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ABSTRACT This paper presents the logical relationships of Aristotle’s square of opposition on four basic
categorial prepositions (i.e., contrary, contradictory, subcontrary, and subaltern) of Joint Opposite Selection
(JOS). JOS brings a mutual reinforcement by a joint of the two opposition strategies Dynamic Opposite (DO)
and Selective Leading Opposition (SLO). The DO and SLO improve the balance of exploration and
exploitation, respectively, in a given search space. We also propose an enhancement of Golden Jackal
Optimization (GJO) with a Joint Opposite Selection named GJO-JOS. In the optimization process, JOS
assists GJO in assaulting the prey swiftly using SLO. DO assists GJO in finding better chances to locate
the fittest prey. With JOS, the GJO succeeds in elevating its performance. We evaluated the performance of
GJO-JOS on the CEC 2017 benchmark functions. The benchmark includes unimodal, multimodal, hybrid,
and composition functions. The evaluation results of GJO-JOS were better than GJO using each of the
seven single opposition-based learning strategies (OBLs). We also compared GJO-JOS to eight nature-
inspired algorithms including the original version of GJO. GJO-JOS produced promising results among
seven single OBLs, eight nature-inspired algorithms, and GJO. The experimental results confirmed that
GJO-JOS effectively generated equilibrium in the balance mechanism.

INDEX TERMS Joint opposite selection, nature-inspired optimization algorithm, opposition-based learning,
unconstraint optimization problem.

I. INTRODUCTION

Nature-inspired optimization algorithms imitate natural
behavior and phenomena to produce effective solutions [1],
e.g., the Ebola optimization search algorithm [2], the African
vultures optimization algorithm [3], the Pelican optimiza-
tion algorithm [4], and the Reptile search algorithm [5].
The more notable abilities of the enhanced nature-inspired
optimization algorithms are their abilities to solve essen-
tial issues or enhance existing solutions. Examples of
these abilities include the economics of combined heat and
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power emissions, which can be solved by applying multi-
objective optimization to decision-making [6], effective fea-
ture selection on cancer datasets is achieved by utilizing
Spark Distributed PSO [7], and the balance of convergence
and diversity on many-objective PSO is accomplished by
employing a hybrid leader selection strategy [8]. Moreover,
other techniques can be used to improve nature-inspired opti-
mization algorithms, e.g., gradient-based [9], chaotic [10],
quantum [11], and opposition-based learning (OBL) [12].
Many researchers recommend OBL as a learning tech-
nique that can improve the performance of an optimization
algorithm in a competition [13]. Tizhoosh [14] proposed the
opposition-based learning (OBL) technique on the basis of
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Aristotle’s theory of opposition. The philosophy of Aristo-
tle’s square of opposition introduced in the fourth century
has attracted the interest of many scientists. Some of them
have reviewed this philosophy in depth. Parsons reviewed the
historical aspects of the logical relationship of the Square of
Opposition [15], [16]. Béziau et al. [17] described the square
of opposition as ““a cornerstone of thought”. Bernhard [18]
exhibited deep insight into the relationships within the logical
diagram of the square of opposition. Other scientists have
explored how the principles of the square of opposition can
be found in nature as the basic theory of the philosophy of
science. In mathematics, Smessaert et al. [19] introduced new
logical geometries based on the Aristotelian logic diagram.
In physics, Arenhart et al. [20] utilized the square of opposi-
tion to describe the potential state of quantum superposition.

Moreover, the utilization of OBL embedded in the slime
mould algorithm combined with k-nearest neighbor (kNN)
effectively elevates its exploration ability for solving feature
selection in medical classification [21], the Jaya algorithm is
enhanced when using adaptive OBL, which integrates more
than one opposition [22], the moth flame optimization is
improved with quasi opposition based learning for solving
the path planning of a mobile robot [23], and the tunicate
swarm algorithm performance is increased to optimize solar
cell power systems [24].

