
Received 4 November 2022, accepted 29 November 2022, date of publication 8 December 2022,
date of current version 14 December 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3227653

An Algorithm for Placing and Allocating
Communications Resources Based on
Slicing-Aware Flying Access and
Backhaul Networks
ANDRÉ COELHO , (Graduate Student Member, IEEE), JOÃO RODRIGUES ,
HELDER FONTES , RUI CAMPOS , (Senior Member, IEEE),
AND MANUEL RICARDO , (Member, IEEE)
INESC TEC, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal

Corresponding author: André Coelho (andre.f.coelho@inesctec.pt)

This work was supported by the Norte Portugal Regional Operational Programme (NORTE 2020), under the
PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF), through the project
‘‘DECARBONIZE—DEvelopment of strategies and policies based on energy and non-energy applications towards CARBON neutrality
via digitalization for citIZEns and society’’ (NORTE-01-0145-FEDER-000065). The work of André Coelho was also supported by
FCT—Fundação para a Ciência e a Tecnologia under the Ph.D. Grant SFRH/BD/137255/2018.

ABSTRACT Flying networks, composed of Unmanned Aerial Vehicles (UAVs) acting as mobile Base
Stations andAccess Points, have emerged to provide on-demandwireless connectivity, especially due to their
positioning capability. Still, existing solutions are focused on improving aggregate network performance
using a best-effort approach. This may compromise the use of multiple services with different performance
requirements. Network slicing has emerged in 5G networks to address the problem, allowing tomeet different
Quality of Service (QoS) levels on top of a shared physical network infrastructure. However,Mobile Network
Operators typically use fixed Base Stations to satisfy the requirements of different network slices, which may
not be feasible due to limited resources and the dynamism of some scenarios.We propose an algorithm for
enabling the joint placement and allocation of communications resources in Slicing-aware Flying Access
and Backhaul networks – SurFABle. SurFABle allows the computation of the amount of communications
resources needed, namely the number of UAVs acting as Flying Access Points and Flying Gateways, and
their placement. The performance evaluation carried out by means of ns-3 simulations and an experimental
testbed shows that SurFABle makes it possible to meet heterogeneous QoS levels of multiple network slices
using the minimum number of UAVs.

INDEX TERMS Aerial networks, flying networks, network slicing, quality of service, unmanned aerial
vehicles.

I. INTRODUCTION
Network slicing emerged as a key technique to enable the
coexistence of multiple virtual networks on top of a shared
physical communications infrastructure, while supporting
different services with heterogeneous Quality of Service
(QoS) levels [1]. The concept allows that Mobile Network
Operators lease portions of the communications resources
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that compose their network infrastructure, including data
centers, cell sites, and fronthaul and backhaul networks,
to Service Providers or Virtual Mobile Network Operators
which offer services to their customers, acting as network
users, as depicted in Fig. 1.

Network slices are characterized at a high-level in the form
of a Service Level Agreement (SLA), which is established
between Service Providers and Mobile Network Operators.
An SLA specifies the service requirements for a network
slice including QoS levels, number of users served, and
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FIGURE 1. Flying network, composed of Unmanned Aerial Vehicles
(UAVs), used by a Mobile Network Operator to provide network slices to a
Service Provider that offers services to ground users in target
geographical locations [2].

geographical locations covered [3]. Network slicing allows to
reduce costs by avoiding the need for permanently assigned
communications resources, from the radio access network
to the core network, while enabling flexibility, scalability,
and sustainability in the management of the communications
infrastructures over time [4].

The literature on network slicing has been mainly focused
on ensuring fairness and efficient resource management,
while meeting targeted service requirements. Yet, a fixed
communications infrastructure is typically assumed [3],
which may not be feasible in scenarios characterized by lim-
ited network resources or high dynamics. The use of flexible
wireless networks, capable of providing coverage and com-
munications resources on-demand, is a promising approach
for Mobile Network Operators which may be able to meet
the Service Providers requirements in a myriad of scenarios.

In disaster management scenarios, such as forest fires, the
first responders require reliable, mission-critical communica-
tions, while a best-effort wireless service may be provided to
the victims. In crowded scenarios, such as outdoor festivities,
wireless connectivity with different QoS requirements must
be ensured for the staff, the media, and the spectators.
Nowadays, these scenarios are addressed by Mobile Network
Operators using network overprovisioning with fixed and
mobile Base Stations (Cell-on-Wheels concept [5]). How-
ever, they may collapse, fail to provide sufficient wireless
coverage, or lack the required communications resources.
Moreover, the unpredictability associated to the number of
users and their mobility may degrade the QoS offered.

Unmanned Aerial Vehicles (UAVs), acting as mobile
Base Stations and Access Points that form flying networks,
have emerged as an adequate solution to provide wireless
coverage and communications resources on-demand. Still,
the literature has been focused on best-effort approaches
that aim at enhancing the area covered, the number of users
served, and the aggregate QoS offered.

In order to enable slicing-aware flying networks, we have
proposed the SLICER algorithm in [2]. SLICER allows to
minimize the cost of deploying a slicing-aware flying net-
work by determining the minimum number of UAVs required

to meet the QoS levels offered by multiple network slices
made available in given geographical locations. However,
SLICER is focused on the access network only, overlooking
the backhaul network design. In order to enable the coverage
extension from a remote Base Station or Access Point, while
meeting the requirements of the network slices to be offered
to the ground users, the placement of UAVs acting as network
gateways and the allocation of communications resources in
a multi-hop architecture have to be carefully defined.

The main contribution of this article is SurFABle, an algo-
rithm that makes the joint placement and allocation of com-
munications resources in Slicing-aware Flying Access and
Backhaul networks. SurFABle allows the joint computation
of the amount of communications resources needed, namely
the number of UAVs acting as Flying Access Points (FAPs)
and Flying Gateways (FGWs), and their placement in 3D
space. The resulting flying access and backhaul network
extends radio coverage using a multi-hop architecture and
offers multiple network slices with target QoS levels to
ground users located in given geographical areas. The
performance evaluation when SurFABle is used was carried
out by means of ns-3 [6] simulations and an experimental
testbed.

The rest of this article is organized as follows. Section II
presents the related work. Section III contains the system
model and problem formulation. Section IV describes the
SurFABle algorithm. Section V refers to the performance
evaluation when the SurFABle algorithm is used. Section VI
discusses the design and performance of the SurFABle algo-
rithm. Finally, Section VII points out the main conclusions
and future work.

II. RELATED WORK
The 3rd Generation Partnership Project (3GPP) defines net-
work slice as a logical network that provides specific network
capabilities and target performance requirements, such as
throughput and delay [1]. The 3GPP standardization process
on network slicing has been approached in [7], while key prin-
ciples, enabling technologies, and open research challenges
related to network slicing have been envisioned in [8]. In
these works, network slicing has been considered a major
enabler for 5G networks, but the provisioning of network
slices on-demand and the usage of UAVs to ensure a reconfig-
urable wireless network have not been envisioned. Multiple
approaches have been proposed in the literature to allow for
QoS guarantees in wireless networks. A reference example
has been introduced by IEEE 802.11e by means of traffic pri-
oritization. On the one hand, IEEE 802.11e provides the same
QoS to flows associated with the same traffic type, by adopt-
ing four QoS classes implemented by different network
queues [9]. On the other hand, it may be unable to meet QoS
guarantees in some scenarios, if the capacity of the wireless
links is not enough or the network configuration employed
is not adequately defined. For these reasons, IEEE 802.11e
does not provide high enough scalability and the flexibility
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to meet the QoS levels of different network slices, especially
when the number and type of network slices increase.

In [10], network slicing has been formulated as an opti-
mization problem that considers backhaul network capacity,
available storage, and achievable bandwidth. However, a sin-
gle Base Station in a fixed position has been considered. The
placement of the Base Station in suitable positions, according
to the network slice requirements, has not been addressed.
Isolation, scalability, and efficiency have also been research
challenges addressed in the literature, especially when it
comes to maximizing resource utilization and minimizing
costs [11]. In such work, multiple Base Stations have been
considered, but their positioning in suitable positions has
not been studied too. Due to the large number of variables
involved, network slicing problems are very complex and typ-
ically solved using either optimization [12], game theory [13],
evolutionary and heuristic algorithms [14], [15], and machine
learning techniques [16]. Providing network slices taking into
account wireless coverage and the traffic demand require-
ments of the radio access network is a problem that has been
addressed in [17], [3] and [4]. Still, in all these works, a fixed
wireless communications infrastructure has been considered,
and the joint placement and allocation of communications
resources on-demand has not been addressed.

When there is no wireless network infrastructure available
or there is a need to enhance the coverage and capacity
of existing networks, flying networks made up of UAVs
acting as mobile Base Stations and Access Points have been
described as an adequate solution [18], [19], [20], [21].
For that purpose, different UAV placement algorithms have
been proposed, in order to improve the QoS offered [22],
[23] or maximize the coverage and the number of served
users [24], [25]. However, the state of the art solutions
typically lie on a best-effort approach. Also, the joint UAV
placement and allocation of communications resources for
enabling the usage of multiple services with heterogeneous
QoS requirements has not been addressed for multiple UAVs
so far.

