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ABSTRACT This paper presents the logical relationships of Aristotle’s square of opposition on four basic
categorial prepositions (i.e., contrary, contradictory, subcontrary, and subaltern) of Joint Opposite Selection
(JOS). JOS brings a mutual reinforcement by a joint of the two opposition strategies Dynamic Opposite (DO)
and Selective Leading Opposition (SLO). The DO and SLO improve the balance of exploration and
exploitation, respectively, in a given search space. We also propose an enhancement of Golden Jackal
Optimization (GJO) with a Joint Opposite Selection named GJO-JOS. In the optimization process, JOS
assists GJO in assaulting the prey swiftly using SLO. DO assists GJO in finding better chances to locate
the fittest prey. With JOS, the GJO succeeds in elevating its performance. We evaluated the performance of
GJO-JOS on the CEC 2017 benchmark functions. The benchmark includes unimodal, multimodal, hybrid,
and composition functions. The evaluation results of GJO-JOS were better than GJO using each of the
seven single opposition-based learning strategies (OBLs). We also compared GJO-JOS to eight nature-
inspired algorithms including the original version of GJO. GJO-JOS produced promising results among
seven single OBLs, eight nature-inspired algorithms, and GJO. The experimental results confirmed that
GJO-JOS effectively generated equilibrium in the balance mechanism.

INDEX TERMS Joint opposite selection, nature-inspired optimization algorithm, opposition-based learning,
unconstraint optimization problem.

I. INTRODUCTION
Nature-inspired optimization algorithms imitate natural
behavior and phenomena to produce effective solutions [1],
e.g., the Ebola optimization search algorithm [2], the African
vultures optimization algorithm [3], the Pelican optimiza-
tion algorithm [4], and the Reptile search algorithm [5].
The more notable abilities of the enhanced nature-inspired
optimization algorithms are their abilities to solve essen-
tial issues or enhance existing solutions. Examples of
these abilities include the economics of combined heat and
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power emissions, which can be solved by applying multi-
objective optimization to decision-making [6], effective fea-
ture selection on cancer datasets is achieved by utilizing
Spark Distributed PSO [7], and the balance of convergence
and diversity on many-objective PSO is accomplished by
employing a hybrid leader selection strategy [8]. Moreover,
other techniques can be used to improve nature-inspired opti-
mization algorithms, e.g., gradient-based [9], chaotic [10],
quantum [11], and opposition-based learning (OBL) [12].

Many researchers recommend OBL as a learning tech-
nique that can improve the performance of an optimization
algorithm in a competition [13]. Tizhoosh [14] proposed the
opposition-based learning (OBL) technique on the basis of
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Aristotle’s theory of opposition. The philosophy of Aristo-
tle’s square of opposition introduced in the fourth century
has attracted the interest of many scientists. Some of them
have reviewed this philosophy in depth. Parsons reviewed the
historical aspects of the logical relationship of the Square of
Opposition [15], [16]. Béziau et al. [17] described the square
of opposition as ‘‘a cornerstone of thought’’. Bernhard [18]
exhibited deep insight into the relationships within the logical
diagram of the square of opposition. Other scientists have
explored how the principles of the square of opposition can
be found in nature as the basic theory of the philosophy of
science. In mathematics, Smessaert et al. [19] introduced new
logical geometries based on the Aristotelian logic diagram.
In physics, Arenhart et al. [20] utilized the square of opposi-
tion to describe the potential state of quantum superposition.

Moreover, the utilization of OBL embedded in the slime
mould algorithm combined with k-nearest neighbor (kNN)
effectively elevates its exploration ability for solving feature
selection in medical classification [21], the Jaya algorithm is
enhanced when using adaptive OBL, which integrates more
than one opposition [22], the moth flame optimization is
improved with quasi opposition based learning for solving
the path planning of a mobile robot [23], and the tunicate
swarm algorithm performance is increased to optimize solar
cell power systems [24].

Rahnamayan et al. [25] highlighted that opposite numbers
produced a higher probability of obtaining better fit compared
to pure random numbers. Supporting evidence from scientific
reviews also confirmed that the opposition strategy produced
promising results [26], [27], [28]. It is for these reasons
that many scientists have tried to improve, extend, or merge
the opposition strategy. The examples are exhibited as fol-
lows. Rahnamayan et al. [29] proposed Quasi-Opposition
Based Learning (QOBL), which produces higher chances
of being close to the solution by utilizing a jumping rate
and calculating the middle of opposite points. Ergezer et al.
[30] launched quasi-reflection, which increases the success
rate of BBO with less fitness computation. Rahnamayan
et al. [31] initialized a random opposite point between the
center and boundary named centroid opposition. Hu et al.
[32] estimated partial opposite populations simultaneously
as an effort to produce a better solution. Dhargupta et al.
[33] applied selective opposition by selecting the far away
dimensions that produce a fast convergence rate and improve
the exploitation ability. Xu et al. [34] merged the quasi-
opposition and quasi-reflection to enrich the diversity with
its asymmetric search behavior and enhance the exploration
ability named dynamic opposite (DO). These examples are
improvements of OBL and are still recognized as a single
opposition strategy. A single opposition strategy means the
opposition strategy will only perform once in every gen-
eration. As a result, the improved optimization algorithm
using a single opposition strategy can only enrich either the
exploration ability or the exploitation ability.

Those single opposition ideas also generate promising
results for solving real-world problems. The approach of

Quasi-Opposition Differential Evolution (QODE) is able
to reduce grid congestion on reactive power dispatch by
minimizing the loss of active power, accelerating the pro-
file of the voltage, and improving the stability of the volt-
age [35]. An improved firefly optimization algorithm with
quasi-reflection can tackle the scheduling of the work-
flow cloud-edge environment and satisfy real-time require-
ments [36]. Generalized opposition on the quantum salp
swarm algorithm effectively approximates the accuracy of
quantile function on Nakagami-m [37]. Centroid opposi-
tion integrated with multiple strategies embedded on the
salp swarm algorithm can reduce the probability of the fail-
ure of the design system of reliability optimization [38].
An improved grey wolf optimizer with selective opposition
shows efficiency in estimating the model parameters of pro-
ton exchange membrane fuel cells of a 250W stack [39].
The dynamic opposite generates mutual learning which is
integrated with the mutation strategy for solving multi-task
optimization problems [40].

Gonzales [41] affirmed that maintaining the equilibrium of
exploration and exploitation in the search space is essential to
the main optimization process. There is no exact formula and
calculation to define the balance of exploration and exploita-
tion in the search space of the nature mimicking of nature-
inspired algorithms [42], [43], [44]. Moreover, Wolpert et al.
[45] emphasized that no algorithm can solve all optimization
problems. Then, Wang et al. [46] questioned whether two
oppositions are better than one.

As mentioned earlier, Aristotle claimed that there is a
logical relation between the contrary ability that defines the
square of opposition. In a given search space of optimiza-
tion, exploration is contrary to exploitation. As mentioned
in the literature, among variations of single opposition ideas,
dynamic opposite (DO) conquers the exploration phase [34]
and selective opposition (SO) enriches the exploitation phase
[33]. However, SO, which employs the far away dimensions,
still experiences premature convergence [33], which leads
to a trap in the local optima. Therefore, Arini et al. [47]
proposed an improved SO named Selective Leading Oppo-
sition (SLO) and DO. SLO selects the close-distance dimen-
sions to improve the enrichment of exploitation. Meanwhile,
DO [34] supports the diversity at the exploration and helps
the search process to escape from being trapped at the local
optima by moving to the center and opposite position and to
the center position and current position.

Based on Aristotle’s doctrine, we can correlate that DO is
a sub-part of exploration, SLO is a sub-part of exploitation,
and DO is sub-contrary to SLO. The opposed action of explo-
ration and exploitation according to Gonzales [41] strengthen
each other. Therefore, the joint of DO and SLO produces
equilibrium of the mutual reinforcement and is named Joint
Opposite Selection (JOS) [47].

