samples. It is because BiSAD attempts to form
individual spheres for both the normal and abnormal data
samples. In the following step, BiSAD uses two encoders,
unlike conventional AD approaches that use a fixed single
centroid of a normal data sphere calculated by a pre-trained
AE encoder (conventional AD approaches, therefore, require
a single encoder function to learn manifold). In contrast,
in BiSAD, one of the encoders learns the variable centroids of
two spheres (φA), and the other encoder learns the manifold
(φB).
Using the first encoder φA, the centroids of normal data

samples c0 and abnormal data samples c1 in latent space can
be calculated as follows:

c0(WφA ) =
1
N0

N0∑
i=1

φA(xi;WφA ), xi ∈ χ0 (12)
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c1(WφA ) =
1
N1

N1∑
i=1

φA(xi;WφA ), xi ∈ χ1 (13)

where N0 and N1 represent the numbers of normal and
abnormal data samples, respectively.

Using the second encoder φB, BiSAD tries to find the
manifold. BiSAD concentrates the normal and abnormal data
samples near the corresponding sphere centroids of c0 and c1
(relevant to the first and last terms in (14)). Simultaneously,
BiSAD penalizes normal (or abnormal) data samples from c1
(or c0) (relevant to the second and third terms in (14)). BiSAD
finds the manifold of two spheres and attempts to increase the
distance r between the centroids, simultaneously. Thus, the
loss function in BiSAD is defined as follows:

{W∗φA ,W
∗
φB
}

= argmin
W∗φA ,W

∗
φB

κ00d00 + κ01d01 + κ10d10 + κ11d11
r2

. (14)

where

d00 =
1
N0

N0∑
i=1

(
||φB(xi;WφB )− c0(WφA )||

2
)+1

, xi ∈ χ0

d01 =
1
N0

N0∑
i=1

(
||φB(xi;WφB )− c1(WφA )||

2
)−1

, xi ∈ χ0

d10 =
1
N1

N1∑
i=1

(
||φB(xi;WφB )− c0(WφA )||

2
)−1

, xi ∈ χ1

d11 =
1
N1

N1∑
i=1

(
||φB(xi;WφB )− c1(WφA )||

2
)+1

, xi ∈ χ1,

(15)

r = ||c0(WφA )− c1(WφA )||, (16)

and k = [κ00, κ01, κ10, κ11] represents the weighting
parameter for determining the strategy in manifold learning
(the effects of these parameters will be discussed in the
Sec. VI-B).

Following training, anomaly score s(x) can be calculated
using (9) as in conventional deep AD approaches. Fig. 6(b)
shows the manifold concept of the BiSAD. The manifolds
are formed such that the normal and abnormal data samples
are concentrated on the corresponding sphere centroids and
repelled from the opposite sphere centroids. Concurrently, the
centroids of the spheres were trained to be distant from each
other.

V. PRELIMINARIES FOR ML-BASED ACTIVE SONAR
CLASSIFICATION
A. ACTIVE SONAR DATASET
To verify the BiSAD, we use sea experimental data with one
artificial underwater target which is collected by an active
sonar system. In these experiments, a linear chirped pulse was
transmitted multiple times with a pause and received through
a linear sensor array. In conclusion, we acquired raw beam

signal data measured along azimuth angles (beam angles) and
time (ping numbers).

To generate the active sonar dataset for the training
and testing, we use the classify-after-detect strategy (MF,
normalization, and clustering are sequentially performed to
generate contacts) in Sec II-A. In total, we achieved contacts
(whose number was in the order of 103) and extracted the
contact signals from the raw audio signals. The length of the
contact signal was set to twice the length of the pulse by
considering themultipath propagation effect, which elongates
the transmitted signal.

Each contact signal was annotated with target or nontarget
by three experienced sonar experts. The number of target
and nontarget data samples was in the order of 101 and 103,
respectively. As expected, the target is a minor class which
is abnormal when using the AD approaches. Note that the
signal-to-noise ratio (SNR) of the target echo differed from
ping to ping owing to the varying transmitter-target-receiver
geometry and ocean environments.