In [26], a flying network composed of a High-Altitude
Platform (HAP) and LowAltitude Platforms (LAPs) has been
proposed to extend wireless coverage and improve network
performance; this solution allows to maximize the aggregate
data rate by optimizing the height of LAPs, the transmission
power of ground users, and the spectrum allocated to HAP,
LAPs, and ground users. However, it does not allow to meet
heterogeneous QoS requirements. In addition, since only the
altitude component is considered, the placement computed
for the HAP may reduce the QoS offered in practice and
imply the usage of more radio resources when compared with
a solution that defines a suitable placement in 3D. In [27],
the UAV placement has been optimized to improve the
users’ satisfaction when using different services. It has been
designed to provide different network slices, but the authors
have been focused on maximizing the aggregate network
performance for each network slice without considering
target QoS guarantees. An on-demand density-aware 3D

UAV placement algorithm has been proposed in [28], in order
to meet heterogeneous QoS levels. It guarantees target data
rate values, while providing wireless coverage to as many
ground users as possible. However, it only considers one
UAV,whichmay limit the scalability of the proposed solution.

When it comes to use UAVs for providing on-demand
network slices, the literature has been focused on improving
energy efficiency, fair coverage, and resource allocation effi-
ciency, but does not address the joint placement and allocation
of communications resources [29]. In this context, [29] has
employed two independent optimization problems to max-
imize the data rates achieved by the User Equipment (UE)
and minimize the UAVs’ transmission power. A coverage-
aware geometric placement approach for a UAV that offers
wireless connectivity to ground users has been proposed
in [30], taking into account the UAV’s altitude, cell size, and
antenna’s beamwidth. However, such solution is intended to
use cases that only require two network slices, where a single
UAV is deployed to maximize the average data rate of the
ground users that belong to the enhanced Mobile Broadband
(eMBB) network slice, while wireless coverage is provided
to the ground users associated with the massive Machine-
Type Communications (mMTC) network slice. In order to
provide the ground users with an eMBB slice and ensure an
Ultra-Reliable and Low-Latency Communications (URLLC)
network slice for the UAV control, a distributed learning and
optimization strategy has been proposed in [31]. Still, these
works have been focused on ensuring aggregate QoS guar-
antees and are unable to meet heterogeneous QoS levels for
different flows associated with the same traffic type. More-
over, the joint placement and allocation of communications
resources considering multiple UAVs has not been addressed.

In [32], a slicing-aware multi-Drone Small Cell (DSC)
network has been proposed to minimize the resource usage
and meet differentiated QoS guarantees. A joint optimization
problem has been formulated to place the DSCs and define
suitable device associations. Still, the work has been focused
on the access network only and a fixed altitude has been
considered to reduce the problem complexity, which may
limit the quality of the solutions obtained. In [33], the
authors have introduced the problem of Progressive Network
Recovery (PNR). PNR is associated with the reallocation
and replacement of communications resources, made by
Mobile Network Operators when failures affect the network
infrastructure, so that the network slice requirements are
meet. The approach proposed to obtain the recovery sequence
has considered existing nodes and available connections
between them. We envision that the use of UAVs able
to provide on-demand resources within the Radio Access
Network (RAN)may be considered to improve efficiency and
ensure performance guarantees in PNR. In [34], a UAV has
been used as a relay to enable URLLC between a Base Station
and a UE with Line-of-Sight compromised due to an obstacle
between them, while an algorithm has been proposed to
define the bandwidth allocation and UAV placement. Besides
ensuring a single URLLC network slice using only one UAV,
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the iterative nature of the proposed algorithm conduces to
approximate solutions only. An optimization-based approach
to maximize the average data rate and minimize transmission
power, while meeting the requirements of a URLLC-based
network slice using a single UAV, has been proposed
in [35].

The synergy between Artificial Intelligence (AI) and
Machine Learning (ML) with network slicing has also been
envisioned in the literature [36]. On the one hand, AI and ML
techniques have been proposed to manage the network slices’
lifecycle, including preparation, planning, and operation.
On the other hand, network slicing has been proposed to
enable the usage of different AI services, while ensuring
efficient resource management. Resource management using
reinforcement learning (RL) and Deep RL algorithms has
been presented in [37] and [38], where different approaches,
according to the optimization objective and use cases, have
been analyzed, including for UAV networks. The authors
have raised scalability and practicability challenges of
applying RL and Deep RL techniques within this context,
especially regarding the high volume of data, massive number
of devices, and variable network size, which are exacerbated
due to the centralized approach typically employed by these
techniques. In [39], Machine Learning techniques have
been used for predicting resource requirements according
to the network traffic load, in order to reduce the number
of resources to be allocated and reduce costs. The main
disadvantage of the proposed techniques is associated with
the time complexity in fitting, especially for large data
sets; this motivates the design of heuristic-based solutions
with less complexity. In [40], user association and wireless
resource sharing in UAV networks have been addressed,
in order to maximize the total profit of Service Providers,
while satisfying the QoS constraints of mobile users and
taking into account the resource constraints of the UAVs
deployed by Mobile Network Operators. Due to the NP-hard
nature of the optimization problem formulated, the authors
have decomposed the user’s association and resource sharing
into two problems, which may compromise the quality of the
solutions obtained when compared with a joint optimization
approach.

Overall, the use of UAVs has been widely envisioned
in the literature as a key component of emerging wireless
networks. In 3GPP Release 16’s Integrated Access and
Backhaul (IAB) concept, UAVs have been proposed for
establishing backhaul networks, taking advantage of spectral
resources made available by fixed Base Stations [41]. In [42],
the potential of UAV networks compared with terrestrial
networks has been emphasized as an enabler for URLLC
communications in 6G networks, especially due to their
improved channel quality conditions, lower error probability,
and higher channel reliability [43]. When it comes to network
slicing in flying networks, the literature has been mostly
focused on UAVs that act as clients of Mobile Network
Operators’ infrastructures [44]. In a complementary way,
our research has been envisioning the integration of UAVs

into telecommunications infrastructures as communications
resources that can be deployed anywhere, anytime, in order
to meet the heterogeneous QoS requirements of any number
and type of network slices, using a shared airborne wireless
communications infrastructure. This also represents a step
forward with respect to our previous works. On the one hand,
for flying networks in general we have proposed novel traffic-
aware UAV placement [45], centralized routing [46], and
proactive queue management [47] algorithms that improve
the aggregate QoS offered using a best-effort based approach.
On the other hand, for slicing-aware flying networks, in [2]
we have proposed SLICER, an algorithm that allows the
computation of the minimum number of UAVs, their 3D
positions, and the amount of communications resources to be
provided in different geographical areas where network slices
with target QoS levels must be made available. Yet, SLICER
has been only focused on the FAPs providing wireless
connectivity to the ground users. The evolution of SLICER
for multi-hop flying networks allowing wireless coverage
extension, while enabling the joint placement and allocation
of FAPs and FGWs on-demand, has not been addressed so far.
Moreover, the performance achieved with SLICER has been
assessed using network simulations only. Evaluating the pro-
posed concept using an experimental testbed represents a step
forward.

III. SYSTEM MODEL AND PROBLEM FORMULATION
The flying access and backhaul network is assumed to be
organized into a two-tier architecture, as depicted in Fig. 2.
This architecture is designed to take advantage of short-
range wireless links that provide wireless channels with high
bandwidth and low inter-flow interference. Two types of
UAVs compose the flying access and backhaul network: 1)
the FAPs, which provide coverage-aware network slices to
the ground users; and 2) the FGWs, which forward the traffic
to/from the Internet using broadband wireless links, while
preserving the QoS guarantees of the network slices offered
by the FAPs to the ground users. The first tier consists of
the access network, which is composed of the FAPs, and the
second tier consists of the backhaul network, composed of
FGWs. The main notation used to formulate our problem is
presented in Table 1.

At the discrete time instant tk = k · 1t, k ∈ N0, where
1t � 1 s, the flying access and backhaul network can be
reconfigured. Let v ∈ V represent a communications node,
being it a UAV u ∈ U or a ground user r ∈ R positioned
within a cuboid C with dimensions X long, Y wide, and Z
high, as depicted in Fig. 3. UAVs U ⊂ V and ground users
R ⊂ V .
Cuboid C is subdivided into a set of N equal and smaller

fixed-size subcuboids, where n ∈ N represents a subcuboid
in which center a UAV may be located (cf. left-hand side
of Fig. 3). Let Pu = (xu, yu, zu) represent the position of
UAV u ∈ U . When used, UAV u can act as a FAP f ,
which is responsible for providing wireless connectivity to
ground users located at the base of cuboid C , or as a FGW g,
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FIGURE 2. Slicing-aware flying access and backhaul network composed of Unmanned Aerial Vehicles (UAVs). The Flying Access
Points (FAPs), in the first tier, provide a wireless access network to the ground users, while the Flying Gateways (FGWs), in the
second tier, establish a wireless backhaul network with the FAPs and forward the traffic to/from the Internet. The UAV placement
and communications resources allocation are jointly computed in a Central Station, deployed in the Cloud or at the Edge of the
flying access and backhaul network.

