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ABSTRACT The control strategies based on the methodology known as Model–based Predictive Control
(MPC) have been developed and widely adopted to control real plants. This is mainly due to their intrinsic
ability to handle constrains and their capacity to predict and optimize the future behavior of the process using
a dynamical model of the plant. On the other hand, the mathematical tool known as fractional calculus has
been currently used for reformulating the predictive control strategies to reach a better performance adding
new control parameters. This work extends the use of fractional operators for the constraints in one type of
fractional predictive control strategy known as Fractional–order Generalized Predictive Control (FGPC),
interpreting and discussing the results. In addition, a new method to soften constraints using fractional
operator is proposed and illustrated with examples, even to adjust the final response of the system. A practical
tuning of the rest of controller parameters with the help of a well–known mathematical software is also
included to make use of the beneficial characteristics of this fractional predictive formulation.

INDEX TERMS Model predictive control, fractional calculus, fractional constraints, optimization.

I. INTRODUCTION
The term MPC (Model Predictive Control) began to be used
in the late of 1970s in works as [1] and [2] where this
control strategy was used mainly within the petrochemical
industry to meet its specialized control needs. These early
works were followed by others both industrial and academic
environments, covering a wide spectrum of applications as
are described in [3], [4], and [5].

Due to its success, nowadays, MPC has become a stan-
dard in these environments, where there exist many imple-
mentations: DMC (Dynamic Matrix Control), GPC (Gen-
eralized Predictive Control), etc. All of them share a com-
mon methodology, they rely on a dynamical model that
represents the plant to predict its future behavior by means
of the minimization of a costs function over a time inter-
val [6], [7], [8]. Obviously, the more similar the model is to
the real plant, the better the estimates of its future behav-
ior are. This is not easy to achieve in many real cases,
since there are plants with complex behaviors such as the
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stop–and–go maneuvers in commercial gasoline–propelled
vehicles, controlling the throttle pedal which exhibit highly
non-linear dynamics at low speed [9]; or the viscoelastic-
ity phenomenon in rheological tissues describing the flow
of blood through the arteries [10]. In some of these cases,
applying an advanced control strategy could be very benefi-
cial to obtain the expected results compensating unmodeled
dynamics and external disturbances. To do so, it might even
be necessary to apply a hybrid model as in [11] and [12].

In this sense, some recent implementations use both a
fractional model to accurately describe non–integer order
dynamics exhibited by some real physical systems and a
fractional formulation for the controller to reach a better
performance. However, the idea of using fractional operators
both for the formulation of the controller and for describing
the dynamics of the used model is not exclusive to the MPC.
These operators have been used in other control strategies
to enhance the system performance. For example, the clas-
sical PID control was upgraded using fractional operators
to re-formulate its integral and derivative terms [13], [14],
[15] or the fractional–order control methodology known as
CRONE [16].
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The fractional predictive control strategy known as FGPC
combines the valuable characteristics of fractional calculus
and predictive control bymeans of a real–order fractional cost
function that is formulated using fractional operators. This is
the fractional control strategy that is used in this work. In the
literature, we can find more and more examples of authors
who have followed this proposal; without the intention of
being exhaustive; we can mention the manuscript [17] where
the so–called FPFC controller is used in fractional industrial
processes, [18] where a neurophysiological process has been
modeled by a fractional order system, [19] where the frac-
tional order model of heating furnace is used or [20] where
two rods thermal system has been identified and used.

Nowadays, the predictive control strategies have demon-
strated to be a valuable option due to their intrinsic character-
istics both for compensating un–modelled dynamics and for
reaching complex control objectives by means of the advis-
able setting of constraints. Although the computational cost
for large number of variables and constraints of large–scale
processes could be troublesome, there are current techniques
for mathematical processing using the so–called GPU com-
puting to get an important performance boost [21].

In this sense, the main aim in this paper is to introduce
the use of fractional constraints in the predictive fractional
control strategy by means of using fractional operators not
only in the cost function but also in the mathematical formu-
lation of its constraints. Their effect on system performance
is interpreted and discussed, analyzing the usefulness of the
proposal to soften constraints and adjust the final response of
the system. On the other hand, the optimal tuning method to
obtain the controller parameters is revised and illustrated with
some examples using two different mathematical solvers.

The remainder of this paper is structured as follows: In
Section II the fundamentals of the fractional calculus and
the fractional–order definite integral operator are described.
Section III summarizes the fundamentals of fractional predic-
tive control strategy and includes the formulation, design and
tuning of the FGPC controller using a practical guide with
optimization software. Section IV introduces the fractional
constraints for FGPC controller, describing mathematically
their formulation and discussing its impact on system per-
formance. Furthermore, a new method to soften constraints
using fractional operators is also introduced and explained.
Finally, Section V draws the main conclusions of this work.