To complete the active sonar dataset, we need to divide
it into a training dataset and a test dataset. Unlike ordinary
ML data split, which is randomly divided into training
and test datasets [24], the active sonar dataset should be
split by considering physical characteristics for meaningful
experiments. Based on the observation of target echo
variation from ping to ping, we divide the dataset by temporal
change with the ping. More specifically, we define the data
samples from the ten first pings (early ten pings) as the
training dataset and data samples from the remaining pings
as the test dataset. It is noteworthy that the number of targets
in the training dataset was less than ten whereas the number
of the clutter appeared about five hundred.

B. PREPROCESSING OF ACTIVE SONAR DATASET FOR
CLASSIFICATION
In general, it is hard to extract the aural and perceptual
information directly from raw audio signals because of
their complexity due to high dimensions [33]. Therefore,
in conventional audio signal processing, it is natural to
transform raw audio signals into time-frequency (TF) data
using short-time Fourier transform (STFT) for further
processing [34]. Likewise, it is natural to transform the raw
beam signal into TF data before applying ML-based active
sonar classifiers. Fig. 7 illustrates the transformation process.
First, the raw audio signal is extracted and STFT is applied.
Following STFT, frequency constraining (considering the
bandwidth of the transmitted pulse) and resizing are applied
sequentially. The pre-processed data are called TF images.
In conclusion, ML-based active sonar classifiers attempt to
discriminate the target from clutter using TF images as inputs.

Fig. 8 shows examples of the TF images. Figs. 8(a) and (b)
show three different TF images of the target and clutter,
respectively. It is difficult to distinguish visually because the
target and clutter signals arise from scattering by the same
transmitted signal (they have a similar frequency band with
the transmitted signal).
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FIGURE 7. The pre-processing of active sonar dataset for classification. The raw audio beam signal is transformed into time-frequency (TF) data
through short-time Fourier transform (STFT). Following STFT, bandwidth constraining and resizing were applied. The TF image presents the input of
active sonar classifier.

FIGURE 8. The examples of time-frequency (TF) image of (a) TF images of target and (b) are TF images of
nontarget in the active sonar dataset. Because target and nontarget TF images are generated from similar
physical experiences, it is hard to discriminate. The purpose of this study is to develop an active sonar
classifier that can classify these TF images.

C. SETUP FOR TRAINING AND TESTING
The encoder networks for feature learning are composed
of two CNN layers followed by two fully connected (FC)
layers after flattening. The decoder networks for AE have a
symmetrical structure to that of the encoder networks. The
network architecture is summarized in Table 1. The size of
the input TF image was set to 64× 64.
All supervised learning and deep AD approaches are

initialized using pre-trained AEweights. For training (includ-
ing pre-training), the Adam optimizer was used with an
epoch of 100, batch size of 64, and learning rate of 0.001.
Five-fold cross-validation was conducted [35] and an early
stopping technique was employed using the validation loss
in each fold to prevent overfitting. The final output was
calculated using the average of five model outputs trained
in the five-fold cross-validation. For supervised learning, the
softmax output, which is the mean probability of each class,

is averaged, and for deep AD approaches, the anomaly scores
are averaged [36], [37].

Owing to small amount of the imbalanced active sonar
dataset, ordinary supervised learning makes decision with
a bias toward to dominant normal class, which results in
excessive false alarms and missing targets. To overcome this
problem, data argumentation can be used to complement
abnormal data samples by modifying the existing abnormal
data samples [24]. However, general data argumentation
schemes such as rotating, shifting, and shearing are unsuit-
able for active sonar dataset because it does not consider the
physical characteristics of underwater sound propagation and
scattering.

Inevitably, down-sampling is used, which reduces the
number of dominant normal data samples to the num-
ber of abnormal data samples when the network is
trained [24].
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TABLE 1. Networks architecture.