In this paper, we employ JOS to enhance the Golden Jackal
Optimization (GJO). GJO mimics the golden jackal’s collab-
orative hunting behavior, which consists of three phases: prey
searching, enclosing, and pouncing [48], and also shows the
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efficacy in the applications [49], [50]. JOS assists the GJO
by attacking the prey expeditiously using SLO. The SLO
utilizes the existing linear decrement operator from the orig-
inal version of GJO to apply its strategy. DO contributes to
enriching the diversification of GJO in finding other potential
prey locations.

In the process of optimization, GJO requires exploration
and exploitation. Based on the experimental results of [51]
on 23 benchmark functions, GJO offers very decent results
[48]. Nevertheless, there is no supporting evidence that GJO
can conquer other benchmark problems such as CEC 2017.
We conducted an experiment on CEC 2017 and found that
GJO did not perform sufficiently, when compared to the other
nature-inspired optimization algorithms. Therefore, we uti-
lized the strength of JOS in balancing the exploration and
exploitation to improve the capability of GJO performance
in the phases of exploration and exploitation.

The performance of JOS embedded in GJO (GJO-JOS),
was compared with other opposition strategies embedded in
GJO, such as Dynamic Opposite (DO), Reflection (R), Quasi-
opposition (QO), Generalized Opposition (GO), Selective
Opposition (SO) and Selective Leading Opposition (SLO).
It should be noted that we did the experiment on GJO
with those OBLs to confirm the performance of GJO-
JOS among the opposition-based strategies. The perfor-
mance of GJO-JOS is also compared to eight nature-inspired
algorithms, i.e., Wild Horse Optimization (WHO), Aquila
Optimization (AO), Artificial Bee Colony (ABC), Harris
Hawk Optimization (HHO), Atomic Orbital Search (AOS),
Archimedes Optimization Algorithm (AOA), Reinforcement
Learning Neural Network Algorithm (RLNNA), and the orig-
inal version of Golden Jackal Optimization (GJO). The com-
parison of GJO-JOS versus GJOwith theOBLs andGJO-JOS
versus nature-inspired algorithms are included in a collec-
tion competition of 29 benchmark functions of CEC 2017.
The main contributions of our research are highlighted as
follows:
� The philosophy of Aristotle’s square opposition exhibits

the mutual reinforcement of the opposed action
Dynamic Opposite (DO) and Selective Leading Oppo-
sition SLO) of Joint Opposite Selection (JOS) in explo-
ration and exploitation, respectively.

� The jumping rate adjustment of DO accelerates the
diversity of GJO-JOS in the exploration phase.

� The existence of the GJO linear decrement operator is
used by SLO as the threshold influencing the scheduling
behavior on GJO-JOS to accelerate its performance in
the exploitation phase.

� GJO-JOS is proposed to boost the optimization process
ofmimicking the collaborative hunting’s performance of
golden jackal (GJO).

� The effectiveness of GJO-JOS is demonstrated in a com-
petition of 29 benchmark functions CEC 2017 and is
evaluated using the statistical analysis; Wilcoxon sign
rank test, scoring metric, and convergence curve. GJO-
JOS is also compared to seven single opposition learning

techniques embedded in GJO and eight nature-inspired
optimization algorithms.

This paper is structured as follows. Section II presents the
philosophy of Aristotle on Joint Opposite Selection and a
review of the Golden Jackal Optimization. Section III briefly
discusses the proposed GJO-JOS. Section IV discusses the
setup of experiments and the analysis of experimental results.
Section V provides conclusions and future work.

II. RELATED WORK
In the first sub-section, we elaborate on the philosophy of
Joint Opposite Selection (JOS), which is followed by a brief
discussion of the Golden Jackal Optimization (GJO).

A. THE PHILOSOPHY OF JOINT OPPOSITE SELECTION
(JOS)
The philosophy of JOS adopts the theory of square of opposi-
tion [15]. The theory of square of opposition was defined by
Aristotle in the fourth century BC [15]. The representation
of the square opposition is illustrated in Figure 1(a) with four
corner propositions. These four corners are A, E, I, andOwith
each letter corresponding to a universal affirmative; (every S
is P), universal negative (no S is P), particular affirmatives
(some S is P), and particular negative (some S is not P),
respectively.

FIGURE 1. (a) The square of opposition in Aristotle’s philosophy and
(b) the philosophy of JOS based on Aristotle’s square of opposition.

An affirmative statement and its negation produce a con-
tradiction condition. For example, A is contrary to E, A is
contradictory to O, and E is contradictory to I. I is subaltern
to A, O is subaltern to E and I is subcontrary to O. The
contrary indicates both of the statements cannot be true but
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FIGURE 2. The emergence balancing mechanism of JOS.

both statements can be false. The contradictory presents that
both statements cannot be true and also cannot be false. The
subcontrary shows that both statements can be true, but both
statements cannot be false. The subaltern exhibits a condition
that if the global statement is true, the specific statement must
be true. The subaltern is a particular statement of the global
statement.

Based on the contradictory concept of the square of oppo-
sition, the philosophy of JOS can be presented as shown
in Figure 1(b). In a given search space, Figure 1(b) shows
that the exploration is contrary to exploitation, exploration
is contradictory to SLO, exploitation is contradictory to DO,
DO is subcontrary to SLO, DO is subaltern to exploration,
and SLO is subaltern to exploitation.

As mentioned earlier, Gonzales [41] affirms that the
opposed action of exploration and exploitation strengthen
each other, which produces a balancing mechanism. The
emergence of the balanced mechanism of JOS is described in
Figure 2. It starts with the basic theory of Opposition Based
Learning (OBL), which contains the opposition function
X̃ = LB + UB − X . The basics of opposition function are
variously improved with many ideas. OBL with merging the
center position and opposite position with the center position
and current position named Dynamic Opposite (DO). Mean-
while, OBL utilizes the linear decrement operator, selects
and counts the close distance dimensions, then analyzes their
association by using Spearman’s Rank Coefficient named
Selective Leading Opposition (SLO). These two improved
OBLs (DO and SLO) are single opposition functions. In the
given search space, as exhibited in Figure 2, DO supports
the exploration phase and SLO supports the exploitation
phase. When the DO and SLO are joined then the balanced
mechanism is required. Therefore, the joint of DO and SLO
is named Joint Opposite Selection (JOS).

JOS in the workflow of GJO is shown in Figure 3. This
shows that DO on JOS in the workflow of GJO occurs in two

parts: initialization and generation. Meanwhile, SLO on JOS
occurs on each generation of the GJO workflow by setting
its boundary and linear decrement energy of the prey Eld =
1.5× (1− t/T ). A detailed explanation of the occurrence of
JOS (the joint DO and SLO) is given in Algorithm 1.

For further details, the steps process of SLO is described in
Algorithm 2. The SLO can be applied by setting the popula-
tion sizeNP, dimensionD, iteration t , andmaximum iteration
T , as inputs and setting the linear decrement as the threshold.
The SLO will check on the position of each population. If the
current position of an individual Xk is not equal to the best
position of an individual Xkbest then SLO will measure the
difference distance ddm on each dimension based on the best
position of the dimension Xkbest,m and the current position
of the dimension Xk,m. If the ddm is less than the threshold
then they are identified as close distance dimensions Dc and
are counted. However, if the ddm is greater than the threshold
then identify the far away distance dimension Df and count
them. Then, measure the associativity of the current posi-
tion and the best position with the Spearman’s Correlation
Coefficient (src).

If the src is less than zero and the number of close dimen-
sions (Dc) is greater than the number of far away dimen-
sions then the opposition strategy of SLO will occur. The
computational complexity of SLO [47] is O(NP × T × Dc)
where N is presented as the number of search agents, T is the
maximum number of iterations andDc is the number of close
dimensions.

Meanwhile, the detailed steps of DO are exhibited in
Algorithm 3 on stage 1 and stage 2, respectively. In the
population initialization stage, the DO occurs after the initial
population (See line number 2-5). Line 2 sets the opposition-
based learning (OBL) strategy

(
X̃OP

)
by utilizing the initial

position X within the range of lower boundary LB and upper
boundary UB. In line 3, the OBL moves with a random num-
ber that produces the reflection opposition position

(
X̃OR

)
.
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FIGURE 3. The workflow of GJO-JOS.