II. FRACTIONAL CALCULUS
Fractional calculus is defined as a generalization of deriva-
tives and integrals to non–integer orders, in this way, it allows
to make calculations such as differentiate a function to real,
even complex order [22]. This branch of mathematical anal-
ysis dates from the 17th century when Leibniz and L’Hôpital
discussed about the possibility of non–integer derivatives,
specifically that n could be a fraction 1/2 for nth derivative.
Although this calculus is an old idea, it was really developed
at the 19th century by Liouville, Letnikov, Riemann and other
mathematicians [23].

There exist several ways to evaluate fractional opera-
tors [24], [25], which are commonly represented by Dα ,
where positive values of α represents derivatives and nega-
tive values correspond to integrals. Since MPC formulation
is usually described in discrete terms, in this work, it will
be only considered the Grünwald–Letnikov (GL) definition
which expression is (1).

Dαf (t)t=kh = lim
h→0

h−α
∞∑
j=0

(−1)j
(
α

j

)
f (kh− jh),

∀α ∈ R (1)

It is important to note that expression (1) has infinite
discrete terms. Because of this specific feature, fractional cal-
culus is a valuable tool for modeling and describing complex
effects associated with infinite memory behaviors such as
polymer viscoelasticity.

The dynamic behavior of fractional systems is often
described using the Laplace transform. Expression (2) gives
the Laplace transform of the GL definition under zero initial
conditions.

L
{
D±αf (t)

}
= s±αF (s), ∀α ∈ R (2)

Nevertheless, the discretization of (2) does not lead to a
transfer function with a limited number of coefficients in z.
Thus, these infinite coefficients can be calculated using the
binomial expression (3) or using the well–known recursive
algorithm [26].

ωj = (−1)j
(
α

j

)
, ∀j ∈ [0,∞) (3)

The coefficients evolve quickly approaching to 0 in accor-
dance with the so–called short memory principle which is
generally used to evaluate fractional operators because of
only the recent past plays an important role. Therefore,
its application leads to a n–term truncated series, paying a
penalty in the form of some inaccuracy [26].

In this paper, the fractional–order definite integral operator
αIba (·) is used. The concept of integer definite integral can
be generalized to real–order for a function f (x) using the
expression (4).

αIba f (x) =
∫ b

a

[
D1−αf (x)

]
dx α, a, b ∈ R (4)

Using the previous GL definition and considering that
D1−α [f (x)] 6= 0, this fractional operator can be discretized
with sampling period 1x as:

αIba f (x) = 1x
αW ′f with wj = ωj − ωj−n, n = b− a

(5)

where f is a vector with the values of the function and W
is a vector with a weight sequence using the coefficients
of binomial expression (3). See [27] and the references
within.

128780 VOLUME 10, 2022



M. Romero, C. Mañoso: Fractional Generalized Predictive Control Strategy With Fractional Constraints Handling

FIGURE 1. FGPC basic diagram.

III. FRACTIONAL PREDICTIVE CONTROL STRATEGY
The Fractional–order Generalized Predictive Controller,
FGPC, is defined as the fractional generalization of GPC
control strategy [28], [29], that is one of the most representa-
tive MPC formulations. FGPC and GPC share characteristics
but there exist important differences as they do not define
the same set of controllers [30]. FGPC uses the fractional
operators to enhance the system performance and it is part of
predictive controller family. It follows the concept behind all
model based predictive algorithms. This idea has been used
by some authors to design their control strategies; without the
intention of being exhaustive; such as [31] where a fractional
predictive controller is applied to Steam/Water Loop in Large
Scale Ships in a distributed scheme, [32] where this frac-
tional control strategy has been used to achieve the optimal
frequency control of an islanded microgrid or [33] where the
fractional predictivemethod has been testedwith an industrial
heating furnace.

The FGPC control strategy can be summarized as follows.
At each present instant of time, t , the controller generates
a set of future control signals 1u(t + k|t) based on the
prediction of the future process outputs y(t+k|t) by means of
minimization of a defined cost function within a time interval
define by [N1,N2]. However, only the first term of the control
signal vector is used as system input 1u(t|t), the rest ones
are neglected. Next step, t + 1, the algorithm is repeated to
calculate the new system input, 1u(t + 1|t + 1). Therefore,
the prediction window has moved forward (receding horizon
control). The Figure 1 schematically presents this strategy.