VI. ML-BASED ACTIVE SONAR CLASSIFICATION
We performed a generalization test using active sonar dataset
for the BiSAD along with the supervised learning, deep
SVDD, and deep SAD. For a qualitative analysis, the receiver
operating characteristic (ROC) curve is used and is calculated
using the anomaly score according to ranging thresholds in
the probability of detection PD and probability of false alarm
Pfa. PD and Pfa are defined as:

PD =
TP

TP+ FN
, (17)

Pfa =
FP

FP+ TN
, (18)

where TP, TN, FP, and FN indicate true positive (predict
actually abnormal target as abnormal target), true negative
(predict actually normal clutter as normal clutter), false
positive (predict actually normal clutter as abnormal target),

TABLE 2. Performance analysis of average ROC curves.

and false negative (predict actually abnormal target as normal
clutter), respectively.

For quantitative analysis, we calculated PD at the specific
Pfa of 0.01, and the area under the curve (AUC) of the
average ROC curve according to the considered ML-based
approaches.

A. COMPARATIVE ANALYSIS
Fig. 9(a) to (d) illustrate the ROC curves of supervised
learning, deep SVDD, deep SAD, and BiSAD, in the test
dataset after training using the training dataset (i.e., the ten
first pings). Because the number of data samples is limited
in the active sonar dataset, we cannot guarantee performance
using the results obtained from a single trial. Therefore,
in our analysis, we conducted 30 trials and analyze 30 ROC
curves to ensure the reliability of the results. Fig. 9 shows
the average, minimum, and maximum ROC curves, which
represent the average, minimum, and maximum values at
a specific Pfa among the 30 ROC curves. Fig. 10 presents
a close-up view of the average ROC curve plotted on
a logarithmic scale of the lower Pfa part for a distinct
comparison of performance.

The supervised learning exhibits the lowest performance
and largest variability than AD approaches, owing to the
small training dataset whose size is in the order of 101 after
the down-sampling. The BiSAD shows high PD than the
otherML-based approaches at low Pfa. Among theML-based
classifiers, the BiSAD exhibits the best performance. The
calculated quantitative values are presented in Table 2.
ThePD andAUCofBiSADwere both higher than those of the
others. Compared to supervised learning, BiSAD exhibited
superior PD and AUC values of 0.150 and 0.089, respectively.

B. ANALYSIS ON THE κ IN THE LOSS FUNCTION
In the BiSAD loss function of (14), we adopted four weights
κ00, κ01, κ10, and κ11 to control the manifold learning of
BiSAD. In this subsection, we analyze the generalization test
performance according to the weight vector k was set to
[1, 0, 0, 1], [0, 1, 1, 0], and [1, 1, 1, 1].

The k of [1, 0, 0, 1] attempts to concentrate normal
and abnormal data samples on the individual spheres with
less penalization; the penalization is solely considered
by r in the denominator of (14). Meanwhile, the k of
[0, 1, 1, 0] emphasize the penalizing without considering the
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FIGURE 9. Comparison of the ROC curves of (a) supervised learning, (b) deep SVDD, (c) deep SAD, and (d) BiSAD, respectively. The
performance variability of supervised learning is high. BiSAD exhibits superior performance and stable ROC curves.

FIGURE 10. Comparison of the average ROC curves. The BiSAD exhibits
superior performance than other approaches.

concentration. When we set k as [1, 1, 1, 1], BiSAD uses both
concentration and penalization; therefore, it finds compact
spheres while considering penalization.

Fig. 11(a), (b), and (c) show a comparison of the average,
maximum, and minimum ROC curves, and Fig. 12 shows a
comparison of average ROC curves at Pfa less than 0.1. The
maximum ROC curves of k of [1, 0, 0, 1] and [0, 1, 1, 0] are
superior than that of k of [1, 1, 1, 1], and the average ROC
curve is good in the order of [0, 1, 1, 0], [1, 1, 1, 1], and
[1, 0, 0, 1]. However, the variability of the classification
performance of k of [1, 0, 0, 1] and [0,1,1 0] is significant
whereas that of k of [1, 1, 1, 1] is moderately consistent.
The results imply that solely focusing on concentrating

or penalizing can mislead the manifold learning of the
BiSAD. On the other hand, if concentrating and penalizing
are used simultaneously, stability can be improved because
the latent space is explored while complementing each other.
Therefore, we used k of [1, 1, 1, 1] for robust performance in
the following experiment.