With the influence of the random number, the initial position
X approaches the reflection opposition position

(
X̃OR

)
and

at the same time this approach moves away from the initial
positionX. This move is named the dynamic opposite

(
X̃DO

)
.

Before the start of the process generation, the dynamic oppo-
site position

(
X̃DO

)
is set as the initial position as stated in

Algorithm 1 GJO-JOS
1: Generate initial random population of X jackal

2: Produce initial random population of X̃DO based onX jackal
//Algoritm 2 Stage 1

3: X jackal ← X̃DO //Assign X̃DO to X jackal
4: nFE = 0, t = 0, T = max_iteration
5: while nFE < maxFE do
6: Checked Boundary X jackal
7; Evaluate Fitness values of X jackal
8: Update nFE
9: Update Position of X jackal
10: Set selective boundary for SLO
11: Set Eld = 1.5 × (1 − t/T) as threshold for SLO

//SLO Threshold
12: Perform SLO //Algorithm 1
13: for each pair jackals do
14: E0 = 2× rand − 1 //Initial Prey Energy
15: Ev = Eld × E0 //Prey Evading Energy
16: if Ev > 1 then //Exploration
17: Update the position XM dan XF

//Eq. (2) and Eq. (3)
18: else // if Ev < 1 then //Exploitation
19: Update the position XM dan XF

//Eq. (5) and Eq. (6)
20: end if
21: end for
22: if rand < Jr
23: Perform DO position (X̃DO)

//Algorithm 2 Stage 2

24: X jackal ← X̃DO //Assign X̃DO to X jackal
25: end
26: t = t + 1
27: end

stage 1 line 5. In each of the generations at stage 2, the DO
will proceed with the same process as in stage 1, with the
condition that the random number is less than the Jumping
rate Jr . The suitable Jr for DO on JOS is 0.25 [47]. The
computational complexity of DO is O(NP × Jr × T × D)
where NP is presented as the number of search agents, Jr is
the jumping rate, T is the maximum number of iterations and
D is the number of dimensions.

B. GOLDEN JACKAL OPTIMIZATION
GJO is proposed by Chopra et al. [48]. GJO is inspired by the
pair (male and female) bond-hunting behavior of golden jack-
als in nature. The bond of a pair of golden jackals is shown
by their choral howling. The howling of the golden jackal
is considered as some kind of engagement [52]. With their
choral howl, golden jackals inform others of their position
and communicate with those others to locate their prey [53].
For foraging, golden jackals utilize cooperative foraging,
which allows them to search an available territory of larger
prey [54], [55]. They will move around the prey to ensure
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Algorithm 2 Selective Leading Opposition (SLO)
1: Input: NP, D, t , T
2: Ouput: XDc: new opposition population based on SLO
3: Set linear decrement as threshold
4: for k = 1:NP do
5: if Xk is not equal to Xkbest
6: for m = 1:D do
7: ddm = | Xkbest,m − Xk |
8: if ddm ≤ threshold
9: identify Dc (close distance dimensions)
10: Dc = Dc + 1
11: Else
12: identify Df (faraway distance dimensions)
13: Df = Df + 1
14: end if
15: end for
16: sum all ddm (difference distance)

17: src = 1−
6

( ∑
m=1

(ddm)2
)

ddm(dd2m−1)
18: if src ≤ zero and Dc greater than Df
19: XDc = LBDc + UBDc − XDc
20: end if
21: end if
22: end for

Algorithm 3 Dynamic Opposite (DO)
Stage 1 Population Initialization

1: Initialize search agents’ position X
2: X̃OP = LB+ UB− X
3: X̃OR = rand × X̃OR
4: X̃DO = X + rand ×

(
X̃DO − X

)
5: X ← X̃DO

Stage 2 Population Generation utilizes Jr
6: while nFE < maxFE do
7: if rand < Jr
8: X̃OP = LB+ UB− X
9: X̃OR = rand × X̃OR
10: X̃DO = X + rand ×

(
X̃OR − X

)
11: X ← X̃DO
12: end if
13: end while

and prepare for their assault, then they encircle the prey until
it cannot escape. Finally, if escape seems hopeless, they will
attack the prey. This foraging hunting behavior of golden
jackals is then formulated into a mathematical formula. First,
the population of golden jackals in the search space is defined
in Eq. (1)

X0 = LB+ rand × (UB− LB) (1)

whereUB is the upper boundary and LB is the lower boundary
in the search space with rand as a random number in the range
of [0, 1]. The phases of mimicking the hunting behavior of
golden jackals in the optimization are exhibited in the phase

of exploration, exploitation, and transition from exploration
and exploitation.
In the phase of exploration, golden jackals in nature seek

and track their prey. However, sometimes the prey cannot
consistently be spotted in a certain place and can easily be
lost. The strength of the prey energy is presented as Evading
Energy Ev. When |Ev| is greater than 1 means that the prey
still has enough energy to escape. In this state, the phase of
exploration occurs. At this phase, the hunting action of the
golden jackals preferred the male (Xmale) as the leader and
the female

(
X female

)
as adherent, as denoted in Eq. (2) and

Eq. (3) respectively

XM = Xmale − Ev
∣∣Xmale −

(
0.05× LFD(β)⊗ Xprey

)∣∣
(2)

XF = X female − Ev
∣∣X female −

(
0.05× LFD(β)⊗ Xprey

)∣∣
(3)

where Xprey is the prey vector position with the influence
of a constant value of 0.05 and the Lévy flights LFD(β),
as formulated in Eq. (4), approach the Xmale and X female as
denoted in Eq. (2) and Eq. (3) sequentially. Note that⊗ is the
element-wise multiplication. The move of Xmale and X female
are controlled by the prey Evading Energy Ev = Eld×E0. Eld
shows the prey decrement energy. Eld = 1.5×

(
1− t

T

)
linear

decreases from 1.5 to zero during the generation. Mean-
while, E0 is defined as the prey’s initial energy. E0 is equal
to 2 × rand − 1 with rand being within [0, 1]. Therefore,
XM and XF indicate the male and female updated position
toward the prey in the phase of exploration.

Mantegna [56] affirms that Lévy flights, as denoted in
Eq. (4), contain random numbers uD and vD as the results of
a normal distribution with standard deviations of uD is σ and
vD is 1. The parameter β of Lévy flights is 1.5. The dimension
of the Lévy flights vector is represented as D.

LFD (β) =

(
uD · σ

|vD|
1
β

)
, σ =

 0 (1+β)×sin
(
πβ
2

)
0
(
1+β
2

)
×β×2

(
β−1
2

)


1
β

(4)

In the phase of exploitation, the pair of golden jackals
enclose the prey and then chase them. Undoubtedly the Evad-
ing Energy Ev of the prey becomes weak. This state shows
that |Ev| is less than 1 and that the exploitation occurs. When
the mates of the golden jackals succeed in surrounding the
prey, they will assault the prey until it looks lifeless. This
pair hunting behavior of golden jackals (male (Xmale) and
female (X female)) is then formulated in Eq. (5) and Eq. (6)
respectively.

XM = Xmale − Ev
∣∣(0.05× LFD(β)⊗ Xmale)− Xprey

∣∣
(5)

XF = X female − Ev
∣∣(0.05× LFD(β)⊗ X female

)
− Xprey

∣∣
(6)
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where Xprey is the prey vector position approach the Xmale
and X female as denoted in Eq. (2) and Eq. (3), respectively.
The position of male Xmale and female X female is influenced
by the constant value of 0.05, the Lévy flights LFD(β) where
D represents the dimension as formulated in Eq. (4). This is
the main difference of the pair of golden jackals’ movements
in the exploitation phase compared to the exploration phase.
The constant value of 0.05 and the Lévy flights LFD(β) are
utilized to avoid the sluggishness trapped in the local optima.
Nevertheless, in the exploitation phase, the operator of prey
Evading Energy Ev performs the in same manner as in the
exploration, by considering the rapid move of the golden
jackal approaching the prey. Note that detailed variables and
parameters are given in the Appendix.