Traditionally inMPC, the cost function is formulated using
a quadratic criterion due to its mathematical convenience [34]
for its optimization. FGPC also makes use of this formu-
lation. However, some MPC strategies with non–quadratic
formulations could be also found in the literature as [35]
and [36]. In any case, this cost function has as input the pre-
dicted errors which are defined as the difference between the
predicted output and the reference trajectory, e (t + k | t) =
y (t + k | t)− r(t + k|t), filtered or not.

On the other hand, FGPC uses a discrete time linear model
to capture the dynamic behavior of the real plant, where the
equations that describe its dynamics are formulated using
integer–order calculus. However, a fractional linear model
could also be used in case of the plant to be controlled had
that dynamic, but it is not the subject of this work.

Finally, the possibility of using process constraints in pre-
dictive control strategies is one of their most valuable charac-
teristics. FGPC uses constraints that are expressed as a set of
linear inequalities:

L1u(k) ≤ l(k) (6)

where L is a matrix and l is a vector with c terms. c is the
number of constraints.

Due to the use of a quadratic programming algorithm in
FGPC, which allows only to satisfy constraints with general
expression as (6), only linearly dependent variables of control
signal 1u are used.

A. FORMULATION OF THE FGPC CONTROLLER
FGPCControllers are characterized by relying on a CARIMA
(Controlled Auto–Regressive Integrated Moving Average)
model to describe the system dynamics (7).

A
(
z−1

)
y (t) = B

(
z−1

)
u (t)+

T
(
z−1

)
1

ξ (t) (7)

The numerator and denominator of the model transfer
function are B

(
z−1

)
and A

(
z−1

)
, respectively.1 is the incre-

ment operator, ξ (t) is the uncorrelated zero–mean white noise
and T

(
z−1

)
is a (pre)filter to improve the system robustness

that rejects disturbances and noise.
Using the model (7), the future outputs y(t + k|t) can

be predicted at any time. So, it is common to write these
outputs as the sum of two terms: controlled response and free
response, y (t + k | t) = yC (t + k | t) + yF (t + k|t), with
yC ≡ G ·1u the part of the future output that depends on the
future control 1u; and yF the part of the future output that
does not depend on 1u; G is a matrix with the step response
coefficients of the model. For the sake of simplicity in the
notation (·|t) is omitted, since all expression from this point
are referred to the present time t , unless otherwise stated.

G =


g1 0 . . . 0
g2 g1 . . . 0
. . . . . . . . . . . .

gN gN−1 . . . gN−Nu+1

 (8)

where N = N2−N1+1 represents the number of predictions
to make.

On the other hand, the FGPC cost function has the expres-
sion (9) and it is defined by means of the fractional–order
definite integral operators b

aI
α(·) discretized with sampling

period 1t and evaluated using (4).

JFGPC (1u, t) = αIN2
N1

[e(t)]2 + β INu1 [1u(t − 1)]2 (9)

where N1 and N2 are the minimum and maximum costing
horizons, respectively, Nu represents the control horizon, and
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it is assumed that u(t) remains constant from time instant
t +Nu (1 ≤ Nu ≤ N2). The parameters α, βεR are the orders
of the fractional definite integral operator (4), discretized
with sampling period1t . This fractional operator, under very
general assumptions and using the GL definition (1), verifies
the so–called fractional–order Barrow’s rule (10). See [37]
for a more exhaustive explanation.

αIba f (x) = Fα (b)− Fα (a) (10)

where Fα (x) ≡ Iαf (x) is any α-order primitive of f (x).
After using the above operator, it is possible to translate the

cost function (9) into its matrix form (11). 0 and3 represent
infinite–dimensional square real weighting matrices.

JFGPC (1u, t) = e′0 (α,1t) e+1u′3(β,1t)1u

(11)

The discrete expression of the operator (10) can be found
in [37] but it is reproduced here for convenience and adapted
to the notation of (11).

0 ≡ 1tαdiag
(
. . . wm wm−1 . . . w1 w0

)
(12)

with wj = ωj − ωj−n, n = N2 − N1, ωk = (−1)k
(
−α

k

)
3 ≡ 1tβdiag

(
. . . wNu−1 wNu−2 . . . w1 w0

)
(13)

with wj = ωj − ωj−n, n = Nu − 1, ωk = (−1)k
(
−β

k

)
In order to obtain the FGPC optimal control law and due

to the memory characteristic of the fractional operator, the
matrix form of cost function is rewritten using a new notation
where the symbols (→) and (←) represent future and past
values, respectively [27].