C. GENERALIZATION TEST ON THE BEAM SIGNAL
INCLUDING TARGET ECHO
We conducted a generalization test on the beam signal
(classify-before-detect strategy in Fig. 1 (b)) including target
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FIGURE 11. Comparison of the ROC curves according to k of (a) [1, 0, 0, 1], (b) [0, 1, 1, 0], and (c) [1, 1, 1, 1]. The case of k of [1, 1, 1, 1] shows
stable results than others.

FIGURE 12. Comparison of the average ROC curves according to k. The
case of k of [0, 1, 1, 0] shows superior performance; however, variability
is high (as shown in the Fig. 11).

echo at a specific ping and azimuth angle using ML-based
classifiers trained with the active sonar dataset. Fig. 13
illustrates the spectrogram of the beam signal containing the
target echo and the average anomaly scores of supervised
learning, deep SVDD, deep SAD, and BiSAD. The beam
signals of the 11th and the 29th pings were utilized.
As mentioned in Sec. V-A, the training dataset consists of
data samples from the ten first pings. Because the ocean
environment changes over time, the beam signal of the
11th ping had similar characteristics to the training dataset,
whereas the beam signal of the 29th ping had different
characteristics.

The average anomaly scores in Fig. 13 are calculated by
averaging anomaly scores after normalization over 30 trials as
in the previous experiment; the normalization was conducted
by dividing the anomaly score by its maximum value.
By comparing the anomaly scores in Figs. 13(a) and (b),
the classification performances of the considered ML-based
active sonar classifiers diminish for the beam signal at the
29th ping, which deviates from those in the training dataset.
Particularly, the maximum value of averaged anomaly score
from the supervised learning is less than 0.8 because the
anomaly scores from supervised learning vary along 30 trials;
the inconsistent prediction of supervised learning deteriorates

reliability for target and clutter classification. However,
BiSAD shows a more robust and accurate classification
performance than others. Furthermore, the anomaly score of
BiSAD is narrower than those of the others and shows a low
level in nontarget locations; particularly in the earlier time
corresponding to the reverberation region. The generalization
test in Fig. 13 implies that BiSAD can accurately distinguish
a target from a nontarget even for the unexperienced data
samples and the generalization performance of BiSAD is
superior to those of the conventional ML-based classifiers.

D. COMPARATIVE ANALYSIS WITH VARIOUS DEEP
NEURAL NETWORKS
It would be interesting to analyze the performance of the
well-known deep neural networks in a small dataset of
the active sonar classification problem and compare them
with BiSAD. We trained and tested four networks, VGG16,
ResNet50, ResNeXt, and SwinViT achieving remarkable
performance in the vision with a supervised learning
approach [25], [26], [27], [28]. These networks with complex
models (deeper layers with more parameters) may have a
better capacity to fit datasets than the shallow networks
used in previous approaches, including BiSAD. However, the
deeper layers of these networks require more memory sizes
and cause overfitting problems on small data sets [24].

Fig. 14 shows a comparison of the average, maximum, and
minimum ROC curves of VGG16, ResNet50, ResNeXt, and
SwinViT, respectively. The supervised learning approaches
using VGG16, ResNet50, and ResNeXt show stable and
high detection probabilities at false alarm rates greater
than 0.01. However, the probability of detection decreases
sharply and shows large variability with the decrease of
false alarm rate. SwinViT shows poor performance compared
to the previously proposed networks, contrary to general
expectations. This phenomenon is because transformer-based
networks require a large amount of data and do not fit the
small active sonar dataset.

Fig. 15 shows the probability of detection at a false alarm
rate of 0.001, where the red line means the median value of
the probability of detection, and the upper and lower bounds
of the blue box mean the first and third quartile, respectively.
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FIGURE 13. The generalization test on the whole beam signal including target echo of (a) the 11th ping, and (b) the 29th ping. The
spectrogram of beam signal and average anomaly scores are presented. The red dot line indicates the location of the target echo. The
average anomaly scores of BiSAD show narrow and accurate results. Anomaly score of BiSAD classified target echo accurately and shows a
low level for nontarget locations. These results imply that the generalization performance of BiSAD is superior to conventional ML-based
classifiers.