III. THE PROPOSED GOLDEN JACKAL OPTIMATION (GJO)
WITH JOINT OPPOSITE SELECTION (JOS)
In this paper, a joint of two single oppositions Dynamic
Opposite (DO) [34] and Selection Leading Opposition (SLO)
[47], namely Joint Opposite Selection (JOS) [47], was uti-
lized to improve the performance of the Golden Jackal Opti-
mization [48]. We named the proposed algorithm Golden
Jackal Optimization – Joint Opposite Selection (GJO-JOS).
In the flowchart of optimization, shown in Figure 3, at the
very initialization, the initial jackal position X j is defined
randomly. This generates the initial DO position X̃DO. Then,
the initial DO position X̃DO is assigned to X j. The following
step then generates the new jackal position based on SLO
and DO. The jackal’s upper and lower boundary is checked
first then the jackal’s fitness is assessed. SLO is applied by
utilizing the linear decrement operator Eld = 1.5 ×

(
1− t

T

)
as a threshold. The new position based on SLO influences the
main optimization. Following the main optimization process,
the DO occurs and is optimized under a proper Jumping Rate
(Jr). This process is terminated when it reaches the maximum
number of function evaluations (maxFE).

The detail optimization process of GJO-JOS is exhibited in
Algorithm 3. The original GJO is described in the black font
and the red font shows the JOS occurring in the GJO, as stated
in Algorithm 3 lines no. 2, 3, 12, 20, 21, and 22. As shown in
line no. 12, the SLO is executed. The SLO utilizes the linear
decrement operator Eld = 1.5 ×

(
1− t

T

)
as the threshold as

stated in the green font at line no. 11. The action of SLO is
described in detail in Algorithm 1 in Section IIA. The main
optimization process, shown in Figure 3, is shown in detail
in lines 13-21. The position of each pair of jackals is updated
based on the Evading Energy of the prey Ev. If Ev ≥ 1 then
update XM and XF positions, based on Eq. (2) and Eq. (3).
The phase of this condition is exploration. It means that in
this phase the jackals attempt to trap their prey. However, the
prey could escape from the jackals’ trap because it still has
the energy to escape. If Ev < 1 then update XM dan XF
positions based on Eq. (5) and Eq. (6). This phase is defined
as exploitation. In this phase, the evading energy Ev of the
prey has already decreased and the jackals have managed to
lead the prey into their trap. If all these strategies still do

not achieve optimally, the DO strategy occurs as defined in
lines 22-25. With DO, the jackal position will be scattered.
This effort is to find a better location for an appropriate prey.
The detailed description of DO is shown in Algorithm 2 in
Section IIA. Figure 4(a) illustrates the linear decrement oper-
ator that is used in GJO and is utilized by the SLO of JOS.
Figure 4(b) delineates the magnitude scheduling behavior of
the prey evading energy Ev.
Both figures show the evolution of the value which

decreases from 1.5 to zero, carried out along 1000 iterations.
The evading energy of the prey Ev restrains the occurrence of
updates to the golden jackal pair’s position in the phases of
exploration and exploitation. Therefore, we can see that the
linear decrement operator influences the scheduling behavior
of the Evading Energy Ev of the prey.

The efficiency of an algorithm can be measured in terms
of computational cost or computational complexity of time
complexity [57]. For GJO, Chopra et al. [48] affirmed that
the computational complexity of GJO consists of the main
two computational complexities. They are initialization and
updating mechanisms. The initialization computational com-
plexity of GJO is O(NP), where NP is the number of jackals.
The updating mechanism computational complexity of GJO
isO(NP× T )+O(NP× T ×D), where NP is the number of
jackals, T is the number of maximum iterations, and D is the
dimension of definite problems. The run-time computational
complexity of GJO is O(NP × (T + (T × D) + 1)), which
means that the time complexity of GJO grows based on the
NP × T × D.
Arini et al. [47] confirmed that the computational com-

plexity of JOS (SLO and DO) concludes as follows:

O(SLO) = O(NP× T × Dc),

where NP is the number of jackals, T is the number of
maximum iterations, and Dc is represented for close distance
dimensions,

O(DO) = O(NP× Jr × T × D),

whereNP is the number of jackals, Jr represents jumping rate,
T is the number of maximum iterations, and D is present as
the dimensions.

Therefore, the computational complexity efficiency for
GJO-JOS is:

O(GJO− JOS) = O(NP× (T + (T × D)+ 1))

+O(NP× T × Dc + NP× Jr × T × D)

= O(NP× T (2+ Dc + D(T + Jr)).

Hence, the computational complexity of GJO-JOS still shows
the same order time complexity as that of GJO. For the
proposed algorithm, the memoryrequirement is influenced by
the size of the variables and the parameters of the algorithm,
which are shown in the Appendix. Appendix A shows the
memory size of GJO with the updated vector position of XM
and XF equals 2 × (NP × D). Meanwhile, Appendix B
presents the memory size of DO

(
X̃DO

)
: NP × D and
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FIGURE 4. (a) Linear decrement operator and (b) Prey evading energy.

Appendix C presents the memory size of SLO (XDc ): NP ×
D Therefore, the memory size of GJO-JOS is k × (NP × D).

IV. EXPERIMENTAL RESULTS AND DISCUSSION
The experiments were carried out with an Intel R©CoreTM

i9-7980XE CPU @ 2.60 GHz and 64 GB RAM, running
Microsoft Windows 10 Pro. The optimization algorithms
were written in MATLAB.

The experiments include solving the single-objective real
parameter numerical optimization of Congress on Evolution-
ary Computation (CEC) 2017 [58]. The CEC is comprised
of 29 benchmark functions (f1, f3 − f30). These benchmark
functions are used to evaluate the performance of GJO-JOS
compared to its competitors and are classified into four
categories as shown in Table 1. The four categories of the
benchmark functions are defined as follows: unimodal, sim-
ple modal, hybrid, and composition functions. The unimodal
functions (f1, f3) consist of shifted and rotated Bent Cigar
and Zakhow Fincton, respectively; the simple multimodal
functions (f4− f10) are the representation of one function that
has been shifted and rotated; the hybrid functions (f11 − f20)
are the representation of two or more functions that blend
into one function; and the composition functions (f21 − f30)

are composed of at least three functions. Note that due to
unjustified results, the benchmark function f2 was omitted
from this experiment. According to CEC evaluation criteria,
the search space in all categories of benchmark functions is
determined as [−100, 100]D. The lower bound (LB) is −100
and the upper bound (UB) is 100.

The performance of the proposed GJO-JOS and its com-
parison algorithms on CEC 2017 were assessed by a scoring
metric [58]. The scoring metric is summarized by the sum
of the error (SE) and the sum of the rank (SR). The highest
scoring metric is 100. Therefore, the maximum score of each
item is 50.

The value of SE is present in Eq. (7). The SE is formulated
by weight and summation of best objective values (ef ) in all
CEC 2017 benchmark functions (f1,3−30) based on 10, 30,
50, and 100 dimensions (D) [58]. The higher the dimensions,
the higher its weight. The weight for 10D is 0.1, for 30D it’s
0.2, for 50D it’s 0.3, and last for 100D it’s 0.4. For SR, the
obtained value is also influenced by the weight. However,
the summation on SR based on the rank of the algorithm in
the comparison, as denoted in Eq. (8),

SE = 0.1×

 ∑
f1,3−30

ef10D

+ 0.2×

 ∑
f1,3−30

ef30D


+ 0.3×

 ∑
f1,3−30

ef50D


+ 0.4×

 ∑
f1,3−30

ef100D

 . (7)

ScoreSE = 50×
(
1−

SE − SEmin

SE

)
, (8)

where SEmin is the minimum value of SE . The obtained result
value of SR and the score of SR are shown in Eq. (9) and Eq.
(10), respectively.

SR = 0.1×

 ∑
f1,3−30

ef10D

+ 0.2×

 ∑
f1,3−30

ef30D


+ 0.3×

 ∑
f1,3−30

ef50D


+ 0.4×

 ∑
f1,3−30

ef100D

 . (9)

ScoreSR = 50×
(
1−

SR− SRmin

SR

)
, (10)

where SRmin is the minimal value of SR. Thus, the total score
is summarized in Eq. (11).