JFGPC =
[
←e
′ −→

e′
] [←

0 0
0
−→
0

][
←e
−→e

]
+

[
←
1u′

−→
1u′

]
×

[
←

3 0
0
−→
3

][
←
1u
−→
1u

]

=

(−→
e′
−→
0 −→e +

−→
1u′
−→
3
−→
1u
)
+

(
←e
′←

0
←e +

←

1u′
←

3
←

1u
)

=
−−−→
JFGPC +

←−−−
JFGPC (14)

The manipulated independent variable is
−→
1u, the opti-

mal control law is given by the expression 1u∗FGPC (t) =
arg JFGPC .

Although the cost function (14) has two terms, past and
future values of the variables, the minimization only depends
on the future ones. On the other hand, predictions are made
using the model (7). Therefore

−−−→
JFGPC =

−→
1u′

(
G′
−→
0 G+

−→
3
)
−→
1u− 2

−→
E ′0
−→
0 G
−→
1u+

−→
E ′0
−→
0
−→
E0

(15)

FIGURE 2. Closed–loop equivalent control system schema.

The predictive errors vector has the expression (16).

E0 ≡ (e0 (t + 1), . . . , e0 (t + N2))
′
= r(t + j)− yF (t + j)

(16)

Finally, the optimal control law has the expression (17)
without active constraints.

1u∗FGPC (t) = arg min
1u

JFGPC =
(
G′
−→
0 G+

−→
3
)−1

G′
−→
0
−→
E0

≡ K
−→
E0 (17)

This optimization problem has a solution if the matrix (18)
can be inverted. This square hessian matrix is symmetric, and
its eigenvalues determine the closed–loop system response.

H = G′
−→
0 G+

−→
3 (18)

As it is well–known, if matrix (18) is positive–definite,
that is, all its eigenvalues are positive, then the solution of
optimization problem is unique. Thus, we could have some
negative values in the weighting sequences but H would be
positive definite.
This optimization without activating the constraints leads

to a control law that is linear time invariant (LTI) and can be
pre–computed in advance. The equivalent closed loop control
schema is shown in Figure 2.
The polynomials Rc and Sc are obtained from the model

polynomials A and B. See [38] for an exhaustive explanation.
Tc is considered as a filter mainly due to the incremental

constitution of control law. The selection of the polynomial
Tc is not an easy task, there exist a general guideline in the
manuscript [39] where it is recommended the expression (19).

Tc(z−1) =
(
1− ρz−1

)N1
(19)

where ρ is recommended to be closed to the dominant pole
of the system model.
Sensitive functions will play an important role in the tun-

ing method explained posteriorly. Although many sensitivity
functions can be defined in predictive control [23], we shall
only consider two of them, the classical S and T functions
which expressions are (20) and (21), respectively.

S =
Rc1A

Rc1A+ ScB
(20)

T =
ScB

Rc1A+ ScB
(21)
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B. PRACTICAL TUNING OF FGPC USING MATLABTM

OPTIMIZATION TOOLBOX
The proposed optimal tuning method for FGPC is shown in
the Appendix of this manuscript. This method allows us to set
horizon parameters together with fractional orders using dif-
ferent mathematical solvers included in numeric computing
software asMatlab, GNUOctave. . .Evidently, this is a critical
task because closed–loop system performance depends on
this choice.

The optimization toolbox of Matlab provides functions to
find parameters that minimize or maximize the objectives
subjects to a set of constraints. Specifically, it includes solvers
for general optimization problems as the one described above.
As the previous set of functions to optimize are continuous,
(37)–(41), we have chosen specifically two solvers to resolve
it. The solver for nonlinear optimization problems, fmincon,
and the solver that uses genetic algorithms, ga. Both of them
have a similar syntaxis:

mincon(@objfun,x0,[],[],[],[],[],[],@confuneq,options)
where:

• objfun: main function to optimize.
• x0: initial values.
• confuneq: constraints.
• options: optimization options.

ga(@objfun,nvars,[],[],[],[],[],[],@confuneq,options)
where:

• objfun: main function to optimize.
• nvars: number of variables.
• confuneq: constraints.
• options: optimization options (in this case, initial values
are passed within this vector of parameters).

In order to illustrate the optimization process, two FGPC
controllers will be tuned using previous solvers. The dynam-
ics of the plant to be controlled has been discretized with a
sampling time equal to 0.1 s. Its transfer function is shown in
expression (22).

G
(
z−1

)
=

0.0952
1− 0.9048z−1

z−1 (22)

Both controllers will be obtained using the following
parameters:

• N1 = 1
• Nu = 2
• N2 = 30
• Tc

(
z−1

)
= 1− 0.9z−1 (Using prefilter.)

and they will be optimized to fulfill the following
requirements:

• Maximize the gain margin (no specification is set on the
phase margin).