Rahnamayan et al. [25] highlighted that opposite numbers
produced a higher probability of obtaining better fit compared
to pure random numbers. Supporting evidence from scientific
reviews also confirmed that the opposition strategy produced
promising results [26], [27], [28]. It is for these reasons
that many scientists have tried to improve, extend, or merge
the opposition strategy. The examples are exhibited as fol-
lows. Rahnamayan et al. [29] proposed Quasi-Opposition
Based Learning (QOBL), which produces higher chances
of being close to the solution by utilizing a jumping rate
and calculating the middle of opposite points. Ergezer et al.
[30] launched quasi-reflection, which increases the success
rate of BBO with less fitness computation. Rahnamayan
et al. [31] initialized a random opposite point between the
center and boundary named centroid opposition. Hu et al.
[32] estimated partial opposite populations simultaneously
as an effort to produce a better solution. Dhargupta et al.
[33] applied selective opposition by selecting the far away
dimensions that produce a fast convergence rate and improve
the exploitation ability. Xu et al. [34] merged the quasi-
opposition and quasi-reflection to enrich the diversity with
its asymmetric search behavior and enhance the exploration
ability named dynamic opposite (DO). These examples are
improvements of OBL and are still recognized as a single
opposition strategy. A single opposition strategy means the
opposition strategy will only perform once in every gen-
eration. As a result, the improved optimization algorithm
using a single opposition strategy can only enrich either the
exploration ability or the exploitation ability.

Those single opposition ideas also generate promising
results for solving real-world problems. The approach of
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Quasi-Opposition Differential Evolution (QODE) is able
to reduce grid congestion on reactive power dispatch by
minimizing the loss of active power, accelerating the pro-
file of the voltage, and improving the stability of the volt-
age [35]. An improved firefly optimization algorithm with
quasi-reflection can tackle the scheduling of the work-
flow cloud-edge environment and satisfy real-time require-
ments [36]. Generalized opposition on the quantum salp
swarm algorithm effectively approximates the accuracy of
quantile function on Nakagami-m [37]. Centroid opposi-
tion integrated with multiple strategies embedded on the
salp swarm algorithm can reduce the probability of the fail-
ure of the design system of reliability optimization [38].
An improved grey wolf optimizer with selective opposition
shows efficiency in estimating the model parameters of pro-
ton exchange membrane fuel cells of a 250W stack [39].
The dynamic opposite generates mutual learning which is
integrated with the mutation strategy for solving multi-task
optimization problems [40].

Gonzales [41] affirmed that maintaining the equilibrium of
exploration and exploitation in the search space is essential to
the main optimization process. There is no exact formula and
calculation to define the balance of exploration and exploita-
tion in the search space of the nature mimicking of nature-
inspired algorithms [42], [43], [44]. Moreover, Wolpert et al.
[45] emphasized that no algorithm can solve all optimization
problems. Then, Wang et al. [46] questioned whether two
oppositions are better than one.

As mentioned earlier, Aristotle claimed that there is a
logical relation between the contrary ability that defines the
square of opposition. In a given search space of optimiza-
tion, exploration is contrary to exploitation. As mentioned
in the literature, among variations of single opposition ideas,
dynamic opposite (DO) conquers the exploration phase [34]
and selective opposition (SO) enriches the exploitation phase
[33]. However, SO, which employs the far away dimensions,
still experiences premature convergence [33], which leads
to a trap in the local optima. Therefore, Arini et al. [47]
proposed an improved SO named Selective Leading Oppo-
sition (SLO) and DO. SLO selects the close-distance dimen-
sions to improve the enrichment of exploitation. Meanwhile,
DO [34] supports the diversity at the exploration and helps
the search process to escape from being trapped at the local
optima by moving to the center and opposite position and to
the center position and current position.

Based on Aristotle’s doctrine, we can correlate that DO is
a sub-part of exploration, SLO is a sub-part of exploitation,
and DO is sub-contrary to SLO. The opposed action of explo-
ration and exploitation according to Gonzales [41] strengthen
each other. Therefore, the joint of DO and SLO produces
equilibrium of the mutual reinforcement and is named Joint
Opposite Selection (JOS) [47].