Total Score = ScoreSE + ScoreSR. (11)

Therefore, the parameters required to run each algorithm
on the CEC are shown as follows: (a) population size (NP)
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TABLE 1. The description of benchmark functions CEC 2017.

is fixed equal to 30 and (b) Jumping Rate (Jr) is set at 0.25
[47]. Each algorithm (a) repeats in 51 runs, each run tests
29 benchmark functions of CEC 2017 in 10, 30, 50, and
100 dimensions (D); (b) defines the maximum number of
function evaluations (maxFE) as 1 × 104 multiplied by the
number of dimensions (D); and (c) the maximum number of
iterations (T ) is defined by dividing the maxFE with NP.
The obtained experimental results are further discussed

in three sub-sections. Section A describes the performance
of GJO-JOS and GJO on Hybrid and composition functions
CEC 2017. Section B, the GJO-JOS is compared to six single
variants of oppositions (i.e., DO, SLO, SO, Quasi, General-
ized Opposition, and Reflection Opposition) and the original
version of GJO. Section C discusses the comparison of GJO-
JOS to seven nature-inspired algorithms and the original
version of GJO.

A. GJO-JOS VS. GJO ON HYBRID AND COMPOSITION
FUNCTIONS CEC 2017
The GJO-JOS versus GJO was tested on four categories of
benchmark functions (unimodal, simple unimodal, hybrid,
and composition) of CEC 2017. In all categories, GJO-
JOS showed promising best fitness values compared to the
original version of GJO. It was noticed that the hybrid and

FIGURE 5. The comparison of GJO-JOS Hybrid Functions in 10, 30, 50,
and 100 dimensions based on the obtained experiment results in
Tables 4, 5, 6, and 7.

composition functions of CEC 2017 have higher complexity
problems compared to the other two groups (unimodal and
simple multimodal) in CEC 2017. Both hybrid and com-
position functions consist of 10 benchmark functions on
(f11 − f20) and (f21 − f30), respectively. Each of the functions
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FIGURE 6. The comparison of GJO Hybrid Functions in 10, 30, 50, and
100 dimensions based on the obtained experiment results in Tables 4, 5,
6, and 7.

is a representation of a hybrid or is composed of several
functions.

FIGURE 7. The comparison of GJO-JOS Composition Functions in 10, 30,
50, and 100 dimensions based on the obtained experiment results in
Tables 4, 5, 6, and 7.

Figure 5 and Figure 6 show the GJO-JOS and GJO perfor-
mance, respectively, on hybrid functions on 10, 30, 50, and
100 dimensions in CEC 2017. Figure 7 and Figure 8 show
the GJO-JOS and GJO performance, respectively, on compo-
sition functions on 10, 30, 50, and 100 dimensions in CEC
2017. The left and right sides of the four figures present
the same best fitness scale of the GJO-JOS and GJO hybrid
functions. The red arrows on the hybrid and composition
figures show the better mean best fitness of the algorithms.
The lower the mean best fitness of the algorithms, the higher
their performance.

Figure 6 shows the mean best fitness of GJO on hybrid
functions. In 100D, we found that four benchmark functions
of GJO on f12, f13, f15 and f19 did not perform as well as
the others with values of 4.70E+10, 8.10E+09, 2.80E+09,
and 2.70E+09, respectively. Of those four, the mean best

FIGURE 8. The comparison of GJO Composition Functions in 10, 30, 50,
and 100 dimensions based on the obtained experiment results in
Tables 4, 5, 6, and 7.

fitness of f12 is the worst case compared to the best case that
reached by f20 with values of 5.50E+03. In 30D and 50D,
only f11, f16, f17, and f20 produced mean best fitness around
+03, with the others producing above that number. However,
in the lower dimension of 10D, GJO on the hybrid function
relatively generates considerable mean best fitness of around
+03 and +04. The +03 numbers produced were on bench-
mark functions f11, f14, f15, f16, f17 and f20 with the mean
best fitness at 1.20E+03, 1.60E+03, 3.30E+03, 1.80E+03,
1.80E+03, and 2.10+03, respectively. Only f12 produced
1.20E+06 on 10D.

In Figure 5 and Figure 7, we zoom in on the rapid line
of the hybrid and composition functions of GJO-JOS on
30D and 50D to see the trend of the mean best fitness.
The mean best fitness on hybrid functions of GJO-JOS
(Figure 5) 30D and 50D showed promising results on bench-
mark functions f11, f16, f17 and f20. The results produced by
benchmark function f11 on 30D and 50D were 1.20E+03
and 1.40E+03, respectively; f16 on 30D and 50D produced
2.50E+03 and 2.90E+03, respectively; f17 on 30D and 50D
obtained 2.00E+03 and 2.80E+03, respectively; f20 on 30D
and 50D generated 2.30E+03 and 2.80E+03, respectively.
However, the mean best fitness of GJO-JOS on hybrid func-
tions did not perform as badly as the original GJO.

The worst case of mean best fitness of GJO-JOS was only
2.70E+08.

Overall, the mean best fitness of the GJO-JOS com-
position function (Figure 7) produced a better result than
the original GJO composition function (Figure 8). For the
most part, the result values of the mean best fitness of
GJO-JOS and original GJO were around +03 and +04
except benchmark for function f30. The benchmark func-
tion f30 GJO on 10D, 30D, 50D, and 100D produced mean
best fitness values of 2.04E+05, 2.30E+07, 4.20E+08,
and 6.50E+09, respectively. The benchmark function f30
GJO-JOS on 10D, 30D, 50D, and 100D produced mean
best fitness values of 5.10E+04, 2.00E+06, 2.00E+07, and
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TABLE 2. The SE score of GJO-JOS with six single variant oppositions and GJO.

TABLE 3. The SR score of GJO-JOS with six single variant oppositions and GJO.

2.10E+07, respectively. These mean best fitness results show
that GJO-JOS resulted in a considerable improvement, how-
ever, it did not reach themean best fitness of around+03 in all
dimensions.

Moreover, an interesting trend occurs on 100D, the mean
best fitness of benchmark functions GJO-JOS compared to
GJO also showed promising improvement on f25, f26, f28, and
f29. The mean best fitness results of GJO on f25, f26, f28 and
f29 were 1.10E+04, 2.70E+04, 1.60E+04, and 1.40E+04,
respectively. The mean best fitness results of GJO on
f25, f26, f28 and f29 were 3.50E+03, 6.20E+03, 3.50E+03,
and 6.90E+03, respectively.

B. THE COMPARISON OF GJO-JOS WITH SIX SINGLE
VARIANTS OF OPPOSITIONS AND GJO
This sub-section discusses the experimental results of
GJO-JOS, GJO with variant oppositions (DO, SLO, SO,
Quasi, Generalized, and Reflection), and the original
GJO using a scoring metric (as explained previously),
statistical analysis based on the mean and the stan-
dard deviation of each algorithm on GJO-JOS, GJO-DO,
GJO-SLO, GJO-SO, GJO-Quasi, GJO-Generalized, GJO-
Reflection, and GJO, and the convergence curve of those
algorithms.

1) SCORING METRIC OF GJO-JOS COMPARED TO SIX
SINGLE VARIANTS OF OPPOSITIONS AND GJO
Table 2 and Table 3 show the experimental results from the
calculation outcome of the scoring metric on SE and SR,
respectively. The SE values are represented in Table 2 as type
of problem size and are calculated from Eq. (7). The total SR
is a calculation result from Eq. (8).