TABLE 1. Main notation used to formulate the problem addressed by this
article.

which is used to forward the traffic between the FAPs and the
Internet. Let U f represent the set of FAPs and Ug represent
the set of FGWs. Consequently, the FAP f belongs to the
subset U f

⊂ U , whereas the FGW g belongs to the subset
Ug
⊂ U . UAV u has available a total number ofWu wireless

channels with constant bandwidth B, in Hz. We assume that
B is the minimum channel bandwidth block per wireless
channel that can be used to carry traffic and depends on the
technology employed. The base of cuboid C is subdivided
into a given number of subareas of fixed size (cf. right-hand
side of Fig. 3). Let a ∈ A represent a subarea, where A is
the set of subareas that compose the base of the cuboid C .
Subarea a ∈ A is centered at Pa = (xa, ya, 0), where there
may be one ground user at maximum.

The wireless channel between the UAVs themselves and
the UAVs and the ground users is modeled by the Free-
space Path Loss model. We assume the wireless channel
is symmetric. The power PRu,v received at communications
node v from UAV u, in dBm, is given by (1), where PTu is the
transmission power of UAV u, in dBm, and GTu and GRv are
respectively the antenna gains of UAV u and node v, in dBi.
The path loss component PLu,v , in dB, is computed by means
of (2), where du,v is the Euclidean distance between UAV u
and node v, in meters, fu is the carrier frequency used by UAV
u, in Hz, and c is the speed of light in vacuum, in m/s.

PRu,v = PTu + GTu + GRv − PLu,v (1)

PLu,v = 20 · log10(du,v)+ 20 · log10(fu)+

+ 20 · log10

(
4 · π
c

)
(2)

The Signal-to-Noise Ratio (SNR) measured at node v from
UAV u, in dB, is given by SNRu,v = PRu,v−PNu,v , where PNu,v
is the noise power, in dBm, which we assume to be constant
for the channel bandwidth B. The capacity provided by each
wireless channel is equal to the data rate associated with the
Modulation and Coding Scheme (MCSu,v) index used for the
wireless link established between UAV u and node v. The
use of MCSu,v imposes a minimum SNRu,v, considering a
constant noise power PNu,v .

The number of independent wireless channels provided by
UAV u to node v at time instant tk is denoted by wu,v(tk ).
wu,v(tk ) must be lower than or equal to the total number Wu
of wireless channels available at UAV u, as defined in (3).∑

v∈V

wu,v(tk ) ≤ Wu,∀u ∈ U (3)

The number of UAVs providing resources to each
node v ∈ V at time instant tk is denoted by Ku,v(tk ).
We assume that node v ∈ V is served by one and only
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FIGURE 3. Illustrative networking scenario (3D representation on the left-hand side) composed of multiple ground users
(blue squares) served by a flying access and backhaul network composed of a FAP (green star) and a FGW (orange circle).
The ground users are associated with two network slices s ∈ S made available in different subareas a ∈ As at the base of
cuboid C (2D representation on the right-hand side).

one UAV u, as stated in (4).

Ku,v(tk ) = 1,∀u ∈ U ,∀v ∈ V (4)

The indicator function 1u(tk ), defined in (5), denotes
whether UAV u serves any node v ∈ V at time instant tk .

1u(tk ) =
{
1, if

∑
v∈V wu,v(tk ) > 0

0, otherwise
(5)

Let us consider that a Service Provider rents a set of
network slices from a Mobile Network Operator, in order to
offer online services to the ground users located in area A,
as depicted in Fig. 3. Let s ∈ S represent a network slice,
where S is the set of network slices. We assume that each
subarea a ∈ A, occupied by a ground user in its center,
is associated with a single network slice s, but a network slice
s can cover multiple subareas a ∈ A. As such, network slice
s enables the use of a service made available in area As ⊂ A.
The area As associated with network slice s is the union of a
set of fixed-size subareas a ∈ A. Let ra represent the ground
user located in the center of area a ∈ As. In turn, v ∈ V s

represents a communications node (ground user or UAV) that
either uses or provides communications resources to network
slice s ∈ S.
The average traffic demand enabled in subarea a ∈ As by

network slice s is T s. As such, for each node v ∈ V s, the
average data rate when served by a given UAV u must be
higher than or equal to the average data rate T s demanded
by network slice s, as given by (6). cu,v(tk ) represents the
bidirectional network capacity provided by awireless channel
with constant channel bandwidth B, in terms of the amount
of bit/s carried between UAV u and node v.∑

u∈U

cu,v(tk ) · wu,v(tk ) ≥ T s,∀v ∈ V s,∀s ∈ S (6)

The relation between the minimum SNRu,v from UAV
u measured in node v ∈ V s required for using MCSu,v
is considered, taking into account target Bit Error Rate
(BER) values according to the requirements of network
slice s. For improved reliability, higher SNR values must
be ensured so that a lower BER is achieved [48]. For
illustrative purposes, BER equal to 10-10 is considered for
a URLLC network slice type, while BER equal to 10-5 is
employed for an eMBB network slice type. The relation
between SNRu,v andMCSu,v for different target BER values is
presented in Fig. 4, considering the IEEE 802.11ac standard,
800 ns Guard Interval (GI), 20MHz channel bandwidth, and
20 dBm transmission power. The minimum SNRu,v required
to use each MCSu,v index was obtained by means of ns-3
simulations, considering node v generating UDP Poisson
traffic towards UAV u. For each target BER value, an ns-3
simulation run, in which the UAV u was moving away from
the node v, was carried out. The successively increased
Euclidean distance between UAV u and node v led to the
degradation of SNRu,v and induced the selection of suitable
MCSu,v indexes. This allowed establishing the relationship
between different SNRu,v values and the MCSu,v indexes
selected for each targeted BER value. The IdealWifiManager
mechanism of ns-3 was used as the Medium Access Control
(MAC) automatic rate selection mechanism, since it allows
to configure target BER values. The wireless link established
between node v and UAV u was modeled by the Free-space
Path Loss model.

Since the relation between SNRu,v and MCSu,v is stepwise
(cf. solid blue lines in Fig. 4), making the problem intractable
and complex to solve mathematically, we modeled it as a
continuous function using a linear regression (cf. dashed
black lines in Fig. 4), which is a function that closely fits the
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FIGURE 4. Wireless channel capacity modeled by linear regressions
between the SNR and the data rate associated to the IEEE 802.11ac MCS
indexes, considering 20 MHz channel bandwidth.

data. cu,v(tk ) changes according to the location of node v ∈ V s

and the position of UAV u, since both influence SNRu,v.
For the node v ∈ V s, the traffic being forwarded by UAV

u is modeled by an M/D/1 queue Qu,v (Poisson arrival, deter-
ministic service time, 1 server) [49]. Traffic arrives at queue
Qu,v with arrival rate λu,v packet/s and is served with a service
rateµu,v packet/s. The average delayDu,v(tk ) of a packet gen-
erated by node v ∈ V s at time instant tk is computed using (7).

Du,v(tk ) =
1
µu,v
·

ρu,v

2 · µu,v · (1− ρu,v)
· 1u(tk ),

∀u ∈ U ,∀v ∈ V s,∀s ∈ S (7)

where:
ρu,v =

λu,v
µu,v

< 1, λu,v 6= 0,∀u ∈ U ,∀v ∈ V s,∀s ∈ S
µu,v =

∑
u∈U cu,v · wu,v,∀v ∈ V

s,∀s ∈ S
For each node v ∈ V s, the average packet delay when

served by a given UAV u must be lower than or equal to the
maximum average packet delay H s associated with network
slice s, as given by (8).

Du,v · 1u(tk ) ≤ H s,∀u ∈ U ,∀v ∈ V s,∀s ∈ S (8)

Herein, we consider average QoS values for illustrative
purposes, but an SLA established with a Mobile Network
Operator can also refer maximum values (e.g., the longest
packet delay among all packet delay values) or median values
(e.g., 50th percentile of the frequency distribution of packet
delays) [50].

The problem addressed by this article consists in minimiz-
ing the cost of deploying a slicing-aware flying access and
backhaul network able to meet the coverage and QoS levels
of any network slice s ∈ S, including aminimum average data
rate T s and a maximum average packet delayH s. Solving this
problem includes determining the minimum number of UAVs

to use, including FAPs and FGWs, their 3D positions, and the
number of wireless channels they provide. We assume that
there is a set of N predefined 3D positions where potential
UAVs are placed. Placing a FAP f ∈ U f at Pu, at time instant
tk , has a fixed cost F f , where F f is a constant associated
with the usage of FAP f . Similarly, placing a FGW g ∈ Ug

at Pu, at time instant tk , has a fixed cost Fg, where Fg is a
constant associated with the usage of FGW g. The costs F f

and Fg may be defined according to multiple criteria, such as
the cost of the hardware carried on board the UAV, the type of
UAV (FAP or FGW), and the operating cost of each UAV. The
solution aims at ensuring that each FAP provides sufficient
communications resources to meet the requirements of the
ground users served, each associated with a given network
slice. In turn, the communications resources provided by
each FAP must also be made available in the wireless link
established between the FAP and the corresponding FGW,
in order to meet the QoS requirements associated with each
network slice in the access and backhaul networks.

