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ABSTRACT The nonlinear representation of active devices plays an important role in microwave circuit
design.Whereas, it takes a long time to extract a large amount of large signal data, and the problem ofmemory
resource and CPU occupancy becomes significant. In order to address the problems in traditional large-signal
modeling methods, in this paper an X-parameter modeling method for microwave power devices based on
extreme learning machine (ELM) is proposed. To demonstrate the effectiveness of this method, a double
layer back propagation (BP) neural network model is established. Then, harmonic balance simulations are
used to verify the accuracy of these twomodels. After comparisons, it is proved that the three harmonic errors
of double layer BP neural network model are 9.525dBm, 1.309dBm and 14.593dBm, respectively, and the
three harmonic errors of ELM model are 0.673 dBm, 0.314 dBm, 3.09 dBm, respectively. Furthermore,
the three harmonic modulus errors of double layer BP neural network model are 0.031, 0.002, 7.665e-4,
respectively, and the errors of ELM model are 0.005, 0.001, 8.38e-5, respectively. Finally, in order to verify
the accuracy of the predicted model in circuit design, the predicted X-parameter is used in the design of
power amplifier. Moreover, the errors of the double layer BP neural network prediction model at 2.5 GHz,
5 GHz and 7.5 GHz are 1.142 dBm, 1.436 dBm and 2.294 dBm, respectively. The output power error of
the ELM model at 2.5 GHz, 5 GHz and 7.5 GHz are 0.089 dBm, 0.311 dBm and 0.309 dBm, respectively.
These experimental results demonstrate that the established ELM model is an efficient and valid approach
for modeling GaN high electron mobility transistor types of nonlinear microwave devices.

INDEX TERMS BP neural networks, ELM, large signal modeling, microwave power device, transistor,
X-parameters.

I. INTRODUCTION
With the rapid development of the communication field, the
demands for pretty ideal quality and efficiency of commu-
nication have been put forward. Therefore, higher require-
ments for communication systems output power, efficiency
are proposed. Meanwhile microwave power devices are the
key components in communications systems and play a deci-
sive role in their performance. Therefore, the model accuracy
of microwave power devices is highly related to the design
efficiency and performance of communication systems.

The associate editor coordinating the review of this manuscript and

approving it for publication was Giambattista Gruosso .

Consequently, improving the modeling accuracy is a goal for
every microwave engineer and the key challenge for radio
frequency (RF) circuit design.

Given the high efficiency and accuracy of artificial neu-
ral networks (ANNs), they are widely used in microwave
power device modeling [1]. In the field of microwave radio
frequency, with the continuous increase of input power, the
working area of the microwave power device has gradu-
ally changed from the linear region to the nonlinear region.
Therefore, it is vital to define the nonlinear characteristics of
microwave power devices as accurately as possible.

Studies have shown that the common modeling methods
include empirical, X-parameter, and ANN models have been
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developed [2], [3]. Furthermore, because the large-signal
model established by DC data cannot fully describe the
nonlinear characteristics of transistors, the Curtice empiri-
cal model was proposed in 1980 [4]. Then, the large-signal
characteristics of microwave power devices were fitted using
polynomials. In 1996, Angelov model combined with CAD
was proposed, which is suitable for parameter extraction
[5], [6], [7]. However, the empirical model is easier to
combine with the CAD software, which is widely used in
circuit design. While the accuracy of the model is greatly
affected by the formula [8]. Consequently, considering the
influence of the conjugate signal, S-parameter was extended
to X-parameter with higher accuracy in 2008 [9]. In 2014,
a nonlinear vector network analyzer was utilized to character-
ize surface acoustic wave (SAW) filters [10]. Subsequently,
an X-parameters modeling technique with high accuracy
and fast convergence was proposed in 2014 [11]. In 2016,
X-parameter was used to accurately predict the output
power of a pseudomorphic high-electron-mobility transis-
tor (pHEMT) under different loads by Lee [12]. In 2019,
X-parameter was introduced in the sound field to pro-
cess large signals with high nonlinearity [13]. Therefore,
X-parameter can supplement the nonlinear theory and has
become an essential approach for modeling of microwave
power devices. The nonlinear characteristics of microwave
power devices can be accurately described by X-parameters.
Consequently, an accurate X-parameter model has great
significance to research the nonlinear characteristics of
microwave power devices.