In this paper, we employ JOS to enhance the Golden Jackal
Optimization (GJO). GJO mimics the golden jackal’s collab-
orative hunting behavior, which consists of three phases: prey
searching, enclosing, and pouncing [48], and also shows the
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efficacy in the applications [49], [50]. JOS assists the GJO
by attacking the prey expeditiously using SLO. The SLO
utilizes the existing linear decrement operator from the orig-
inal version of GJO to apply its strategy. DO contributes to
enriching the diversification of GJO in finding other potential
prey locations.

In the process of optimization, GJO requires exploration
and exploitation. Based on the experimental results of [51]
on 23 benchmark functions, GJO offers very decent results
[48]. Nevertheless, there is no supporting evidence that GJO
can conquer other benchmark problems such as CEC 2017.
We conducted an experiment on CEC 2017 and found that
GJO did not perform sufficiently, when compared to the other
nature-inspired optimization algorithms. Therefore, we uti-
lized the strength of JOS in balancing the exploration and
exploitation to improve the capability of GJO performance
in the phases of exploration and exploitation.

The performance of JOS embedded in GJO (GJO-JOS),
was compared with other opposition strategies embedded in
GJO, such as Dynamic Opposite (DO), Reflection (R), Quasi-
opposition (QO), Generalized Opposition (GO), Selective
Opposition (SO) and Selective Leading Opposition (SLO).
It should be noted that we did the experiment on GJO
with those OBLs to confirm the performance of GJO-
JOS among the opposition-based strategies. The perfor-
mance of GJO-JOS is also compared to eight nature-inspired
algorithms, i.e., Wild Horse Optimization (WHO), Aquila
Optimization (AO), Artificial Bee Colony (ABC), Harris
Hawk Optimization (HHO), Atomic Orbital Search (AOS),
Archimedes Optimization Algorithm (AOA), Reinforcement
Learning Neural Network Algorithm (RLNNA), and the orig-
inal version of Golden Jackal Optimization (GJO). The com-
parison of GJO-JOS versus GJO with the OBLs and GJO-JOS
versus nature-inspired algorithms are included in a collec-
tion competition of 29 benchmark functions of CEC 2017.
The main contributions of our research are highlighted as
follows:

« The philosophy of Aristotle’s square opposition exhibits
the mutual reinforcement of the opposed action
Dynamic Opposite (DO) and Selective Leading Oppo-
sition SLO) of Joint Opposite Selection (JOS) in explo-
ration and exploitation, respectively.

« The jumping rate adjustment of DO accelerates the
diversity of GJO-JOS in the exploration phase.

» The existence of the GJO linear decrement operator is
used by SLO as the threshold influencing the scheduling
behavior on GJO-JOS to accelerate its performance in
the exploitation phase.

« GJO-JOS is proposed to boost the optimization process
of mimicking the collaborative hunting’s performance of
golden jackal (GJO).

» The effectiveness of GJO-JOS is demonstrated in a com-
petition of 29 benchmark functions CEC 2017 and is
evaluated using the statistical analysis; Wilcoxon sign
rank test, scoring metric, and convergence curve. GJO-
JOS is also compared to seven single opposition learning
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techniques embedded in GJO and eight nature-inspired

optimization algorithms.
This paper is structured as follows. Section II presents the
philosophy of Aristotle on Joint Opposite Selection and a
review of the Golden Jackal Optimization. Section III briefly
discusses the proposed GJO-JOS. Section IV discusses the
setup of experiments and the analysis of experimental results.
Section V provides conclusions and future work.

Il. RELATED WORK

In the first sub-section, we elaborate on the philosophy of
Joint Opposite Selection (JOS), which is followed by a brief
discussion of the Golden Jackal Optimization (GJO).

A. THE PHILOSOPHY OF JOINT OPPOSITE SELECTION
(Jos)

The philosophy of JOS adopts the theory of square of opposi-
tion [15]. The theory of square of opposition was defined by
Aristotle in the fourth century BC [15]. The representation
of the square opposition is illustrated in Figure 1(a) with four
corner propositions. These four corners are A, E, I, and O with
each letter corresponding to a universal affirmative; (every S
is P), universal negative (no S is P), particular affirmatives
(some S is P), and particular negative (some S is not P),
respectively.