• |S(jω)| ≤ −15 dB for ω ≤ 0.1 rad/s
• |T (jω)| ≤ −15 dB for ω ≥ 10 rad/s

In order to find the optimal pair α and β, an initial seed is
needed to initialize the optimization algorithm. To do so, the
gain and phase margin is calculated for different values of the

FIGURE 3. Gain margin vs. α and β for obtained optimization seed.

FIGURE 4. Phase margin vs. α and β for obtained optimization seed.

TABLE 1. Results of the optimization process.

fractional parameters, obtaining the graphic representation
that is depicted in Figure 3 and Figure 4.

The values α0 = 0.9 and β0 = 0.8 are selected as seed
to start the optimization algorithm due to their corresponding
initially good gain and phase margins.

The optimization process has been carried out in an interval
of 20–30 seconds for fmincon solver and 60–100 seconds for
ga solver using a PC computer with AMD RyzenTM 1600
processor running MATLABTM 2019b. The results of the
optimization process as well as the parameters of the resulting
system are shown in the Table 1.

Both systems are stable and have definite-positiveH matri-
ces with the following eigenvalues (0.5179, 3.4051) and
(0.5481, 2.7256) for the fmincon and ga solvers, respectively.
They alsomeet the requirements imposed in terms of sensitiv-
ity functions as shown in Figure 5. The gain margin obtained
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FIGURE 5. Sensitivity functions comparison.

FIGURE 6. Step responses of FGPC controllers.

with the solver fmincon is larger, but the system obtained by
means of the solver ga has better phase margin, although it is
not the objective of this optimization.

Figure 6 depicts the responses of both systems. The system
response with the controller obtained by fmincon solver is
represented in blue line and the system response with the
controller obtained by ga solver is represented in green line.
One observes that these responses are quite similar. They
follow the reference with no overshoot and fulfilling gain
margins, sensitivity functions and robustness specifications
in an easy and straightforward way.

In practice, due to the optimization problem and
the constraints involved, the procedure described here
must be repeated a few times. Normally, in the first
attempts the solvers could not converge and we would not
obtain the desired results due to feasibility problems. How-
ever, the experience gained during one of the runs is used to
better adjust of the parameters such as the initial seed in the
next run until consistent results are obtained. Moreover, this
method discards during the execution of the algorithm those
systems that are unstable.

IV. FRACTIONAL CONSTRAINTS
Although any real control system is subject to diverse types of
constrains: physical restrictions (actuators have a minimum
and a maximum value that limit their operations), security
boundaries (outside of them, the system integrity and peo-
ple safety are not guaranteed), product quality specifications
(without them, the product would not meet the established
standards), technological requirements, etc. [40]; It is not
usual that these constraints have been set explicitly in the
design of many control strategies. Therefore, the designed
controllers could result in inadequate closed–loop perfor-
mance or undesirable behavior.

In the case of predictive controllers, the constraints are
introduced natively in the cost function. Therefore, they are
systematically included during the controller design process,
constituting one of the most important advantages of this
control strategy in comparison with others. However, as the
optimal control sequence must be obtained at each sampling
time by minimization of the cost function (14) subject to
set of constraints (6), including these constraints leads to
an increase of the computational cost necessary to solve the
mathematical problem in real time.

Due to the growing presence of systems with fractional
operating dynamics such as fuel cells [41], supercapaci-
tors [42] or applications in viscoelasticity [43], the inclusion
in the control strategy of constraints that act on the fractional
increments of certain variables could be necessary. To this
purpose, their formulation will be generalized in the same
way as in the formulation of the cost function of the controller.
Furthermore, in this paper, they are utilized to define a new
method to soften constraints applying fractional operators,
which may be of interest even for applications that do not
present these fractional dynamics.

It is well known that the presence of hard constraints in
predictive control strategies could lead to infeasibility caus-
ing instabilities [44]. In order to avoid them, some constraints
could be relaxed by treating them as soft constraints. The case
of infeasibility is treated by other authors using techniques as
introducing slack variables that soften some of the constraints
or even temporally removing some of them [45].

Having these ideas in mind, we consider the possibility
of introducing constraints with fractional behavior in our
fractional predictive control strategy. To do so, we introduce
the fractional δ–increment of the future value of the control
signal, u(t + Nu − 1), depending on the control horizon,
Nu. Expression (23) shows the fractional expansion using the
binomial expression (3).