At the same time, with the rapid evolution of ANNs such
as multi-layer perceptron (MLP), back propagation (BP)
neural network, recurrent neural network (RNN), and ELM
are extensively used in the modeling of microwave power
devices [14], [15], [16]. Due to high-speed and high-accuracy,
ELM has become a critical tool for microwave power devices
modeling [17], [18]. In 2017, Xiao used ELM to model the
electromagnetic behavior of a triple-mode filter [19]. Then,
ELM was utilized to model the third-order intermodulation
distortion (IMD3) of an RF power amplifier [20]. In 2021,
an improved ELMalgorithmwas adopted tomodel ultra-wide
band (UWB) antennas [21]. Notably, ELM is a powerful tool
for device modeling.

In addition, the combination of neural network and
X-parameters is used to establish the X-parameter model.
In 2019, three-layer BP neural network was used to model
the X-parameters [22]. However, this model was not verified
in the actual circuit. In 2021, neural network was also used
to model the X-parameters, and the circuit verification of
the established model is carried out by the third harmonic
error [23].

To achieve high-accuracy modeling for microwave power
devices, the CGH40010F transistor produced by Cree is
chosen as the modeling object here. X-parameters of this
transistor are extracted byADS, and the predictionmodels are
constructed by ELM and double layer BP neural networks,
respectively. The test results show that the mean square error

FIGURE 1. Flow chart of BP neural network and ELM for X-parameters
modeling.

of ELM prediction model is 0.0027, and the fitting rate is
94%, which is higher than that of the double layer BP neu-
ral networks prediction model. Moreover, the X-parameter
model is established through the predicted data preciously.
Furthermore, to verify the accuracy of the model, harmonic
balance simulation is carried out to measure the spectrogram
and modulus for the constructed models. The errors of ELM
for fundamental, second and third harmonic are 0.673 dBm,
0.314 dBm, and 3.09 dBm, respectively, which is much
lower than double layer BP neural network. Therefore, the
X-parameter modeling based on ELM can achieve accurate
large-signal modeling. As a result, this research can charac-
terize the non-linearity of the transistor accurately. Further-
more, this model is convenient for obtaining X-parameters of
the transistor.

The rest of this paper is organized as follows. Section II
introduces the X-parameter modeling. The results and dis-
cussions are described in Section III. The conclusions are
presented in Section IV.

II. X-PARAMETER MODELING
Since X-parameters can characterize the nonlinear charac-
teristics of microwave power devices, they have become a
tool for large-signal modeling. Thus, BP neural network and
ELM are used to model X-parameters for transistor here. The
specific modeling process is shown in Fig. 1.

There are five steps involved in X-parameter modeling
based on BP neural network and ELM: acquisition of data,
construction and training of neural networks, testing of neural
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FIGURE 2. Extraction schematic of the X-parameters.

TABLE 1. The meaning of variables in the .xnp file.

networks and generation of prediction model, verification of
prediction model and generation of the X-parameter model.

A. DEFINITION OF X-PARAMETERS
An X-parameter model that fully characterizes the nonlinear
behavior of the device under test (DUT) can be expressed by
equation (1) [24]:

Bp,k = X (F,B)p,k

({
DCSq

}
,
∣∣A1,1∣∣ ,{A q,k

(q,k)6=(1,1)
P−k

})
P−k

(1)

where Bp,k represents the X-parameter model of the DUT,
X (F,B)p,k is X-parameters, q is the number of ports, Fp,k is the
scattered wave behavior of the amplifier at port p, k is the k th

harmonic of the amplifier port,A is the large signal excitation,
P is the phase factor, and DCSq is DC bias excitation.
Equation (1) is original nonlinear model, and according

to (1), X-parameters can be extracted. Typically, the non-
linear vector network analyzer (NVNA) and ADS are the

FIGURE 3. X-parameter data block.

FIGURE 4. Basic structure of BP neural network.

major methods to extract X-parameters. In this paper, ADS
software is used to do this. Then, the extracted data is divided
into the training set and the test set.

The schematic of X-parameters extraction is established in
ADS. In this case, [frequency, Pin, Vgs, Vds] are chosen as
the input vector, a group of X-parameter is the output vector.
Specifically, the frequency is 1GHz to 5GHz with a step of
1GHz, Pin is 30 dBm to 39 dBm with 3 dBm, Vgs is −3.9 V
to−0.9 V with step of−1 V, and Vds is 8 V to 20 V with step
of 4 V.