Every Sis P NoSis P

subaltern contradictory subaltern

subcontrary

Some S is P Some S is not P

(2)

Exploitation

contradictory

|

|

|

|

|

|

|

subaltern |
|

|

|

|

subcontrary |
|

|

|
|
|
|
|
|
|
| subaltern
|
|
|
|
|
|
|

FIGURE 1. (a) The square of opposition in Aristotle’s philosophy and
(b) the philosophy of JOS based on Aristotle’s square of opposition.

An affirmative statement and its negation produce a con-
tradiction condition. For example, A is contrary to E, A is
contradictory to O, and E is contradictory to I. I is subaltern
to A, O is subaltern to E and I is subcontrary to O. The
contrary indicates both of the statements cannot be true but
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FIGURE 2. The emergence balancing mechanism of JOS.

both statements can be false. The contradictory presents that
both statements cannot be true and also cannot be false. The
subcontrary shows that both statements can be true, but both
statements cannot be false. The subaltern exhibits a condition
that if the global statement is true, the specific statement must
be true. The subaltern is a particular statement of the global
statement.

Based on the contradictory concept of the square of oppo-
sition, the philosophy of JOS can be presented as shown
in Figure 1(b). In a given search space, Figure 1(b) shows
that the exploration is contrary to exploitation, exploration
is contradictory to SLO, exploitation is contradictory to DO,
DO is subcontrary to SLO, DO is subaltern to exploration,
and SLO is subaltern to exploitation.

As mentioned earlier, Gonzales [41] affirms that the
opposed action of exploration and exploitation strengthen
each other, which produces a balancing mechanism. The
emergence of the balanced mechanism of JOS is described in
Figure 2. It starts with the basic theory of Opposition Based
Learning (OBL), which contains the opposition function
X = LB + UB — X. The basics of opposition function are
variously improved with many ideas. OBL with merging the
center position and opposite position with the center position
and current position named Dynamic Opposite (DO). Mean-
while, OBL utilizes the linear decrement operator, selects
and counts the close distance dimensions, then analyzes their
association by using Spearman’s Rank Coefficient named
Selective Leading Opposition (SLO). These two improved
OBLs (DO and SLO) are single opposition functions. In the
given search space, as exhibited in Figure 2, DO supports
the exploration phase and SLO supports the exploitation
phase. When the DO and SLO are joined then the balanced
mechanism is required. Therefore, the joint of DO and SLO
is named Joint Opposite Selection (JOS).

JOS in the workflow of GJO is shown in Figure 3. This
shows that DO on JOS in the workflow of GJO occurs in two
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parts: initialization and generation. Meanwhile, SLO on JOS
occurs on each generation of the GJO workflow by setting
its boundary and linear decrement energy of the prey Ejy; =
1.5 x (1 —t/T). A detailed explanation of the occurrence of
JOS (the joint DO and SLO) is given in Algorithm 1.

For further details, the steps process of SLO is described in
Algorithm 2. The SLO can be applied by setting the popula-
tion size NP, dimension D, iteration ¢, and maximum iteration
T, as inputs and setting the linear decrement as the threshold.
The SLO will check on the position of each population. If the
current position of an individual X} is not equal to the best
position of an individual Xjpes; then SLO will measure the
difference distance dd,,, on each dimension based on the best
position of the dimension Xypes;,m and the current position
of the dimension X ,,. If the dd,, is less than the threshold
then they are identified as close distance dimensions D, and
are counted. However, if the dd,, is greater than the threshold
then identify the far away distance dimension Dy and count
them. Then, measure the associativity of the current posi-
tion and the best position with the Spearman’s Correlation
Coefficient (src).

If the src is less than zero and the number of close dimen-
sions (D) is greater than the number of far away dimen-
sions then the opposition strategy of SLO will occur. The
computational complexity of SLO [47] is ONP x T x D.)
where N is presented as the number of search agents, T is the
maximum number of iterations and D, is the number of close
dimensions.