Accomplishing a slicing-aware flying access and backhaul
network involves multiple research challenges, including: 1)
meeting the different QoS levels of multiple network slices
on top of a shared physical wireless network infrastructure;
2) determining the minimum number of UAVs required and
their placement, in order to simultaneously provide coverage
with minimum targeted SNR values to multiple network
slices made available in different geographical areas; and 3)
achieving a global admissible solution for the placement and
allocation of communications resources, formulated as an
optimization problem, in a time compliant with the network
reconfiguration period, while ensuring the minimum number
of UAVs and wireless channels required to meet the QoS
levels of multiple network slices.

Our optimization problem, including the objective func-
tion, is defined in (9).

minimize
wg,f (tk ),1g(tk ),wf ,ra (tk ),1f (tk )

∑
g∈Ug

Fg · 1g(tk )

+

∑
f ∈U f

F f · 1f (tk ),∀a ∈ A (9a)

subject to:
∑
f ∈U f

wg,f (tk ) ≤ Wg,∀g ∈ Ug (9b)

∑
g∈Ug

cg,f (tk ) · wg,f (tk )≥cf ,ra (tk ) · wf ,ra (tk ),

∀f ∈ U f ,∀a ∈ As,∀s ∈ S (9c)

Kg,f (tk ) = 1,∀g ∈ Ug,∀f ∈ U f (9d)∑
a∈As

wf ,ra (tk ) ≤ Wf ,∀f ∈ U f (9e)∑
f ∈U f

cf ,ra (tk ) · wf ,ra (tk ) ≥ T
s,∀a ∈ As,

∀s ∈ S (9f)

Kf ,ra (tk ) = 1,∀f ∈ U f ,∀a ∈ As,∀s ∈ S

(9g)
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Df ,ra · 1f (tk )+ Dg,f · 1g(tk )≤H
s,∀f ∈U f ,

∀g ∈ Ug,∀a ∈ As,∀s ∈ S (9h)

1f (tk )+ 1g(tk ) ≤ 1,∀f ∈ U f ,∀g ∈ Ug

(9i)

In optimization problem (9), the objective function (9a)
minimizes the overall cost of deploying a slicing-aware flying
access and backhaul network, which consists of the sum of
the costs associated with the FGWs and FAPs used at any
time instant tk . Solving the problem includes identifying the
potential UAVs to actually use and their role (whether FAP
or FGW) in the slicing-aware flying access and backhaul
network, considering the following constraints at any time
instant tk :
• (9b) ensures that the number of wireless channels
provided by FGW g to FAP f is lower than or equal
to the total number of wireless channels available
at FGW g.

• (9c) ensures that the capacity, in bit/s, of the wireless
links established between FGW g and FAP f is higher
than or equal to the capacity, in bit/s, of the wireless
link established between FAP f and the ground user in
the center of subarea a ∈ As, in order to meet the QoS
requirements of the network slice s ∈ S.

• (9d) ensures that FAP f is served by one and only one
FGW g.

• (9e) ensures that the number of wireless channels
provided by FAP f to the ground user in the center of
subarea a ∈ As is lower than or equal to the total number
of wireless channels available at FAP f .

• (9f) ensures that the capacity, in bit/s, of the wireless
links established between FAP f and the ground user in
the center of subarea a ∈ As is higher than or equal to
the minimum average data rate enabled by network slice
s ∈ S.

• (9g) ensures that the ground user in the center of subarea
a ∈ As is served by one and only one FAP f .

• (9h) ensures that the average packet delay, in seconds,
carried between the ground user in the center of subarea
a ∈ As and FGW g, through FAP f , is lower than or
equal to the maximum average packet delay enabled by
network slice s ∈ S.

• (9i) ensures that a potential UAV u can only perform the
role of FAP or FGW at the same time.

The objective function (9a) allows to minimize the
number of UAVs used, since we are focused on minimiz-
ing the cost of deploying a slicing-aware flying access
and backhaul network. In order to improve the spectral
efficiency, the objective function can be evolved as future
research to optimize the number of wireless channels
used by UAV.

IV. SurFABle ALGORITHM
In order to place and allocate communications resources
in slicing-aware flying access and backhaul networks,
we propose the SurFABle algorithm. SurFABle is intended

to run in a Central Station deployed in the Cloud or at
the Edge of the flying access and backhaul network. The
Central Station is in charge of sending the up-to-date UAV
positions and network configuration computed by SurFABle.
The FAPs and the FGWs position and reconfigure themselves
based on the information received. For exchanging data
between the Central Station and the UAVs, an out-of-
band long-range wireless channel (e.g., based on IEEE
802.11ah) is used. It allows for an always-on control link,
even when the flying access and backhaul network is being
reconfigured, and avoids introducing overhead in the access
and backhaul network. The design of the out-of-bandwireless
communications solution is beyond the scope of this article.
Inspired by the capacitated facility location problem [51],

a classical optimization problem that aims at selecting the
best among potential locations for a factory or warehouse,
SurFABle initially represents the venue where UAVs can be
deployed as a cuboid C (step 1 of Algorithm 1). Cuboid C is
divided into a set of N smaller subcuboids, each associated
with a potential UAV deployed at Pu (step 2), and M ground
subareas (step 3), each occupied by a ground user in the
central position. Any potential UAV is suitable to act as a
real FAP or FGW, if it is part of the final solution determined
by SurFABle. Each ground user is associated with a known
traffic demand, in bit/s, and amaximum average packet delay,
in seconds, both of which are values associated with the SLA
of a given network slice s ∈ S.
In order to solve the problem, SurFABle calculates the

SNR of the wireless links that can be established between
each potential UAV and the ground user in the center of
each subarea a ∈ As, as well as between the potential
UAVs themselves (step 4). Then, it calculates the network
capacity that can be achieved when using the minimum
channel bandwidth block that each potential UAV can
provide (step 5). The minimum channel bandwidth block
is a configuration parameter that can be specified whether
in terms of the number of Orthogonal Frequency-Division
Multiple Access (OFDMA) Resource Units (RUs) for IEEE
802.11ax or 5G New Radio (NR), or in terms of the number
of 20MHz wireless channels for IEEE 802.11.

SurFABle uses a state of the art solver to identify the
potential UAVs to actually use, their role in the flying access
and backhaul network, whether FAP or FGW, and the number
of wireless channels to be made available by each UAV. Each
potential UAV has a given cost and a limited number of
wireless channels available. The objective is to minimize the
cost of deploying a slicing-aware flying access and backhaul
network. The solver must simultaneously ensure that 1) each
network slice’s SLA is met and 2) the capacity of each UAV
in terms of the total number of wireless channels available is
not exceeded (step 6).

The GurobiTM [52] optimizer is used in the current version
of SurFABle. A cost of 1000 and a set of 8×20MHz wireless
channels per potential UAV, which enable a total channel
bandwidth of 160MHz, were considered. As shown in Fig. 3,
the resulting solution determined by SurFABle consists of the
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Algorithm 1 SurFABle – Slicing-aware Flying Access and
Backhaul Network
Input:

i) Venue dimensions (m3)
ii) Number of wireless channels and channel bandwidth

(Hz) available per potential UAV
iii) User density (users/m2) per network slice
iv) Traffic demand (bit/s) per network slice
v) Maximum packet delay (s) per network slice

Output:
i) FAPs and FGWs positions (3D Cartesian coordinates)
ii) Number of wireless channels provided by each FAP

and FGW
iii) Association between FGWs, FAPs and ground users

served

Steps:
1: Represent the venue as a cuboid C
2: Discretize cuboid C into N subcuboids centered at Pu
3: Discretize base of C intoM subareas a ∈ A
4: Compute SNRu,v for the wireless link available

between the potential UAVs themselves and between
the potential UAVs and the ground users

5: Compute the network capacity cu,v that each potential
UAV can provide using the available wireless links

6: Solve optimization problem (9) using a state of the art
solver

7: Assign wireless channels

UAVs acting as FAPs or FGWs, which are associated with a
known 3D location, and the number of wireless channels that
they must provide to each subarea. When a potential UAV
does not provide resources to any of the subareas, its cost
is zero, and it is not used in the flying access and backhaul
network.