As shown in Fig. 2, the schematic is comprised by a
CGH40010F transistor, input matching circuit, output match-
ing circuit, gate bias circuit, and drain bias circuit. By setting
the corresponding bias voltage and frequency, X-parameter
of this transistor can be extracted by the X-parameter con-
trol. Finally, a total of 320 groups of X-parameters are
extracted, amongwhich a group of X-parameters is composed
of 307 data. In building the neural network model, 307 data
are trained and tested together as outputs. Moreover, plus
setting the parameters and creating the.xnp file, it took a
total of 2 minutes to extract this data. And uniform sampling
method is used to divide the data into training sets and test
sets. Among them, the ratio of training set and test set is 2:1.
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The names and specific meanings of the variables in the
.xnp file are displayed in Table 1. The nonlinear characteris-
tics of the device is characterized by these parameters.

Taking frequency is 3 GHz, Vgs is −3.9 V, Vds is 8 V and
Pin is 30 dBm as an example, the X- parameter data block is
shown in Fig. 3. It is can be seen that the data block header
is the name of the variable, and the variable name followed
by ‘‘complex’’ is a negative type, ‘‘real’’ is the real type.
Combining with Table 1, the extracted X-parameters not only
include X(FB) term, but also include X(T) term, AN term, X(FI)

term, X(S) term and XY term. It is worth noting that Table 1
and Fig. 1 show the X-parameter terms when the frequency is
3GHz,Vgs is−3.9V,Vds is 8V, andPin is 30 dBm. If different
conditions and order are used, which contain different terms.

Furthermore, among the 307 data, there are 1 AN term,
2 X(FI) terms, 16 X(FB) terms, 32 XY terms, 128 X(S) terms
and 128 X(T) terms. It is worth noting that the values after the
data block correspond one-to-one with the variables in the
header.

And because X-parameters are the black box model, all
the extracted terms form X-parameters, so each term is non-
independent.

B. BACK PROPAGATION NEURAL NETWORKS
PREDICTION MODEL
BP neural networks are widely used to solve nonlinear prob-
lems, such as speech recognition [25], image classification
[26], fault detection [27] and risk early warning [28].

The basic structure of the BP neural network is illus-
trated in Fig. 4. It is mainly composed of the input layer,
hidden layer and output layer. The number of neurons in the
input and output layers is determined by the input data [X1,
X2, . . . , Xn] and output data [Y1, Y2, . . . , Ym], and the number
of hidden layers is set according to the complexity of nonlin-
ear relationship.

According to the train set, BP neural network starts train-
ing. The training of the BP neural network includes forward
propagation and back propagation. Forward propagation can
obtain the predicted value of the output layer, this value can
be calculated from the equation (2):

Ok =
l∑
j=1

Hjωjk − bk k = 1, 2, · · · ,m (2)

whereOk is the output layer result, j is the number of neurons
in the hidden layer, k is the number of neurons in the output
layer, Hj is the output value from the input layer to the
hidden layer, ωjk is the weight between the hidden layer
neurons and the output layer neurons and b is the output layer
threshold.

Then, the error between the predicted output and the
expected output of the output layer is calculated by
formula (3) as:

ek = Yk − Ok (3)

FIGURE 5. X-parameters prediction model based on double layer BP
neural network.

where Yk is the expected output, the weights and thresholds
are updated according to ek.

The purpose of back propagation is to repeatedly modify
the weights and thresholds to minimize the error. The weights
are updated as the equation (4) and (5):

ωij = ωij + ηHj
(
1− Hj

)
x (i)

m∑
k=1

ωjkek (4)

ωjk = ωjk + ηHjek (5)

where ωij is the connection weight between the input layer
neurons and hidden layer neurons, xi is the input variable and
η is the learning rate. After the weights are updated and the
thresholds can be calculated by the equation (6) and (7):

aj = aj + ηHj
(
1− Hj

) m∑
k=1

ωjkek (6)

bk = bk + ek (7)

where a is the hidden layer threshold. BP neural network
repeats these two processes until it converges. By several
training and testing, an X-parameter prediction model is
generated.