In both tables, the result values (SE and SR) are shown in
problem sizes of 10, 30, 50, and 100 dimensions. The total
score is presented as the conclusion of each algorithm. With
regards to the problem size, Table 2 presents a summation
of mean best fitness in all benchmark functions CEC 2017 of
each algorithm, each of which is then multiplied by its weight
as a result of the total score according to the aforementioned
scoring metric formula (Eq. 9, 10, and 11). The results in
Table 2 clearly show that SE on GJO-JOS in 10D, 30D, 50D,
and 100D have the lowest scores of 7.20E+05, 1.54E+07,
7.10E+07, and 2.96E+08, respectively. Moreover, we can
see three trends based on the total scores of SE. Those
trends are high, middle, and low values. The low scores of
GJO-SLO, GJO-SO, GJO-Generalized, and the original GJO
are 0.0904, 0.0756, 0.9202, and 0.0747, respectively. The
middle scores of GJO-DO, GJO-Quasi, and GJO-Reflection
are 17.5759, 15.3323, and 16.5037, respectively. GJO-JOS
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reaches a high trend with a total score of 50. Therefore, GJO-
JOS on SE produces a promising score compared to GJOwith
other variant oppositions and the original GJO.

Furthermore, the problem size of SR in Table 3 shows the
rank summation among its competitors. The best rank score
of an algorithm among its competitors is valued as 1. The
maximum rank is based on the total number of the compared
algorithms. Among the comparison, the GJO-JOS produced
the lowest rank value in 10D, 30D, 50D, and 100D with
values 45, 31, 30, and 30, respectively.Moreover, GJO-JOS in
SR also achieved the highest value of the SR total score (50).
The highest score was achieved by GJO-DOwith a total score
of 19.1986. Next was GJO-Reflection with a total score of
SR 15.4031, which was just slightly above GJO-Quasi with
a score of 15.0281. GJO-SLO achieved a score of 10.9407,
which was slightly above GJO-Generalized with a total score
of 10.8373. Although the original GJO has the lowest total
score in SR with 7.5035, GJO-SO is only slightly higher with
a score of 7.6942.

2) STATISTICAL ANALYSIS OF GJO-JOS COMPARED TO SIX
SINGLE VARIANTS OF OPPOSITIONS AND GJO
This section exhibits the effectiveness of GJO-JOS among six
existing single variants of oppositions embedded on GJO and
the original version of GJO [48] on 10, 30, 50, and 100 dimen-
sions (D) on the 29 benchmark functions of CEC 2017.
The opposition variants were Dynamic Opposite (DO) [34],
Selective Leading Opposition (SLO) [47], Selective Oppo-
sition (SO) [33], Quasi Opposition (Q) [29], Generalized
Opposition (G) [59] and Reflection Opposition (R) [30]. The
29 benchmark functions were classified into four categories:
unimodal, simple multimodal, hybrid, and composition. The
effectivenesses of GJO-JOS and its competitors were mea-
sured by statistical analysis (mean and standard deviation)
based on the best fitness as seen in Tables 4, 5, 6, and 7.
The boldface indicates the best result based on the mean
best fitness. The italic presents the tied results among the
competitors; however, the results of standard deviations (std)
that are informed along the mean values are varied.

In all dimensions and in all categories of the benchmark
functions, GJO-JOS among six existing single variants of
oppositions embedded on GJO and the original version of
GJO obtained promising experimental results. For unimodal
functions (f1, f3) in all dimensions, GJO-JOS produced a
better fitness value compared to other competitors. For sim-
ple multimodal functions (f4 − f10) in 10 dimensions, GJO-
JOS only achieved better results in f7 and f9. For the other
benchmark functions of simple multimodal, GJO-JOS expe-
rienced a tie withGJO-DO (3 benchmark functions f7, f8, f10),
GJO-SLO (3 benchmark functions f7, f8, f10), and GJO-R
(3 benchmark functions f4, f8, f10). Therefore, in simple mul-
timodal 10Dmostly tied in f8 and f10. Nevertheless, GJO-JOS
did not experience any losses compared to all of the other
competitors in simple multimodal 10D. In simple multimodal
with higher dimensions (30, 50 and 100), GJO-JOS only

tied with GJO-DO on the 50D in the benchmark function
f10 (8.2E+03) and only lost to GJO-SLO on 100D in f9
(4.4E+04). For hybrid functions on 10D, GJO-JOS mostly
experienced wins and ties compared with its competitors. The
ties of GJO-JOS on 10D occurred on f11 with GJO-DO, GJO-
Q, and GJO-R with a score of 1.2E+03, f13 with GJO-Q, and
GJO-R with a score of 1.1E+04, f15 with GJO-SLO with a
score of 1.5E+03, and f20 with GJO-DO, GJO-SLO, GJO-
SO, GJO-Q, GJO-R and the original GJO with a score of
2.1E+03. However, GJO-JOS experienced a slight loss to
GJO-SLO on f16 (1.7E+03) and GJO-G on f18 (2.9E+04).

We also discovered losses in 30D for the hybrid function
GJO-JOS with GJO-DO in f13 (8.6E+04) and f15 (2.7E+04).
The other benchmark functions, GJO-JOSwon. On the higher
dimensions (50 and 100) in the hybrid functions, GJO-JOS
showed superiority among its competitors without any ties
or losses. In the higher dimensions (50 and 100) on the
composition functions, GJO-JOS exhibited dominancy, how-
ever, GJO-JOS tied with GJO-DO in only one function f24
(3.1E+03). In the 10D and 30D of the composition functions,
GJO-JOS achieved wins and ties with the other competitors.

3) CONVERGENCE CURVE OF GJO-JOS COMPARED TO SIX
SINGLE VARIANTS OF OPPOSITIONS AND GJO
The sufficiency of GJO-JOS with six variants of oppositions
and GJO is also measured by the convergence curve. The
convergence curve is the visualization of the mean best fit-
ness of an algorithm over the generations [17]. In this case,
the progress of the convergence curve is analyzed with the
benchmark functions CEC 2017. The convergence of GJO-
JOS and its competitors should reach the global optimum and
should be able to avoid premature convergence, which would
not leave it trapped in the local optima.

The convergence curves of GJO-JOS and GJO with six
variants of oppositions and GJO are plotted based on the
mean best fitness on the y-axis and the number of function
evaluations on the x-axis as seen in Tables 8 and 9. The lower
the mean best fitness, the better the algorithm. The GJO-JOS
is presented in a bold diamond line at the very bottom of
each graph and the original GJO is presented with a bold
arrow. The convergences are displayed in four categories of
the benchmark functions of CEC 2017 on 10, 30, 50, and
100 dimensions. We selected one function for each category
of benchmark functions: unimodal (f1), simple multimodal
(f6), hybrid (f16), and composition (f24).

For the unimodal benchmark function f1 in 10D, GJO-JOS
is in close competition with the other algorithms. In order to
observe this more closely we zoomed in on the tight line at
9× 104 to get a better view of the GJO-JOS competitiveness
with its competitors. As further proof, the harder the problem
(30, 50, and 100 dimensions), the better the result of the
convergence curve of GJO-JOS among its competitors.

In the case of the simple multimodal on the bench-
mark function f6 in 10, 30, and 50 dimensions, GJO-JOS
showed dominancy among its competitors. However, in 100D
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TABLE 4. GJO-JOS compared to six variant oppositions and GJO (tested on 10 dimensions, CEC 2017).

fierce competition occurred among all algorithms then we
tried to zoom in on. Based on the zoomed in on line at
(9− 10) × 104, the GJO-JOS is able to compete with the
original GJO, however, GJO-JOS did not reach the lowest
score. At 100D, only GJO-SLO came slightly lower than the
GJO-JOS.

For the hybrid on the benchmark function f16 in 10D,
the GJO-JOS line was located just below the GJO. Under-
neath GJO-JOS, there are three algorithms (GJO-R in purple,
GJO-G in light brown and the lowest GJO-SLO in light
blue). However, the line representation of all algorithms
in 30, 50, and 100 dimensions seems to converge in one
place.

On 30D, when we zoom in on those lines, the mean best
fitness of GJO-JOS is able to reach lower than the original
GJO. However, the GJO-Q position is just slightly under the
mean best fitness of GJO-JOS. Zooming in to 9 × 104 on
50D, GJO-Q with the other two algorithms, GJO-G and GJO-
SO, also have lower mean best fitness compared to GJO-
JOS. However, the zoom in at 9 × 104 on 50D, GJO-JOS
managed to achieve the lowest mean best fitness among its
competitors.