The upper and lower black lines mean the maximum and
minimum probabilities of detection, and the red plus markers
mean outliers. Deep SVDD and SAD show low probabilities
of detection (median values of 0.14 and 0.50, respectively)
with large variabilities. On the other hand, BiSAD shows
a high probability of detection (median value of 0.79) with
small variability. In the supervised learning approaches,
shallow CNN shows a low probability of detection (median
value of 0.43) although its maximum performance is high.
Furthermore, it shows the largest variability. SwinViT shows
a low probability of detection (median value of 0.07) with
large variability and its lower bound reaches the probability
of detection of zero. VGG16, ResNet50, and ResNeXt show
high probabilities of detection (median value of 0.79) with
relatively small variabilities, however, they have outliers that

are lower than 0.5. These outliers might be caused by the
overfitting problem owing to the small active sonar dataset
used to train the deep neural networks.

It is noteworthy that the performance of shallow networks
trained with supervised learning is significantly enhanced
by BiSAD using the AD strategy modified based on
the active sonar characteristics. When we compare three
supervised learning-based approaches (VGG16, ResNet50,
ResNeXt) with the BiSAD, they show a similar median
value of detection probability, but BiSAD shows more stable
results than supervised learning-based approaches having
outliers. Also, the first quartile of BiSAD equals its median
value owing to consistent results across multiple trials and
it implies that BiSAD has strong reliability. From the
results in Fig. 15, we could confirm that BiSAD using the
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FIGURE 14. Comparison of the ROC curves of supervised learning with
(a) VGG16, (b) ResNet50, (c) ResNeXt, and (d) SwinViT, respectively. At the
low false alarm rate, deep neural network-based supervised learning
shows low detection probabilities with large variability. SwinViT, which
requires a large amount of data, shows the lowest performance in active
sonar classification problems using small datasets.

shallow networks with much fewer parameters has better
generalization performance than deep neural networks-based

FIGURE 15. The probability of detection of various ML-based approaches
at a false alarm rate of 0.001. BiSAD shows better generalization
performance than conventional AD approaches and deep neural
networks-based supervised learning approaches even though it uses a
smaller size of networks.

supervised learning approaches. These results show that
the prior assumption of BiSAD is fit for the active sonar
classification problem. Therefore, BiSAD is more suitable
for practical application to active sonar systems than the deep
neural networks.

VII. CONCLUSION
In this study, we proposed the BiSAD, which is a modified
deep AD approach. The difference between BiSAD and the
conventional deep AD approach is that BiSAD assumes that
abnormal data samples have characteristics similar to those
of normal data samples because all abnormal data samples
are caused by artificial objects. This assumption leads BiSAD
to learn two individual sphere manifolds: normal (clutter)
and abnormal (target). The loss function of BiSAD consists
of two concentration terms and two penalizing terms based
on the relationship between the spheres and data class.
Simultaneously, BiSAD also searches for the latent space
where the distance between the two centroids of spheres is
maximized.

To verify the BiSAD, we use sea experimental data that
include scattered signals from underwater artificial objects.
We divided the training and test data samples according
to the ping. Subsequently, ROC curves were calculated to
evaluate the qualitative performance, and PD and AUC were
presented as quantitative evaluations. The results show that
BiSAD has superior classification performance and stability
compared to conventional deep AD and supervised learning
approaches. We also analyzed the performance based on the
weight of the loss function setting. The analysis demonstrated
that robust performance was obtained when all terms in
the loss function were used. Furthermore, we conduct a
generalization test on the beam signal including target
echo and compared the BiSAD with supervised learning
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approaches with various deep neural networks that have
deeper layers and more parameters. The results reveal that
BiSAD has superior generalization performance compared
to conventional ML-based classifiers including deep neural
networks-based approaches.
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