As a precise network resource allocation is not possible in
some technologies, such as IEEE 802.11, where the channel
bandwidth must be an integer multiple of 20MHz, SurFABle
allocates resources employing a heuristic-based channel
assignment approach (step 7). This channel assignment
approach also allows for a reduction in the overall bandwidth
used while ensuring the QoS guarantees. To that end, each
wireless channel is assigned to as many subareas as possible,
in order to reduce the overall bandwidth used by sharing
the available spectral resources. The channel bandwidth
allocated to each subarea is computed by multiplying the
number of wireless channels derived from the optimization
problem (9) with the minimum channel bandwidth block
enabled by the technology used. Fig. 5 shows an illustrative
example for a network slice s ∈ S. Without the channel
assignment approach employed by the SurFABle algorithm,
the total bandwidth required is 140MHz, as shown in Fig. 5a.
This baseline channel assignment approach takes into account
different 20MHz wireless channels assigned to each subarea

FIGURE 5. Resource allocation performed by SurFABle, considering the
minimum channel bandwidth block equal to 20 MHz [2].

a ∈ As. The higher the number of subareas a ∈ As the
higher the total channel bandwidth required – each row
in Fig. 5a corresponds to a subarea a ∈ As. However, because
the bandwidth used for each subarea a ∈ As is far from
the full channel bandwidth available, this baseline channel
assignment approach has a reduced spectral efficiency. With
SurFABle’s channel assignment, the total bandwidth used
is reduced to 100MHz. This is accomplished by using the
maximum available bandwidth of each wireless channel
while assigning the same wireless channel to the maximum
number of subareas a ∈ As, as shown in Fig. 5b.
The forwarding tables of the FAPs, used to exchange data

traffic between the ground users and the assigned FGW in
a two-hop architecture, are defined by the RedeFINE routing
protocol [46]. Finally, the flying access and backhaul network
is reconfigured accordingly.

The spatial component of the problem solved by SurFABle
is related with the number of communications resources to
allocate to each subarea. For that purpose, we consider that
each ground user, placed in the center of a given subarea
a ∈ As, represents the aggregate traffic generated within that
subarea. We considered this approach since we assume the
SLA established between a Service Provider and a Mobile
Network Operator includes information on the number of
users per area unit, in user/m2. Moreover, a precise location
of the ground users is typically not known and can include
some deviations between the expected and the real positions
over time. The discretization of the space into subareas
allows to overcome these challenges, and it can be fine-
tuned according to multiple criteria; this aspect is left for
future work.
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Regarding the spectrum component, SurFABle was
designed with recently released and emerging wireless
technologies in mind, such as 5G NR and IEEE 802.11ax,
in which the number of spectral resources is expressed as
the number of RUs, called generically as wireless channels
herein. This allows to accurately allocate the number of
wireless channels computed by SurFABle using minimum
channel bandwidth, since each RU is typically characterized
by a few kHz of channel bandwidth. The smaller the
bandwidth of the available channels the more efficient
SurFABle is, since it allows to reduce the underused spectrum
per wireless channel.When legacy technologies such as IEEE
802.11 are used, which do not allow to define a precise
channel bandwidth per subarea, the channel assignment
approach employed by SurFABle allows to reduce the overall
bandwidth required. This makes SurFABle agnostic to the
technology used by the flying access and backhaul network.

V. PERFORMANCE EVALUATION
The performance evaluation of the SurFABle algorithm is
described in this section. Firstly, we explain the evaluation
methodology. Secondly, we characterize the networking
scenarios and the state of the art counterparts considered.
Thirdly, we present and discuss the ns-3 simulation results.
Fourthly, we detail the experimental setup. Fifthly, we present
and discuss the experimental results.

A. METHODOLOGY
A theoretical performance evaluation requires many simplifi-
cations, due to the high complexity of the problem addressed
by this article. It potentially leads to unrealistic results. For
this reason, the performance evaluation of the SurFABle algo-
rithm was carried out by means of ns-3 simulations and an
experimental testbed. On the one hand, the ns-3 simulations
allow to evaluate the performance of SurFABle in complex
networking scenarios, characterized by high variability
regarding the communications nodes’ positions and network
configurations. The ns-3 simulator [6] was chosen due to a)
its accurate models for wireless networks that lead to realistic
results and b) its wide acceptance by the scientific commu-
nity. On the other hand, the experimental testbed allows to
validate in the real-world the results obtained by means of
ns-3 simulations for representative networking scenarios.

The performance evaluation considers three performance
metrics:
• Throughput: the average number of bits received per
second by the sink application at the FGWs, in bit/s.

• Packet Delivery Ratio (PDR): the average ratio
between the number of packets received by the sink
application at the FGWs and the number of packets
generated by the source application at the ground users.

• Delay: the average time interval since the packets are
generated by the source application at the ground users
until they reach the sink application at the FGWs.
It includes queuing, transmission, and propagation
delays.

The average values of throughput, packet delivery ratio
(PDR), and packet delay for each network slice were
measured every second for each performed experiment.
The results are represented by means of the Cumulative
Distribution Function (CDF) for the packet delay and by
the complementary CDF (CCDF) for the throughput and
PDR. The CDF F(x) represents the percentage of samples
for which the delay is lower than or equal to x, while the
CCDF F ′(x) represents the percentage of samples for which
the throughput and PDR are higher than x.

B. NETWORKING SCENARIOS
Three sets of networking scenarios were considered: 1) five
scenarios composed of 5 ground users; 2) five scenarios
composed of 20 ground users; and 3) five scenarios composed
of 40 ground users. In all networking scenarios, each ground
user was randomly associated to a network slice type
(whether eMBB or URLLC) and randomly positioned on
the ground of a venue with dimensions up to X = 100m,
Y = 100m, Z = 20m. The number of subareas was
determined by taking into account the occupation of the base
of the cuboid C (area A) equal to 5%, 20%, and 40% of the
total area available. Each ground user was identified by a
traffic demand T s equal to 4Mbit/s, 8Mbit/s or 20Mbit/s,
which correspond to respectively 5%, 10%, and 25% of the
data rate associated with the highest MCS index for 20MHz
channel bandwidth, 800 ns Guard Interval, and single spatial
stream wireless links (78Mbit/s). In the ns-3 simulations,
we assumed BEReMBB = 10-5 and BERURLLC = 10-10, which
define the minimum SNR values required for transmitting a
frame using any MCS index with the network configuration
employed.

We consider that each networking scenario is composed
of static ground users, each representing the aggregate
traffic generated within the subarea it is placed. Each
networking scenario corresponds to a snapshot of the flying
access and backhaul network at tk = k · 1t, k ∈ N0,
where the network reconfiguration period is 1t � 1 s.
In a real-world deployment, each network reconfiguration
entails solving the problem again to find an up-to-date
solution. 1t is a networking scenario parameter that can
be adjusted to achieve a trade-off between the stability of
the flying access and backhaul network, the performance
requirements defined by the SLAs of the network slices
offered, and the time required to determine a suitable
solution for the placement and allocation of communications
resources.

The details regarding the network configurations employed
in the evaluation using ns-3 simulations and the experimental
testbed are presented in Table 2.

Two network slice types were considered:

• eMBB network slice, designed to enable the use of
rich-media applications (e.g., video streaming) with
an average throughput of 20Mbit/s per ground user
(subarea) and an average delay up to 100ms.
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TABLE 2. Networking parameters used in the evaluation of the SurFABle
algorithm. IEEE 802.11 was used due to its ubiquity, cost-effectiveness,
and the flexibility it offers for evaluating network performance in both
simulation and experimentation, using the same exact conditions. Yet, the
problem formulation and SurFABle are agnostic to the technology used.

• URLLC network slice, designed to enable the use of
mission-critical applications (e.g., communications for
first-responders) with an average throughput of 4Mbit/s
(evaluation using ns-3 and the experimental testbed),
and 8Mbit/s (evaluation in ns-3 only) per ground user
(subarea) and average delay up to 10ms.

The lower target throughput values (4Mbit/s) considered
in the joint evaluation in ns-3 and in the experimental testbed
were due to the reduced channel bandwidth enabled by the
hardware used in the testbed. This motivated the definition
of less demanding throughput requirements to reach at
least one possible solution for the networking scenarios
employed. It is worth noting that this does not compromise
the validity of the performance evaluation carried out, since
the same exact conditions were considered in the networking
scenarios subject to joint evaluation in ns-3 and using the
testbed.

The two types of network slices were defined to take into
account networking performance requirements imposed by
representative applications. Yet, the optimization problem
formulated in (9) and the SurFABle algorithm are valid
for any number and type of network slices, as well as
different network performance requirements. This is a step
forward with respect to the literature, such as the approach
used by IEEE 802.11e, which provides four different QoS
classes only, according to the traffic type, but does not
allow to ensure different QoS guarantees for traffic flows of
the same type.

C. STATE OF THE ART COUNTERPARTS
We considered three state of the art counterparts in the
performance evaluation. All the state of the art counterparts
ensure that each used UAV provides network resources only
to subareas that belong to the same network slice s ∈ S so
that resource isolation is guaranteed. This ensures that each
network slice represents an independent network in practice.