Meanwhile, the detailed steps of DO are exhibited in
Algorithm 3 on stage 1 and stage 2, respectively. In the
population initialization stage, the DO occurs after the initial
population (See line number 2-5). Line 2 sets the opposition-
based learning (OBL) strategy (X Op) by utilizing the initial
position X within the range of lower boundary LB and upper
boundary UB. In line 3, the OBL moves with a random num-
ber that produces the reflection opposition position (X OR).
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FIGURE 3. The workflow of GJO-JOS.

With the influence of the random number, the initial position
X approaches the reflection opposition position ()f;R) and
at the same time this approach moves away from the initial
position X. This move is named the dynamic opposite (X po).
Before the start of the process generation, the dynamic oppo-
site position (X Do) is set as the initial position as stated in
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Algorithm 1 GJO-JOS
1: Generate initial random population of X jscxas

2: Produce initial random population of sz;o based on X juckar
//Algoritm 2 Stage 1

3: Xjackal <~ Xpo //Assign Xpo to Xjackal
4: nFE=0,t =0, T = max_iteration

5: while nFE < maxFE do

6: Checked Boundary X juckar

7; Evaluate Fitness values of X jucxal

8: Update nFE

9: Update Position of X j4ckar

10: Set selective boundary for SLO

11: Set Ej; = 1.5 x (1 — t/T) as threshold for SLO

/ISLO Threshold
12: Perform SLO  //Algorithm 1
13: for each pair jackals do

14: Eo =2 x rand — 1 //nitial Prey Energy

15: E, =Ej; x Ey //Prey Evading Energy

16: if £, > 1 then //Exploration

17: Update the position X dan X ¢
//Eq. (2) and Eq. (3)

18: else //if E, < 1 then //Exploitation

19: Update the position X, dan X ¢

//Eq. (5) and Eq. (6)
20: end if
21: end for
22: if rand < Jr

23: Perform DO position (XADJO)
/[Algorithm 2 Stage 2
24: Xjackal <~ Xpo //Assign Xpo to Xjackal
25: end
26: t=t+1
27: end

stage 1 line 5. In each of the generations at stage 2, the DO
will proceed with the same process as in stage 1, with the
condition that the random number is less than the Jumping
rate Jr. The suitable Jr for DO on JOS is 0.25 [47]. The
computational complexity of DO is O(NP x Jr x T x D)
where NP is presented as the number of search agents, Jr is
the jumping rate, 7' is the maximum number of iterations and
D is the number of dimensions.

B. GOLDEN JACKAL OPTIMIZATION

GJO is proposed by Chopra et al. [48]. GJO is inspired by the
pair (male and female) bond-hunting behavior of golden jack-
als in nature. The bond of a pair of golden jackals is shown
by their choral howling. The howling of the golden jackal
is considered as some kind of engagement [52]. With their
choral howl, golden jackals inform others of their position
and communicate with those others to locate their prey [53].
For foraging, golden jackals utilize cooperative foraging,
which allows them to search an available territory of larger
prey [54], [55]. They will move around the prey to ensure
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Algorithm 2 Selective Leading Opposition (SLO)

Input: NP, D, t, T

Ouput: Xp.: new opposition population based on SLO
Set linear decrement as threshold

for k = 1:NP do
if X}, is not equal to Xgpess
for m = 1:D do

ddm = | Xkbest,m - Xk|
if dd,, < threshold
identify D, (close distance dimensions)

R AR o

10: D.=D.+1
11: Else
12: identify Dy (faraway distance dimensions)
13: Dy =Dy +1
14: end if
15: end for
16: sum all dd,, (difference distance)

6 (ddm)2>

m=1

17: srce=1— ddm(dT—l)
18: if src < zero and D, greater than Dy
19: Xpc = LBp: + UBp: — Xpc
20: end if
21: end if

22: end for

Algorithm 3 Dynamic Opposite (DO)
Stage 1 Population Initialization

1: Initialize search agents’ position X
2: X Xop = LB + UB X

3: XOR randxXOR ~
4: XDO_X~|—rand><(XD0—X)
5: X(—XDO

Stage 2 Population Generation utilizes Jr
6: while nFE < maxFE do
7: if rand < Jr