The composition of the benchmark function f24 in 10D
shows very clearly that GJO-JOS produced the lowest mean
best fitness among its competitors in all dimensions (10, 30,
50, and 100 dimensions).

C. GJO-JOS COMPARED WITH SEVEN VARIANT
NATURE-INSPIRED ALGORITHMS AND GJO
The experimental evaluation discussions of GJO-JOS with
seven variant nature-inspired algorithms (Wild Horse Opti-
mization (WHO) [60], Aquila Optimization (AO) [61], Arti-
ficial Bee Colony (ABC) [62], Harris Hawk Optimization
(HHO) [63], Atomic Orbital Search (AOS) [64], Archimedes
Optimization Algorithm (AOA) [65], and Neural Network
Algorithm with Reinforcement Learning (RLNNA) [66]) and
original GJO are explained in detail as follows.

The first sub-section describes the performance of GJO-
JOS with seven variant nature-inspired algorithms and GJO
using a scoring metric. The second sub-section elucidates the
statistical analysis of GJO-JOS with seven variant nature-
inspired algorithms and GJO using mean and standard devi-
ation (std). The third sub-section discusses the convergence
ability of GJO-JOS with seven variant nature-inspired algo-
rithms and GJO based on the mean best fitness and number
of function evaluations.

1) SCORING METRIC GJO-JOS WITH SEVEN VARIANT
ALGORITHMS AND ORIGINAL GJO
Figure 9 and Figure 10 show the total score of the scoring
metric of GJO-JOS with seven variant algorithms and the
original GJO based on the sum of error (SE) and the sum of
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TABLE 5. GJO-JOS compared to six variant oppositions and GJO (tested on 30 dimensions, CEC 2017).

rank (SR), respectively, present in Eq. (7) and Eq. (8). The
patterned brick on the very left and right side in both figures
shows the proposed GJO-JOS and the original GJO. The solid
bricks that are shown between GJO-JOS and GJO are the
competitor algorithms that were used to validate GJO-JOS
performance.

The arrow pointing up represents the score value of SE
and SR. The higher the score the better the performance. The
scores presented at the top of the bricks are the achievement
scores for each algorithm in SE and SR. Both figures confirm
that JOS on GJO does enhance the performance of GJO.

In Figure 9, the SE score on the total score of GJO-JOS
(47.69) shows a huge improvement compared with the origi-
nal GJO (0.07). We determined, from the SE based on GJO-
JOS and its competitors, that there were three trends: low,
mid, and high. The lower scores are on AOA, RLNNA, and
GJO with values of 0.54, 0.08, and 0.07, respectively. The
middle scores of 27.90 and 18.48 are achieved by HHO and
AOS. The higher scores obtained by GJO-JOS (47.69), WHO
(44.04), AO (46.96), and ABC (50). This demonstrates that
these algorithms can produce considerable results of mean
best fitness values.

Figure 10 shows the SR scores with GJO-JOS achieving
the highest score at 50. The original GJO, however, reached
a score of 15.43, which is slightly under the RLNNA (16.14).
Therefore, the occurrence of the gap between GJO-JOS and

FIGURE 9. Scoring Metric Result Sum of Error (SE) GJO-JOS and its
competitors.

the original GJO is not as significant as in SE (Figure 9).
Interestingly, the SR score values of AO, ABC, HHO, AOS,
AOA, RLNNA, and GJO are all quite close with score val-
ues of 26.45, 18.03, 18.97, 19.10, 23.53, 16.14, and 15.43,
respectively.

We did, however, notice discrepancies in the algorithms
based on SE and SR. On the SE scores, we saw three trends
but only two trends on the SR, low and high. SR is the scoring
summation of the comparison scoring on each algorithm.
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TABLE 6. GJO-JOS compared to six variant oppositions and GJO (tested on 50 dimensions, CEC 2017).

FIGURE 10. Scoring Metric Result Sum of Rank (SR) GJO-JOS and its
competitors.

The lower scores of SR were acquired on AO, ABC, HHO,
AOS, AOA, RLNNA, and GJO with scores of 26.45, 18.03,
18.97, 19.10, 23.53, 16.14, and 15.43, respectively. The high
scores were achieved by GJO-JOS (50) and WHO (46.50).
Although GJO-JOS at SE did not reach the highest score of
50 among its competitors, GJO-JOS still gained a promising
total score (97.69) for SE and SR, as denoted in Eq. (11).

2) STATISTICAL ANALYSIS OF GJO-JOS WITH SEVEN
VARIANT ALGORITHMS AND THE ORIGINAL GJO
This section presents the statistical analysis of GJO-JOS
with seven variant algorithms (WHO, AO, ABC, HHO,

AOS, AOA, and RLNNA) and the original GJO. The rep-
resentation of the statistical analysis is presented in the
same way as the previous sub-section, which evaluated the
algorithms based on the mean and standard deviation (std)
of 29 benchmark functions CEC 2017 in 10, 30, 50, and
100 dimensions. The discussions are specified on the four
classifications for the 29 benchmark functions: unimodal,
simple multimodal, hybrid, and composition as shown in
Tables 10, 11, 12, and 13. The best-obtained results are shown
in boldface on those tables and the ties are presented in
italic.

In all dimensions (10, 30, 50, and 100) and in all categories
of the benchmark functions (unimodal, simple multimodal,
hybrid, and composition), GJO-JOS showed dominant result
values to all seven variant algorithms (WHO, AO, ABC,
HHO, AOS, AOA, and RLNNA) and the original GJO.WHO
produced a slight high loss on f1 in 10, 30 and 50 dimensions
with values 3.6E+02, 8.5E+03, and 8.6E+03, respectively.
However, GJO-JOS generated better best fitness for all uni-
modal functions (f1, f3) in all dimensions, compared to AO,
ABC, HHO, AOS, AOA, RLNNA, and GJO.

As shown in Table 10, for unimodal function f3 on 10
dimensions, we discovered several ties for the mean best
fitness of GJO-JOS with WHO, AO, HHO, AOS, and AOA
with a score of 3.0E+02.

For the simple multimodal functions (f4 − f10), GJO-
JOS showed promising results in all dimensions, which is
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TABLE 7. GJO-JOS compared to six variant oppositions and GJO (tested on 100 dimensions, CEC 2017).

TABLE 8. Convergence curve of GJO-JOS vs. six variant oppositions and GJO: unimodal function on f1 and simple multimodal function on f6.

confirmed by the fact that GJO-JOS did not experience
any losses in 30, 50, and 100 dimensions as shown in

Tables 11, 12, and 13. However, in 10D, for the sim-
ple multimodal functions, GJO-JOS only lost out to WHO
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TABLE 9. Convergence curve of GJO-JOS vs. six variant oppositions and GJO: hybrid function on f16 and composition function on f24.

TABLE 10. GJO-JOS compared to seven nature-inspired algorithms and GJO (tested on 10 dimensions, CEC 2017).

(f4, f8, f10) and ABC (f4). On 10D for simple multimodal
functions, GJO-JOS tied with WHO (f5, f6), AO (f5), AOA

(f5), and RLNNA (f5, f6). Table 8 shows that for the
hybrid functions on 10D, GJO-JOS experienced fragility
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TABLE 11. GJO-JOS compared to seven nature-inspired algorithms and GJO (tested on 30 dimensions, CEC 2017).

compared to RLNNA. However, with other competi-
tors, GJO-JOS just experienced ties with WHO (f11, f19),
AO (f11), ABC (f17), AOA (f11, f19, f20), and RLNNA
(f11, f17, f19, f20). In the higher dimensions (30, 50, and
100 dimensions), GJO-JOS dominated its competitors, as
shown in Tables 9-11.

For the composition functions, GJO-JOS experienced
more ties than the unimodal, simple multimodal, and hybrid
functions. However, based on Tables 10-13 it can be seen that
as the dimension size increases the number of ties reduces.
This is confirmed by the result of the 100D score, GJO-JOS
produced a better mean best fitness value compared to its
competitors.