The following state of the art counterparts were considered:
• k-means clustering. This approach allows providing
each subarea with at least the same amount of
channel bandwidth calculated by SurFABle. However,
it defines a non QoS-aware placement for the FAPs.
This potentially leads to wireless links not having a
high enough SNR to allow for a network capacity
capable of accommodating the offered traffic.Moreover,
it requires as many UAVs as the number of clusters of
subareas formed. This state of the art counterpart aims at
showing that the independent allocation and placement
of communications resources does not allowmeeting the
targeted performance requirements and leads to a greater
amount of communications resources needed.
First, the k-means clustering algorithm defines |K |
random positions as clusters’ centroids. Then, it assigns
each subarea a ∈ As to the nearest cluster by calculating
distances to clusters’ centroids. After that, it determines
the up-to-date cluster’s centroid by computing the
average position among the assigned subareas, which
is the position where a FAP must be placed, at 10m
altitude – since the height of the cuboidC considered for
deploying the UAVs is 20m, in the k-means clustering
algorithm we considered the FAPs, in the first tier, are
placed at 10m altitude, while the FGWs, in the second
tier, can be placed up to 20m altitude.
Each FAP must provide the cluster’s subareas with the
minimum channel bandwidth computed by SurFABle
for the same exact subareas, using up to 160MHz
channel bandwidth. When any FAP does not have
enough channel bandwidth available, |K |, initially set
to 1, is successively increased by 1 and the k-means
clustering algorithm is run again until all FAPs are
able to provide the required channel bandwidth. The
algorithm is run independently for each network slice
s ∈ S, in order to ensure resource isolation. As such,
the number of clusters (|K |) can be different for each
network slice s ∈ S.
After the placement of the FAPs is determined by
means of the k-means clustering algorithm, theGateWay
Placement (GWP) algorithm [53] is used to determine
the placement of a FGW serving all the FAPs associated
with the same network slice s ∈ S. GWP enables
wireless links between the FAPs and the FGWwith high
enough capacity to accommodate the traffic forwarded
by the FAPs. Each FGW is configured with 160MHz
channel bandwidth, which is the maximum channel
bandwidth enabled by legacy IEEE standards. In this
solution each UAV serves a single network slice. GWP

VOLUME 10, 2022 128933



A. Coelho et al.: Algorithm for Placing and Allocating Communications Resources

FIGURE 6. Simulation average performance results for five networking scenarios composed of 5 subareas randomly associated to URLLC (8 Mbit/s)
and eMBB (20 Mbit/s) network slices, considering UDP Poisson traffic.

FIGURE 7. Simulation average performance results for five networking scenarios composed of 20 subareas randomly associated to URLLC (8 Mbit/s)
and eMBB (20 Mbit/s) network slices, considering UDP Poisson traffic.

implies the use of a single FGW for each network slice;
independently allocating and placing communications
resources to the access and backhaul networks increases
the number of UAVs used.

• Geometric center. This state of the art counterpart
provides an independent network for the ground users
that belong to each network slice. It aims at showing that
a best-effort coverage-aware service may be insufficient
to meet the requirements associated with each network
slice, especially when the placement of the UAVs does
not ensure a high enough SNR value for each subarea
and the amount of communications resources is insuffi-
cient to meet the targeted performance requirements.
This state of the art counterpart uses one FAP and
one FGW for each network slice s ∈ S, placed in
the geometric center of all subareas a ∈ As. For
each network slice, the FAP is hovering at altitude of
10m, while the FGW is hovering exactly above the
FAP at altitude of 20m. The FAPs make available a
wireless channel with the minimum channel bandwidth
computed by SurFABle, while the FGW provides
the maximum possible channel bandwidth in IEEE
802.11, equal to 160MHz. From the communications
perspective, placing a UAV at the geometric center of
all ground users that belong to the same network slice
s ∈ S allows maximizing the SNR offered to them.

• Per network slice QoS-aware. This counterpart
approach aims at showing that allocating and placing
communications resources to each network slice
independently implies using more communications
resources than making the joint placement and alloca-
tion of communications resources to multiple network
slices, as SurFABle does.

The per network slice QoS-aware approach considers
that the SurFABle algorithm runs independently for each
network slice s ∈ S. As such, it provides the exact
amount of communications resources required for each
network slice s ∈ S, while not sharing communications
resources among different network slices. In the same
way as the geometric center approach, it provides an
independent network for each network slice s ∈ S;
however, this solution is aware of the QoS requirements
associated with each network slice s ∈ S.

It must be noted that the slicing-aware approach employed
by SurFABle is achieved using different wireless channels
with channel bandwidth equal to 20MHz (minimum channel
bandwidth block allowed in IEEE 802.11). As such,
considering an illustrative example where a channel
bandwidth of 60MHz is required to serve the ground
users, SurFABle uses three wireless channels of 20MHz,
totaling 60MHz. On the other hand, since the k-means
clustering and geometric center approaches use a single
wireless channel per UAV, a channel bandwidth of 80MHz
is required, because it is not possible to configure a
channel bandwidth of 60MHz in IEEE 802.11. For this
reason, the k-means and geometric center approaches tend
to use more communications resources than the SurFABle
algorithm.

D. SIMULATION RESULTS
The simulation results considering UDP traffic are presented
in Fig. 6, Fig. 7, and Fig. 8, whereas the simulation results
for TCP traffic are presented in Fig. 9, Fig. 10, and Fig. 11.
They demonstrate that SurFABle (represented by the green
circle and square markers) enables meeting the target QoS
levels associated with the eMBB (20Mbit/s) and URLLC
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FIGURE 8. Simulation average performance results for five networking scenarios composed of 40 subareas randomly associated to URLLC (8 Mbit/s)
and eMBB (20 Mbit/s) network slices, considering UDP Poisson traffic.

FIGURE 9. Simulation average performance results for five networking scenarios composed of 5 subareas randomly associated to URLLC (8 Mbit/s)
and eMBB (20 Mbit/s) network slices, considering TCP traffic.

FIGURE 10. Simulation average performance results for five networking scenarios composed of 20 subareas randomly associated to URLLC (8
Mbit/s) and eMBB (20 Mbit/s) network slices, considering TCP traffic.

FIGURE 11. Simulation average performance results for five networking scenarios composed of 40 subareas randomly associated to URLLC (8
Mbit/s) and eMBB (20 Mbit/s) network slices, considering TCP traffic.

(8Mbit/s) network slices. For 5 subareas and UDP traffic,
all solutions allow meeting the target QoS levels (cf. Fig. 6),
especially due to the low demand in terms of communications
resources that characterize these scenarios. For this reason,
the k-means clustering (represented by the yellow plus and
orange crossed markers) and geometric center (represented
by the reddish asterisk and star markers) approaches over-
provision communications resources, enabling delay lower
than 0.6ms. The network performance achieved when
using k-means clustering and geometric center degrades
significantly for TCP traffic when considering 5 subareas

(cf. Fig. 9), and for UDP and TCP as the number of subareas
increases (cf. Fig. 7, Fig. 8, Fig. 10, and Fig. 11). On the one
hand, the increase in the number of subareas leads to a greater
demand for communications resources. On the other hand,
due to its congestion control mechanism, TCP dynamically
adjusts the traffic offered to the Internet Protocol (IP) layer
so that the channel is fully utilized but not saturated. This
justifies the lower throughput, PDR, and delay measured
when using the state of the art counterparts (cf. Fig. 9 to
Fig. 11). In turn, the per network slice QoS-aware approach
(blue downward-pointing triangle and diamond markers)
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FIGURE 12. Average bandwidth and number of UAVs used in networking
scenarios composed of 5, 20, and 40 subareas randomly associated to
URLLC (8 Mbit/s) and eMBB (20 Mbit/s) network slices, including 95%
confidence intervals.

brings the network performance closer to SurFABle in all
scenarios, at the expense of using more UAVs.

When comparing the solutions in terms of average
bandwidth and number of UAVs used (cf. Fig. 12), the results
show that SurFABle (represented by the green horizontal
line) uses only two UAVs (one FAP plus one FGW) and
requires the least amount of channel bandwidth. This is
achieved by ensuring a suitable placement for the FAPs and
FGWs, and the allocation of multiple wireless channels with
the minimum channel bandwidth block available (20MHz
in IEEE 802.11), which allows for reducing the wasted
channel bandwidth per wireless channel. On the other hand,
although the geometric center approach (represented by the
red diagonal line) uses twice the number of UAVs (two FAPs
plus two FGWs) with respect to SurFABle – Fig. 12, the
network performance is significantly degraded as the number
of subareas grows, as observed in the performance results
from Fig. 6 to Fig. 11. The k-means clustering algorithm
(represented by the orange vertical line in Fig. 12) defines
a non-QoS aware placement for the FAPs. Even though it
uses the highest number of UAVs and channel bandwidth,
this does not result in better network performance. From the
communications perspective, the k-means clustering algo-
rithm provides the same SNR to all subareas within the same
cluster, but it does not guarantee target SNR values, due to
its non QoS-aware placement approach. As such, the wireless
linksmay not have theminimumSNR necessary to induce the
MCS indexes capable of meeting the targeted performance
requirements in some networking scenarios. Moreover, the

channel bandwidth calculated using SurFABle, which con-
siders the joint placement and allocation of communications
resources, is insufficient to achieve a network capacity
high enough to accommodate the traffic offered when the
independent resource allocation and placement made by the
k-means clustering algorithm is employed. The problem is
exacerbated because the wireless channel made available
by each FAP is not shared among subareas that belong
to different clusters, which leads to wasted bandwidth in
underused wireless channels. The performance degradation
observed when employing the k-means and geometric center
approaches is overcome by the per network slice QoS-aware
approach – Fig. 7 to Fig. 11. It uses the SurFABle algorithm
to compute the amount of channel bandwidth and placement
of the UAVs for each network slice independently. However,
the independent placement and allocation of communications
resources employed by the per network slice QoS-aware
approach results in four UAVs required (cf. blue wave line
in Fig. 12b) – twice as many UAVs when compared to
SurFABle, which employs a slicing-aware approach.