8: Xop=LB+UB—X

9: X%zrandxXOR ~

10: XDO=X—|—randx(X0R—X)
11: X <« X/EO

12: end if

13: end while

and prepare for their assault, then they encircle the prey until
it cannot escape. Finally, if escape seems hopeless, they will
attack the prey. This foraging hunting behavior of golden
jackals is then formulated into a mathematical formula. First,
the population of golden jackals in the search space is defined
in Eq. (1)

Xo = LB+ rand x (UB — LB) @))

where UB is the upper boundary and LB is the lower boundary
in the search space with rand as arandom number in the range
of [0, 1]. The phases of mimicking the hunting behavior of
golden jackals in the optimization are exhibited in the phase
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of exploration, exploitation, and transition from exploration
and exploitation.

In the phase of exploration, golden jackals in nature seek
and track their prey. However, sometimes the prey cannot
consistently be spotted in a certain place and can easily be
lost. The strength of the prey energy is presented as Evading
Energy E,. When |E,| is greater than 1 means that the prey
still has enough energy to escape. In this state, the phase of
exploration occurs. At this phase, the hunting action of the
golden jackals preferred the male (X,,4.) as the leader and
the female (X fomate) as adherent, as denoted in Eq. (2) and
Eq. (3) respectively

Xy = Xmate — Ev [Xmate — (0.05 < LFp(B) ® X prey)|
@
(0.05 x LFp(B) ® Xprey)|
€)

where Xy is the prey vector position with the influence
of a constant value of 0.05 and the Lévy flights LFp(B),
as formulated in Eq. (4), approach the X4, and X fepmqe as
denoted in Eq. (2) and Eq. (3) sequentially. Note that ® is the
element-wise multiplication. The move of X 4. and X femase
are controlled by the prey Evading Energy E, = Ejy x Ey. Ejg
shows the prey decrement energy. Ejg = 1.5 x (1 — &) linear
decreases from 1.5 to zero during the generation. Mean-
while, Ey is defined as the prey’s initial energy. Ey is equal
to 2 x rand — 1 with rand being within [0, 1]. Therefore,
Xy and X indicate the male and female updated position
toward the prey in the phase of exploration.

Mantegna [56] affirms that Lévy flights, as denoted in
Eq. (4), contain random numbers up and vp as the results of
a normal distribution with standard deviations of up is o and
vp is 1. The parameter B of Lévy flights is 1.5. The dimension
of the Lévy flights vector is represented as D.

Xr = Xfemale —E, |Xfemale -

I' (148) xsin (Tﬂ)

r (#) X B x (ﬁT)
“)

In the phase of exploitation, the pair of golden jackals
enclose the prey and then chase them. Undoubtedly the Evad-
ing Energy E, of the prey becomes weak. This state shows
that |Ey| is less than 1 and that the exploitation occurs. When
the mates of the golden jackals succeed in surrounding the
prey, they will assault the prey until it looks lifeless. This
pair hunting behavior of golden jackals (male (X;,4.) and
female (X femate)) is then formulated in Eq. (5) and Eq. (6)
respectively.

LFD<ﬂ)=<uD'?)v @ =

[vpl|?

Xm = Xmale — Ey ‘(005 X LFp(B) ® Xmale) — Xprey‘
®)
Xr = Xfemale — Ev |(005 X LFp(B) ® Xfemale) - Xprey|
(6)
128805
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where X,y is the prey vector position approach the X ,qe
and Xfmqle as denoted in Eq. (2) and Eq. (3), respectively.
The position of male X 4. and female X fopqse 1s influenced
by the constant value of 0.05, the Lévy flights LFp(8) where
D represents the dimension as formulated in Eq. (4). This is
the main difference of the pair of golden jackals’ movements
in the exploitation phase compared to the exploration phase.
The constant value of 0.05 and the Lévy flights LFp(8) are
utilized to avoid the sluggishness trapped in the local optima.
Nevertheless, in the exploitation phase, the operator of prey
Evading Energy E, performs the in same manner as in the
exploration, by considering the rapid move of the golden
jackal approaching the prey. Note that detailed variables and
parameters are given in the Appendix.