Dδu (t + Nu − 1) = lim
h→0

h−δ
∞∑
j=0

ωju (t + Nu − 1− j)

(23)

The value of the fractional δ–increment has the expression:

1δu (t + Nu − 1) =
∞∑
j=0

ωju (t + Nu − 1− j)

= [ω0u (t + Nu − 1)+ ω1u (t + Nu − 2)
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+ . . .+ ωNu−1u (t)+ ωNuu (t − 1)

+ωNu+1u (t − 2)+ . . .
]

=

[∑
←u +

∑
−→u
]

(24)

Once the expression of the summation is performed in (24),
it is obtained the expression of δ–increment of the control
signal, 1δu. Analogously to what happened with the cost
function (14), the expression (24) depends on the values of
the control signal, u (t + k) and presents two terms: one that
depends on the future values (when k is higher or equal to 0),
−→u , and another ones that depends on the past values of this
signal (when k is less than 0), ←u . Assuming:
• a sufficiently high value of Nu, and
• the past terms of increments ←u are not variables but con-
stants. Therefore, they do not affect to the optimization
problem.

We can represent the constraint1δu(t+Nu−1) ≤ 1δumax
in the form (25).

0 0 0 . . . 0
0 0 0 . . . 0
. . . . . . . . . . . . . . .

ωNu−1 ωNu−2 ωNu−3 . . . ω0



×


u (t)

u (t + 1)
. . .

u (t + Nu − 1)



≤


0
0
0

1δumax (t + Nu − 1)

 (25)

We also shall consider constraints on a linear combination
of the increments of control signal 1u. Manipulating alge-
braically the expression (25), we can put the constraints in
terms of 1u(t) using (26).

1u (t) = u (t)− u(t − 1) (26)

So:
Nu−1∑
l=0

ωlu (t + Nu − 2− l)

=

Nu−1∑
l=0

ωl [(1u (t + Nu − 2− l)) (u (t + Nu − 3− l))]

= ω0 [1u (t + Nu − 1)+ u (t + Nu − 2)]

+ω1 [1u (t + Nu − 2)+ u (t + Nu − 3)]+ . . .

+ωNu−1 [1u (t)+ u (t − 1)]

= ωl

[∑
1u (t)

]
+1δu (t + Nu − 2) (27)

In matrix form:
0 0 0 . . . 0
0 0 0 . . . 0
. . . . . . . . . . . . . . .

ωNu−1 ωNu−2 ωNu−3 . . . ω0



×


1u (t)

1u (t + 1)
. . .

1u (t + Nu − 1)



≤


0
0
0

1δumax (t + Nu − 1)−1δu(t + Nu − 2)


(28)

In a similar way, the constraint for minimum values
1δu(t + Nu − 1) ≥ 1δumin can be obtained IV-A.

0 0 0 . . . 0
0 0 0 . . . 0
. . . . . . . . . . . . . . .

−ωNu−1 −ωNu−2 −ωNu−3 . . . −ω0



×


1u (t)

1u (t + 1)
. . .

1u (t + Nu − 1)



≤


0
0
0

−1δumin (t + Nu − 1)+1δu(t + Nu − 2)


(29)

The expressions (28) and (29) show as constraints affect
to the future values of the control signal not to the values at
the present instant of time. This time displacement allows to
relax the fulfillment of the constraint depending on the value
of control horizon, Nu. Evidently, a value of Nu = 1 implies
a ‘‘hard’’ compliance with the constraint. Furthermore, the
assigning δ = 1 leads to set the constraint as in the known
integer case.

Although we have considered the constraints as hard and
they must be satisfied at any cost from a mathematical point
of view, increasing the value of Nu allows us to soften them
the higher its value is, because of the hard constraints com-
pliance will be further away in time. Therefore, the proposed
method softens constraints on the future predicted values of
the constraints, not on the values at the present instant of time.
In the next subsection, we will illustrate these concepts with
some examples.

A. COMPUTING SIMULATION OF FRACTIONAL
CONSTRAINTS
In order to illustrate how these fractional constraints work,
computational simulations have been performed, where the
impact of the constraints on the closed–loop performance
is shown when the values of δ and Nu are modified. The
plant is the one previously proposed for illustrating the
optimization (22). The controller setting parameters have also
been maintained.

To do so, we have used again the optimization toolbox of
Matlab, specifically, the solver quadprog [46], that allows to
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FIGURE 7. Simulation 1 of the constrained controller 1.

solve quadratic programming problems subject to constraints
in the form:

min
x

1
2
x ′Hx + f ′x

subject to Ax ≤ b (30)

From equations (15) and (18) we can obtain the values of
H and f with ease. Therefore,

min
1u

1
2

−→
1u′

(
G′
−→
0 G+

−→
3
)
−→
1u+

−→
E ′0
−→
0 G
−→
1u (31)

The values of matrices A and b are obtained directly from
the expressions (28) and IV-A for each case. The solver
syntax is:

quadprog(H,f,A,b)

Initially, we set a constraint on the minimum value of
the fractional δ–increment as it is shown in expression (32).
Figure 7 depicts the simulation for δ = 1 and Nu = 1. It can
be easily seen that1u(t) and1δu are coincident as expected,
1δu (t + Nu − 1) = 11u (t + 1− 1) = 1u(t). It is also
observable that from t = 5 the constraint acts and the output
cannot follow the reference as fast as it would be desirable,
even a small ripple appears.