Despite the reduced amount of communications resources
used, SurFABle allows achieving higher network perfor-
mance. This is attained by ensuring a suitable placement
of the FAPs and FGWs, and the allocation of a given
number of channels with the minimum channel bandwidth
block possible for the wireless communications technology
employed (multiples of 20MHz in the case of IEEE 802.11).
This represents a significant advantage when compared with
approaches that aim at improving the aggregate network
performance offered, as the geometric center approach. The
geometric center approach assigns to all subareas of each
network slice a single wireless channel with up to 160MHz
bandwidth, which is not enough in some networking
scenarios and lead to underused channel bandwidth in others.

E. EXPERIMENTAL SETUP
The performance achieved when using the SurFABle
algorithm was also evaluated by means of an experimental
testbed. The ground users’ communications nodes consisted
of Raspberry Pi devices running the Raspberry Pi Operating
System (OS) [54], each equipped with a Panda Wireless
N600 [55] IEEE 802.11 Network Interface Card (NIC) con-
nected through Universal Serial Bus (USB); the NICs were
configured in Infrastructure mode as IEEE 802.11 Stations
(STAs). Each FAP consisted of a TP-Link TL-WR902AC
v3 [56] IEEE 802.11 Access Point (AP) with two built-in
independent NICs, running the OpenWrt Operating System
(OS) [57]. All the communications nodes were able to
operate at 2.4GHz and 5GHz. The Raspberry Pi devices
were selected due to their cost-effectiveness and portability.
In addition, the TP-Link TL-WR902AC v3 [56] AP model
was selected due to its low weight, small dimensions, and
low power consumption, which make it suitable to be used as
a FAP. The experimental testbed is depicted in Fig. 13. The
network configuration parameters of the experimental testbed
are presented in Table 2.
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FIGURE 13. Ground users’ communications nodes deployed in the
experimental testbed.

Without loss of generality, we carried out the performance
evaluation of SurFABle in the real-world using an access
network composed of ground communications nodes only,
in order to rule out the challenges associated with scalability
and logistics that a greater number of communications nodes
in a more complex network would require. Line-of-Sight
between the communications nodes was ensured, in order to
reproduce the Free-space Path Loss model considered in the
theoretical system modeling.

F. EXPERIMENTAL RESULTS
In order to evaluate the performance achieved when using
the SurFABle algorithm, the wireless channel was first
modeled in terms of the data rate achieved for different SNR
values, as described in Section V-F1. Then, the network
performance was assessed in terms of throughput, PDR, and
delay, considering five networking scenarios composed of
five static ground users’ communications nodes, as presented
in Section V-F2. The iPerf3 tool [58] was used to 1) generate
UDP Constant Bit Rate (CBR) traffic from the ground users’
communications nodes towards the FAPs and 2) measure
the throughput and PDR. The ping tool [59] was used to
measure the Round-Trip Time (RTT); herein, we assume
that the delay is equal to half the measured RTT, since
we assume symmetric wireless links. The Internet Control
Message Protocol (ICMP) packets of ping were generated
with a periodicity of 100ms, with no other traffic being
exchanged simultaneously in the network.

1) CHANNEL MODELING
In order to determine the data rate achieved in practice
for different SNR values, experimental measurements were
performed for different distances between a ground user
and a FAP. The measurements were carried out using
two ground communications nodes in Line-of-Sight at
different distances from each other, as presented in the data
labels of Fig. 14.

FIGURE 14. Experimental wireless channel capacity modeled by linear
regressions between SNR and data rates obtained in practice. The data
labels at each marker refer to the Euclidean distances, in meters,
between the sender and the receiver considered in the experimental
measurements.

Considering the set of SNR values and experimental
data rates measured, linear regressions, which closely fit
the experimental data obtained, were plotted. The linear
regressions allow to define a continuous function for
modeling the stepwise relation between SNR and the MCS
indexes. This allowed to compute the data rate expected in
practice for different SNR values by means of the empirical
function obtained.Multiple measurements were carried out in
a low noise environment and in a noisier environment, which
led to respectively: 1) a more optimistic linear regression
(cf. Fig. 14a), in which a lower SNR value is required to
achieve a target data rate; and 2) a more pessimistic linear
regression (cf. Fig. 14b), which implies greater SNR values
(1.6 dB margin) to achieve the same target data rate. The
different conditions of the considered environments were due
to the interference from neighboring networks. The obtained
linear regressions, which represent a real-world model for
the wireless channel, were considered by SurFABle (cf.
step 5 in Algorithm 1) to compute the joint placement and
allocation of the communications resources in the networking
scenarios considered in the performance assessment carried
out using the experimental testbed. Themore optimistic linear
regression was considered for the eMBB network slice, due
to its low demanding reliability requirements. On the other
hand, the more pessimistic linear regression was considered
for the URLLC network slice, in order to meet its greater
reliability requirements.
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TABLE 3. Positions and network slice types associated with the ground users considered in the performance evaluation carried out using ns-3 and the
experimental testbed.

FIGURE 15. Experimental and simulation average performance results for five networking scenarios composed of 5 subareas randomly associated
to URLLC (4 Mbit/s) and eMBB (20 Mbit/s) network slices, considering UDP CBR traffic and 60 MHz channel bandwidth.

FIGURE 16. Experimental and simulation average performance results for five networking scenarios composed of 5 subareas randomly associated
to URLLC (4 Mbit/s) and eMBB (20 Mbit/s) network slices, considering UDP CBR traffic and 80 MHz channel bandwidth.

2) PERFORMANCE ASSESSMENT
The performance assessment considered five networking
scenarios, each of them composed of five static ground users
randomly positioned in a X = 40m, Y = 40m area. The
ground users were randomly assigned to the URLLC and
eMBB network slices. Each network slice consisted of a
minimum of two ground users for each networking scenario.
For the sake of reproducibility, the positions and network
slice types associated with the ground users considered in the
performance evaluation carried out using the experimental
testbed are presented in Table 3. The baseline solution
considers a FAP placed in the geometric center of the
positions of all the ground users that belong to the same
network slice. In addition, it provides each network slice with
the same channel bandwidth computed by SurFABle.

Considering the access network only, the solution obtained
with SurFABle consists of a single FAP for each network
scenario, while the baseline uses two FAPs (one FAP for
each network slice). The experimental results obtained in the
networking scenarios that use a total of 60MHz and 80MHz
channel bandwidth are presented in Fig. 15 and Fig. 16,
respectively. The performance results obtained in simulation,
considering the same exact conditions, are also presented for

the SurFABle algorithm. While SurFABle and the baseline
allow tomeet the traffic demand of the URLLC network slice,
with a slight degradation observed in the baseline (cf. 95th

percentile in Fig. 15a, Fig. 15b, Fig. 16a and Fig. 16b), the
throughput and PDR are significantly degraded for the eMBB
network slice, due to the greater traffic demand associated
with this network slice. The baseline offers the same channel
bandwidth as SurFABle, as well as twice as many UAVs,
but the communications resources are not placed taking
into account the QoS requirements of the network slices.
Placing a FAP at the geometric center of the ground users
that belong to the same network slice allows to provide
the same SNR to each of them, but it is insufficient to
ensure that the wireless links have high enough capacity
to carry the offered traffic in some networking scenarios.
On the other hand, the delay achieved with the baseline is
lower than the delay measured when using SurFABle (cf.
Fig. 15c and Fig. 16c). This is justified by the airtime fairness
ensured by the Carrier Sense Multiple Access with Collision
Avoidance (CSMA/CA) mechanism of IEEE 802.11. In fact,
when employing SurFABle, the ground users that belong
to different network slices can be served by the same FAP.
However, since the CSMA/CA mechanism assigns the same
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transmission opportunities to all the ground users that use
the same wireless channel, in order to ensure fairness in the
medium access, the ground users with a lower SNR value take
longer to transmit the same amount of information.Moreover,
it is worth mentioning that SurFABle ensures a minimum
SNR and channel bandwidth to accommodate the traffic
offered by each ground user. On the other hand, placing a
FAP at the geometric center of the ground users associated to
each network slice may lead to a higher SNR offered to some
ground users and induce higherMCS indexes when compared
with SurFABle, which ends up in a shorter transmission time
enabled by the geometric center approach. However, it must
be noted that SurFABle does not violate theQoS requirements
associated with each network slice, as it was designed to.