lll. THE PROPOSED GOLDEN JACKAL OPTIMATION (GJO)
WITH JOINT OPPOSITE SELECTION (JOS)

In this paper, a joint of two single oppositions Dynamic
Opposite (DO) [34] and Selection Leading Opposition (SLO)
[47], namely Joint Opposite Selection (JOS) [47], was uti-
lized to improve the performance of the Golden Jackal Opti-
mization [48]. We named the proposed algorithm Golden
Jackal Optimization — Joint Opposite Selection (GJO-JOS).
In the flowchart of optimization, shown in Figure 3, at the
very initialization, the initial jackal position X; is defined
randomly. This generates the initial DO position X po. Then,
the initial DO position X po is assigned to X ;. The following
step then generates the new jackal position based on SLO
and DO. The jackal’s upper and lower boundary is checked
first then the jackal’s fitness is assessed. SLO is applied by
utilizing the linear decrement operator £y = 1.5 x (1 — %)
as a threshold. The new position based on SLO influences the
main optimization. Following the main optimization process,
the DO occurs and is optimized under a proper Jumping Rate
(Jr). This process is terminated when it reaches the maximum
number of function evaluations (maxFE).

The detail optimization process of GJO-JOS is exhibited in
Algorithm 3. The original GJO is described in the black font
and the red font shows the JOS occurring in the GJO, as stated
in Algorithm 3 lines no. 2, 3, 12, 20, 21, and 22. As shown in
line no. 12, the SLO is executed. The SLO utilizes the linear
decrement operator Ejg = 1.5 x (1 — ) as the threshold as
stated in the green font at line no. 11. The action of SLO is
described in detail in Algorithm 1 in Section IIA. The main
optimization process, shown in Figure 3, is shown in detail
in lines 13-21. The position of each pair of jackals is updated
based on the Evading Energy of the prey E,. If E, > 1 then
update X s and X r positions, based on Eq. (2) and Eq. (3).
The phase of this condition is exploration. It means that in
this phase the jackals attempt to trap their prey. However, the
prey could escape from the jackals’ trap because it still has
the energy to escape. If E;, < 1 then update Xj; dan X
positions based on Eq. (5) and Eq. (6). This phase is defined
as exploitation. In this phase, the evading energy E, of the
prey has already decreased and the jackals have managed to
lead the prey into their trap. If all these strategies still do
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not achieve optimally, the DO strategy occurs as defined in
lines 22-25. With DO, the jackal position will be scattered.
This effort is to find a better location for an appropriate prey.
The detailed description of DO is shown in Algorithm 2 in
Section ITA. Figure 4(a) illustrates the linear decrement oper-
ator that is used in GJO and is utilized by the SLO of JOS.
Figure 4(b) delineates the magnitude scheduling behavior of
the prey evading energy E,.

Both figures show the evolution of the value which
decreases from 1.5 to zero, carried out along 1000 iterations.
The evading energy of the prey E, restrains the occurrence of
updates to the golden jackal pair’s position in the phases of
exploration and exploitation. Therefore, we can see that the
linear decrement operator influences the scheduling behavior
of the Evading Energy E, of the prey.

The efficiency of an algorithm can be measured in terms
of computational cost or computational complexity of time
complexity [57]. For GJO, Chopra et al. [48] affirmed that
the computational complexity of GJO consists of the main
two computational complexities. They are initialization and
updating mechanisms. The initialization computational com-
plexity of GJO is O(NP), where NP is the number of jackals.
The updating mechanism computational complexity of GJO
is O(NP x T) + O(NP x T x D), where NP is the number of
jackals, T is the number of maximum iterations, and D is the
dimension of definite problems. The run-time computational
complexity of GJO is ONP x (T + (T x D) + 1)), which
means that the time complexity of GJO grows based on the
NP x T x D.

Arini et al. [47] confirmed that the computational com-
plexity of JOS (SLO and DO) concludes as follows:

O(SLO) = O(NP x T x D),

where NP is the number of jackals, T is the number of
maximum iterations, and D, is represented for close di