1δu (t + Nu − 1) ≥ −0.05 (32)

We now consider a new value for the control horizon,
Nu = 3, to do a new simulation. Figure 8 depicts this sim-
ulation for three values of δ, specifically, δ = (0.5, 1.0, 1.5).
The lower plot shows the values of1δu(t) (just when the step
down occurs). The values at this moment for t = 5 are:

10.5u(t)t=5 = 0.0180

11.0u(t)t=5 = −0.0992

11.5u(t)t=5 = −0.0993 (33)

It seems that the constraint set by (32) is not fulfilled for
δ = 1.5 and δ = 1.0. The values of the δ–increments
are below the minimum value set for them. However, the
constraint concerns the predicted value for1δu (t + Nu − 1)

FIGURE 8. Simulation 2 of the constrained controller 1.

not the value at the current time 1δu(t) that is calculated
using the pass values as is indicated byGL definition (1). This
results in a mathematical method of applying soft constraints
to the system, which can be adjusted using the fractional δ
parameter.

On the other hand, the variation of the δ parameter has also
affected the temporal response of the system. One observes
that both the output of the system, y(t), and the value of
the control signal, u(t), are equal for the three values of δ
considered within the intervalt = [0, 5), before the step
down occurs. In this case, it is obvious that the control signal
is growing to allow the system to reach the reference, r(t).
Therefore, it is not affected by the constraint imposed by (32).
Nevertheless, after the step down, within interval t = [5, 10),
it is necessary for the control signal to decrease so that the
system output also decreases and reaches the new reference.
In this case, the output and the control signal are affected by
the activation of the constraint (32) and have the shape that
is shown in the upper plots of Figure 8, with the values of
both signals, y and u, for δ = 0.5 being below the values of
both for δ = 1.0. Analogously, the values of both signals for
δ = 1.5 are above the values of both for δ = 1.0. Therefore,
we have different shapes of the system output depending on
the parameter δ.

Figure 9 depicts the simulation for δ = 0.01 and Nu = 3.
It can be easily seen that the shape of 1δu (t) (magenta line)
tends to the shape of u(t) (green line) as expected.

In the same way, for illustrative purposes, we set a con-
straint on the maximum value of the fractional δ–increment
as it is shown in expression (34).

1δu (t + Nu − 1) ≤ 0.1 (34)

Figure 10 depicts the simulation for δ = 0.8 and the two
values of the control horizon,Nu = 1 andNu = 3. In this case,
the constraint acts within the interval t = [0, 5) affecting
the temporal response of both. However, the one tuned with
Nu = 1 (blue line) suffers the effect of the hard constraint,
appearing a small ripple in 1δu(t) as it is shown in lower
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FIGURE 9. Simulation 3 of the constrained controller 1.

FIGURE 10. Simulation 4 of the constrained controller 1.

plot. The upper plot shows as the system output grows more
slowly with Nu = 1 than with Nu = 3. With Nu = 3,
the constraint presents a soft behavior due to the constraint
concerns a predicted value.

Finally, we shall test the behavior of the proposed method
with a model of a real plant. Specifically, it is the identified
model of the throttle pedal of a gasoline car used in [38],
whose transfer function is shown in expression (35). One
observes that the dynamics of this model is more complex
than the previous used model (22).

G
(
z−1

)
=

5.1850
1− 0.7344z−1 − 0.2075z−2

z−4 (35)

For illustration purposes, a new FGPC controller for (35)
will be tuned using the following parameters: N1 = 1,N2 =

50,Nu = 2, using prefilter Tc
(
z−1

)
= 1 − 0.9z−1 and α =

0.22, β = 2.30. This control system, without activating the
constraints, presents a highly oscillating temporal response as
it is shown in the upper plots of Figure 11 (blue line). In this
case, the oscillations of 1u(t) are approximately within the
interval [−0.1, 0.1]. Obviously, in order to illustrate our

FIGURE 11. Simulation 1 of the constrained controller 2.

example, we have proposed this extreme case, where the
controller has not been properly tuned.

In the following, we shall limit that oscillation using
the interval [−0.01, 0.01], setting the minimum and max-
imum values of fractional constraints as it is shown in
expression (36).