Considering the curves presented in Fig. 15 and Fig. 16,
the deviation between the ns-3 simulation (represented
by the green circle and blue downward-pointing triangle
markers) and experimental (represented by the green plus
and blue square markers) results is negligible, especially
for throughput (cf. Fig. 15a and Fig. 16a) and PDR
(cf. Fig. 15b and Fig. 16b). When it comes to the
delay metric (cf. Fig. 15c and Fig. 16c), the simulation
results for the SurFABle algorithm are more optimistic
than the experimental results. This may be justified by
slightly differences between the simulation and experimental
setup, including hardware particularities and associated
computational delays. Moreover, as the ping tool was used,
we assume that the delay is half of the RTT measured
in practice. If the wireless links are asymmetric, this may
explain the deviation observed. However, it is worth noting
that the delay results are of the same order of magnitude and
show that SurFABle does not violate the maximum average
packet delay requirements associated with each network
slice. Overall, the reduced deviation between the simulation
and the experimental results demonstrates the accuracy of
ns-3 for evaluating the performance of wireless networks
and validates the performance evaluation carried out for
multiple networking scenarios, whose results are presented
from Fig. 6 to Fig. 11.

VI. DISCUSSION
This article presents SurFABle, an algorithm that allows
the computation of the joint placement and allocation of
communications resources in slicing-aware flying access
and backhaul networks. In the SurFABle design, some
theoretical assumptions were made to formulate and solve the
problem.

First, the Free-space Path Loss model was used. This
propagation model is commonly considered in the literature
to characterize the wireless channel available between UAVs
and ground users, due to the strong Line-of-Sight component
induced by the UAV altitude [45]. The Free-space Path
Loss model takes into account the 3D Euclidean distance
between the UAVs and ground users for determining the
received power. Moreover, since we assume the use of
omnidirectional antennas, which conceptually radiate equal

power in all directions, the influence of heterogeneous
radiation patterns and the heading of the UAVs are not
considered in this article. Yet, SurFABle is agnostic to the
radio propagation model used. Different propagation models
can be considered, according to the environment where the
UAVs are deployed, the wireless communications technology
used, and the network configuration employed.

In order to meet the reliability requirements of different
network slices, SurFABle allows to consider different target
BER values. This is depicted in Fig. 4, in which the wireless
channel capacity is modeled by different linear regressions.
Although we consider target BER values in the system
modeling, the performance evaluation presented in this article
does not assess the reliability requirements achieved with
SurFABle with an accuracy of 10-9. The evaluation of the
BER guarantees enabled by SurFABle is left for future work,
since herein we are focused on ensuring throughput and delay
guarantees.

On the one hand, the throughout requirements are ensured
by allocating to all subareas an amount of communications
resources that provide high enough capacity to accommodate
the offered traffic. On the other hand, the delay requirements
are met by defining the minimum possible queue size for
the network capacity of the wireless channel available,
considering the M/D/1 queueing model for simplicity. The
M/D/1 queueing model takes into account that the data
packets have constant size and independent inter-arrival
times. The obtained results show that the M/D/1 queueing
model allows meeting the performance requirements for
both UDP and TCP traffic. Yet, SurFABle is agnostic to
the queuing model used. Different queueing models can
be considered, according to the traffic generated by the
applications served by the network slices.

Requirements regarding traffic demand, in bit/s, and
delay, in seconds, are considered by SurFABle for each
network slice. These are important metrics from the network
performance point of view, and they are fulfilled by ensuring
minimum SNR values for the wireless links established,
while defining suitable positions for the UAVs. It should
be noted that the SNR experienced by the UAVs in real-
world flying networks may present some difference with
respect to the theoretical values considered by SurFABle,
namely due to deviations in the location of ground users
and interference experienced by the UAVs. This may affect
network performance. To overcome the problem, the use of an
SNR margin with respect to the theoretical values computed
by means of the Free-space Path Loss model may be
considered in practice. This aspect is left for future research.
Moreover, SurFABle assumes that the wireless channel
is symmetric. In networking scenarios with asymmetric
wireless links, the lowest network capacity among the two
directions should be considered.

For convenience, the performance evaluation of SurFABle
presented herein considers legacy IEEE 802.11 standards
(IEEE 802.11n and IEEE 802.11ac). From the spectral point
of view, this represents a worst-case evaluation approach,
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due to the relatively high minimum channel bandwidth
block of 20MHz possible. It is worth mentioning the lower
the minimum channel bandwidth block enabled by the
technology used the higher the efficiency of SurFABle.
This makes SurFABle especially suitable for OFDMA-based
technologies, such as 5G NR and IEEE 802.11ax, which
allow to assign a given number of channel bandwidth blocks
of a few kHz to individual users in a more efficient manner.
For these reasons, the results presented may be considered
as a baseline for comparison with future research works that
employ SurFABle in flying networks using more efficient
wireless communications technologies.

Finally, in order to limit the number of admissible solutions
when solving the optimization problem formulated in (9),
the 3D space where the UAVs can be placed is divided by
SurFABle into N equal and small fixed-size subcuboids so
that a solution is obtained in a timely manner, according to
the network reconfiguration period. In its current version,
the size assumed by SurFABle for each subcuboid takes into
account that changing the position of a UAV a few meters
has negligible impact on network performance in practice.
The size of each subcuboid should decrease as the network
performance requirements increase, in order to improve the
accuracy of the solution obtained, at the expense of a longer
time to solve the optimization problem. The subcuboid size is
a configuration parameter, and can be changed according to
the networking scenario and the requirements of the network
slices considered.

When considering 10m as the subcuboid size, the average
time spent to solve the problem was 3.65 ± 0.76 s
(95% confidence interval) considering five networking sce-
narios composed of 5 subareas (the least complex networking
scenarios considered). For five networking scenarios com-
posed of 40 subareas (themost complex networking scenarios
considered), the average time spent by SurFABle increased
to 54.12 ± 11.43 s (95% confidence interval). These results
were achieved using an 11th Generation Intel R© CoreTM

i5-1135G7 processor running at 2.40GHz with 16 GB of
RAM, which could be deployed at the Edge of the flying
access and backhaul network. This makes SurFABle suitable
for use in the real-world, where the SLAs established between
Service Providers and Mobile Network Operators are not
expected to change fromminute to minute, as we assumed for
defining the flying network reconfiguration period1t � 1 s.
The fine-tuning of the subcuboid size and 1t is beyond the
scope of this article.

Despite the theoretical assumptions made, ns-3 enabled a
realistic performance evaluation, carried out under different
networking scenarios. The ns-3 simulator allows to take into
account the stochastic characteristics of wireless networks
and the behavior of representative traffic generation models
by means of a packet-driven simulation approach. In the
ns-3 simulations performed, we considered Poisson and
CBR as the traffic generation models, taking into account
the assumptions made in the system modeling; however,
any other representative traffic generation models, which

should be selected according to the characteristics of the
traffic generated by the communications services and online
applications to be served by the network slices, can be
integrated into the SurFABle algorithm.

Regardless of the state of the art counterparts considered,
the results obtained in the performance evaluation carried out
show that SurFABle allows to meet the QoS levels associated
with the network slices, using the minimum number of UAVs.
Moreover, the performance evaluation carried out using the
experimental testbed allows to confirm the results obtained
by means of ns-3 simulations and validated the SurFABle
algorithm in the real-world.

Although minimizing the energy consumption of the
UAVs to improve the network lifetime is a relevant research
challenge, it is beyond the scope of this article. As future
work, we plan to evolve SurFABle to improve the energy
efficiency of slicing-aware flying access and backhaul
networks, building upon our previous research [60], [61].

VII. CONCLUSION
The challenges imposed to Mobile Network Operators have
been exacerbated by the use of multiple services with
different performance requirements. Even though network
slicing has emerged in 5G networks to address the problem,
allowing the use of different services on top of a shared
network infrastructure, fixed Base Stations are typically
considered to satisfy the requirements of network slices. This
may not be feasible in scenarios characterized by limited
network resources or high dynamics. Flying networks, made
up of UAVs acting asmobile Base Stations andAccess Points,
have emerged as a means to provide on-demand wireless
connectivity anywhere, anytime. However, they are typically
designed to provide a best-effort communications service.
We propose SurFABle, an algorithm that allows the joint
computation of the amount of communications resources
needed, namely the number of UAVs acting as Flying Access
Points and Flying Gateways, and their positions in a flying
access and backhaul network. The performance evaluation
carried out by means of ns-3 simulations and an experimental
testbed shows that SurFABle enables meeting heterogeneous
QoS levels of multiple network slices using the minimum
number of UAVs. This paves the way for sustainable flying
access and backhaul networks.

As future work, we aim at improving the energy efficiency
in slicing-aware flying access and backhaul networks. Instead
of considering the UAVs hovering in fixed positions, we will
define their trajectories and speed values that minimize the
energy spent for the UAV propulsion, while meeting the per-
formance requirements of different network slices. This will
be a step forward with respect to the solutions proposed so far.
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