3) CONVERGENCE CURVE OF GJO-JOS COMPARED TO
SEVEN ALGORITHMS AND THE ORIGINAL GJO
The convergence curve of GJO-JOS compared to the seven
variant algorithms and GJO, as shown in Tables 14 and 15,
is similar to the convergence curve of GJO-JOS compared to
the six variants of oppositions and GJO as shown in Tables
8 and 9. We describe the convergence curve of the algorithms
by selecting one of the benchmark functions of CEC 2017 on
each classified function, i.e., unimodal (f1), simple multi-
modal (f6), hybrid (f16), and composition (f24). These selected
benchmark functions are then evaluated on 10, 30, 50, and

100 dimensions. The lines representing each algorithm in the
convergence curve are detailed and explained in the legend.
The lines of GJO-JOS and GJO exhibited differently than the
other algorithms. The aim of this was to see the strength of
the GJO-JOS compared to the original GJO and the other
nature-inspired algorithms. The line of GJO-JOS is presented
in bold diamond and the line of GJO is defined in bold
arrow. The lower line means that the mean of the best fitness
algorithm is better.

In unimodal benchmark function f1 in 10D, GJO-JOS
with the variant nature-inspired algorithms demonstrated
rapid solutions with each other. Therefore, we eluci-
date and zoom out the rapid line around the point of
9 × 104. In this case, the GJO-JOS (with the diamond
line) showed a lower line than the original GJO arrowed
line. GJO-JOS produces better results than the original
GJO.

RLNNA however, displayed between GJO-JOS and GJO
and the others followed the same line as GJO-JOS. This
means that this problem size is convenient for the other algo-
rithms to solve. For confirmation of this, it can be seen that
the competition with GJO-JOS becomes increasingly tough
when the dimensions become higher. However, GJO-JOS still
manages to reach a lower mean best fitness than the original
GJO.

VOLUME 10, 2022 128817



F. Y. Arini et al.: GJO With JOS

TABLE 12. GJO-JOS compared to seven nature-inspired algorithms and GJO (tested on 50 dimensions, CEC 2017).

TABLE 13. GJO-JOS compared to seven nature-inspired algorithms and GJO (tested on 100 dimensions, CEC 2017).

In the simple multimodal benchmark function f6 in 10D,
GJO-JOS fights fiercely with AOA, WHO, and RLNNA.
On 30D, AOA gradually gained a lower mean best fitness

and competed with GJO-JOS. In 30, 50, and 100 dimen-
sions, WHO and RLNNA produced significantly mean the
best fitness below GJO-JOS. Nevertheless, GJO-JOS did not
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TABLE 14. Convergence curve of GJO-JOS vs. seven variant algorithms and GJO: unimodal function on f1 and simple multimodal function on f6.

TABLE 15. Convergence curve of GJO-JOS vs. seven variant algorithms and GJO: hybrid function on f16 and composition function on f24.

lose to the original GJO, the well-known ABC, and the new
promising algorithms such as AO, AOS, HHO, and AOA.
The position of AOS on 50 and 100 dimensions is just under
GJO-JOS.

The benchmark function f16 in all dimensions in hybrid
shows that GJO-JOS performs adequately among its com-
petitors. Finally, the benchmark function f24 in all dimen-
sions of composition shows that WHO came just slightly

below GJO-JOS. However, GJO-JOS still shows promising
mean-best fitness in all dimensions.

V. CONCLUSION AND FUTURE WORK
The philosophy of ‘‘square of opposition’’ by Aristotle
exhibits the logical relationships of four basic categorial
prepositions, namely contrary, contradictory, subcontrary,
and subaltern. These categories successfully portray the
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correlation of logical relationships of the ‘‘square of oppo-
sition’’ and Joint Opposite Selection (JOS). Based on the
‘‘square of opposition’’, the representation of JOS can
define the relationship between Dynamic opposite (DO) and
Selective Leading Opposition (SLO) in the exploration and
exploitation phases, respectively. The relation characteristics
of DO and SLO of JOS show the capability to strengthen each
other in a given search space. From this, we can conclude
that the JOS produces mutual reinforcement in the balance
mechanism.

In the process optimization, JOS succeeds in utilizing
SLO to assist GJO to strike out its prey swiftly. While DO
on JOS enriches the probability of the GJO finding bet-
ter chances to locate the fittest prey. We verified and ana-
lyzed the performance of GJO-JOS based on three different
perspectives. First, GJO-JOS was compared to GJO among
the OBLs embedded in GJO and nature-inspired algorithms
on the hybrid and composition functions of CEC 2017.
Second, GJO-JOS was compared to six OBLs embedded
in GJO (GJO-DO, GJO-SLO, GJO-SO, GJO-Quasi, GJO-
Generalized, and GJO-Reflection). Third, GJO-JOS was
compared to seven nature-inspired optimization algorithms
(i.e., Wild Horse Optimization (WHO), Aquila Optimization
(AO), Artificial Bee Colony (ABC), Harris Hawk Optimiza-
tion (HHO), AtomicOrbital Search (AOS), ArchimedesOpti-
mization Algorithm (AOA), and Neural Network Algorithm
with Reinforcement Learning (RLNNA)) and the original
version of GJO. These perspectives were included in the com-
petition of 29 benchmark functions of CEC 2017. The CEC
2017 consists of four groups of classification benchmark
functions: unimodal, multimodal, hybrid, and composition.

The first perspective shows the gap improvement of
GJO-JOS and GJO among the OBLs embedded in GJO
and nature-inspired algorithms on hybrid and composition
functions of CEC 2017. In the second perspective, GJO-
JOS shows consistent dominancy among the OBLs and GJO,
which was determined using a scoring metric, mean and stan-
dard deviation, and convergence rates on 10D, 30D, 50D, and
100D. The determination in the second perspective was also
utilized in the third perspective. Based on this determination,
GJO-JOS competed fiercely with the original version of GJO
and seven nature-inspired optimization algorithms. There-
fore, based on those three perspectives, GJO-JOS exhibited
a strong performance in improving the original version of
GJO. The obtained results of GJO-JOS on the benchmark
functions compared to six single OBL embedded on GJO,
seven nature-inspired algorithms, and the original version of
GJO demonstrated a promising result, especially in higher
dimensions. Therefore, GJO-JOS can be considered to be a
promising metaheuristic optimization algorithm.

Despite the usefulness of an algorithm for solving single-
objective problems, scientific reviews [44], [67], [68], [69],
have affirmed that there are limitations in the metaheuristic,
meaning that there are no guarantees for finding an optimal
global solution or the final solution even if sufficient diversity

occurs. However, there are situations where GJO-JOS could
be employed, i.e., it can be applied in a scenario with millions
of different variables. The estimated time of GJO-JOS for
solving this problem immediately requires a learning pro-
cess for optimization, such as the knowledge transfer tech-
nique [70], [71]. Using this method, the computational time
can be shortened. Additionally, the management of massive
data storage with millions of different variables [72] can
be applied with distributed data and distributed processing.
In the case of clustering, Tripathi et al. [73] partitioned a large
dataset into small-scale input and then parallelized the fitness
computation using the Map-Reduce mapper function.

For further future work, GJO-JOS could be applied to
real-world problems. Scientific proofs have affirmed that
opposition-based learning can solve real-world issues. For
example, Swamy et al. [74] utilized an opposition-enhancing
genetic algorithm that integrates with Cauchy mutation
to minimize the cost of wind power plants. Kamau et al.
[75] used opposition to improve chaotic elephant herd-
ing optimization for accelerating the MLP prediction rate,
and Jiang et al. [76] showed the effectiveness of opposition
embedded in the seagull optimization algorithm for classifi-
cation achievement.

APPENDIX OF VARIABLES/PARAMETERS,
DESCRIPTIONS, AND SIZES
Appendix A presents the nomenclature of GJO, Appendix B
presents the nomenclature of DO, and Appendix C presents
the nomenclature of SLO.

APPENDIX A
GJO’s VARIABLE/PARAMETER, DESCRIPTION, AND SIZE
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APPENDIX B
DO’s VARIABLE/PARAMETER, DESCRIPTION, AND SIZE

APPENDIX C
SLO’s VARIABLE/PARAMETER, DESCRIPTION, AND SIZE
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