1δu (t + Nu − 1) ≥ −0.01

1δu (t + Nu − 1) ≤ 0.01 (36)

Figure 11 depicts the system simulations subject to previ-
ous constraints (36) for two values of the δ parameter, δ = 0.5
(green line) and δ = 1.5 (magenta line). One observes that the
oscillations both in the system output, y(t), and in the value
of the control signal, u(t), have been drastically reduced after
setting the constraints.

Since the oscillation has been reduced to a small ripple
that is larger in the case of δ = 0.5, as it is shown in the
lower plot of Figure 11, the system presents a more suitable
output, improving its performance with stable, smooth and
reasonably good response in comparison with the system
response without constraints. In this case, the control signal,
u(t), corresponds to the throttle pedal of the gasoline car.
Therefore, it is crucial that the oscillation is as small as
possible, both for a better comfort of the vehicle’s occupants
and to keep the engine running and avoid the car stalled.

Moreover, in the same way as with the previous controller
(Figure 9), the larger the δ parameter value is, the slower
the system response will be. Thus, the system output, y(t),
will take longer to reach the reference. Nevertheless, larger
values of the δ delta parameter also reduce the amplitude of
the oscillations.

V. CONCLUSION
In this paper, the use of fractional constraints in the pre-
dictive control strategy has been introduced and explained,
discussing the results obtained by means of the fractional
δ–increments depending on the δ parameter. Its use has also
provided, on the one hand, a newmethod to soften constraints
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using fractional operators and, on the other hand, obtaining
different shapes of the system output depending on the param-
eter δ.
Moreover, a practical tuning of a plant with FGPC using

MatlabTM Optimization Toolbox FGPC is included in order
to make use of the beneficial characteristics of this con-
trol strategy. This example has been carried out to illus-
trate the validity of this method using two solvers, one
based on quadratic optimization and the other based on
genetic algorithms. Using them and with the help of this
well–known mathematical software, the controller settings
can be achieved that lead to optimal system performance with
ease.

In this way, the design process of the FGPC involves finally
two basic steps. In the first step, we obtain the controller
parameter N1,N2,Nu, α and β to fulfill an appropriated
performance using the tuning method based on optimization
of some criteria. In the second step, the constraints are set
to meet the operating specifications and limitations of the
real system using the parameter δ, moreover, for softening
constraints as far as possible, even to adjust the final response
of the system.

APPENDIX
TUNING FGPC CONTROLLER
Tuning the predictive controller means to set numerical
values for the controller parameters to fulfill a series of
objectives in terms of robustness and performance criteria.
Obviously, the final performance of the loop system will
depend on the goodness of this adjustment. To do so, various
algorithms could be proposed based on techniques such as
optimization, genetic algorithms, expert knowledge, etc.

In our case, the FGPC controller presents a wide set of
parameters for tuning: N1, N2, Nu, α and β. The proposed
method [47] is based on optimization of some criteria to fulfill
an appropriated performance:

- Gain margin (GM):

M = −20 log

∣∣∣∣ BScRc1A

∣∣∣∣ , where arg
(

BSc
Rc1A

)
= −180◦

(37)

- Phase margin (PM):

arg
(

BSc
Rc1A

)
= −(−180◦)+ PM ,

where − 20 log

∣∣∣∣ BScRc1A

∣∣∣∣ = 0 (38)

- High frequency noise rejection:

|T (jω)| ≤ AtdB for ω ≥ ωtrad/s (39)

where T is the complementary sensitivity function and At is
the desired noise attenuation for frequencies ω ≥ ωt .
- Good output disturbance:

|S(jω)| ≤ BsdB for ω ≤ ωsrad/s (40)

where Bs is the desired value of the sensitivity function S for
frequencies ω ≤ ωs.
- Robustness to variations in the gain of the plant:d

(
arg

(
BSc
Rc1A

))
dω


ω=ωc

= 0 (41)

with this condition, the phase of the open–loop system is
forced to be flat at ωC (crossover frequency) and to be almost
constant within an interval around this value.

This method proposes that one of the previous expressions
(37)–(41) is chosen as the main function to optimize and the
rest of them could be taken as constraints. In order to keep the
dimension of the optimization problem low, it is assumed that
the parametersN1,N2,Nu, whose values are integer, are given
using, for example, the thumb–rules proposed in [28] and the
fractional orders α and β, whose values are real, are used in
the optimization process as the parameters to be calculated.
Including the horizons parameters in the optimization prob-
lem would lead to a mixed quadratic programming problem
that would unnecessarily complicate the calculation process
for the controller tuning.
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