C. EXTREME LEARNING MACHINE PREDICTION MODEL
Next, the ELM prediction model is built, and its structure is
the same as that of the BP neural network. There are three
steps in ELM modeling. First, the number of hidden layer
neurons is set, and the weight ω of the neurons and the
threshold b of hidden layer neurons are randomly generated.
Second, the activation function f is selected so that the hidden
layer output matrix H can be calculated by equation (8):

H = f

(
n∑
i=1

ωxi+bj

)
j = 1, 2, · · · , l (8)

where x is input data, j is the number of neurons in the
hidden layer, n is the number of neurons in the input layer
and f is the excitation function. Third, the weight matrix of
neurons between the hidden layer and the output layer can be
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FIGURE 6. Fitting results of double layer BP neural network at
frequency=3 GHz, Pin = 30 dBm, Vgs = −1.9 V and Vds = 20 V.

FIGURE 7. Relative error of double layer BP neural network at
frequency=3 GHz, Pin = 30 dBm, Vgs = −1.9 V and Vds = 20 V.

calculated by equation (9):

β = min
β
‖Hβ − L‖ (9)

where L is the expected output of ELM and β is the weight
matrix between the hidden layer and the output layer.

In short, the learning process of ELM is simpler than
the BP neural network, and it can model for the nonlinear
problems within a shorter time. Furthermore, the complex
problem of locally optimal solutions will be largely avoided
by ELM [29]. Thus, in order to verify the predictionmodel, an
X-parameter model based on the predicted data and expected
data is built. Thus, the harmonic balance simulation is carried
out to obtain the corresponding spectrograms and modulus.
Finally, the deviation of model can be obtained by spectro-
grams and modulus comparison. If the deviation of spec-
trograms is in [0, 4], and the error of modulus is ideal, the
modeling is successful. Otherwise, it needs to be re-modeled.

III. RESULTS AND DISCUSSIONS
A. PREDICTIVE MODELING BASED ON DOUBLE LAYER BP
NEURAL NETWORK AND ELM
In order to achieve X-parameter modeling for transistors, a
double layer BP neural network is constructed firstly.

The X-parameter prediction model based on the double
layer BP neural network is illustrated in Fig. 5. It can
be seen that the input layer is [frequency, Pin, Vgs, Vds],
and the output layer is a set of X-parameter composed of

FIGURE 8. Fitting results of double layer BP neural network at
frequency=1 GHz, Pin = 36 dBm, Vgs = −3.9 V and Vds = 8 V.

FIGURE 9. Relative error of double layer BP neural network at
frequency=1 GHz, Pin = 36 dBm, Vgs = −3.9 V and Vds = 8 V.

FIGURE 10. Maximum prediction error in 307 terms of X-parameter with
double layer BP neural network.

307 data. LM (Levenberg-Marquardt) algorithm is utilized as
the training algorithm. By persistent training and testing, the
number of neurons in the two hidden layers is five and eight,
respectively.

Let the frequency of transistor is 3 GHz, input power is 30
dBm, Vgs is −1.9 V and Vds is 20 V. The fit rate between
the predicted and expected data is shown in Fig. 6. The
horizontal axis of Fig. 6 represents the 307X-parameter terms
extracted, and the vertical axis is the corresponding values of
X- parameter. It can be shown that the fitting rate of some
predicted data is good when it is near 0, but the fitting rate of
data deviating from 0 is not optimal.
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FIGURE 11. X-parameters prediction model based on ELM.

FIGURE 12. Fitting results of ELM prediction model at frequency=3 GHz,
Pin = 30 dBm, Vgs = −1.9 V and Vds = 20 V.

FIGURE 13. Relative error of ELM prediction model at frequency=3 GHz,
Pin = 30 dBm, Vgs = −1.9 V and Vds = 20 V.

In addition, the relative error is calculated, as shown in
equation (10):

ER =
Ci − Ti
Ti

(10)

where ER is relative error, i is number of samples, C repre-
sents the predictive output, and T is expected output.
And the relative error of double layer BP neural network

is displayed in Fig.7. Typically, the maximum relative error
is allowed within [0.95, 1.05]. It can be seen that the rela-
tive error of double layer BP neural network at this case is
basically within [−1, 1], and more points are concentrated
around−1 or 1. Therefore, the relative errors of most predic-
tion data are distributed around the boundary of maximum
error. On the contrary, the relative error centered near
0 is less.

FIGURE 14. Fitting results of ELM prediction model at frequency=1 GHz,
Pin = 36 dBm, Vgs = −3.9 V and Vds = 8 V.

FIGURE 15. Relative error of ELM prediction model at frequency=1 GHz,
Pin = 36 dBm, Vgs = −3.9 V and Vds = 8 V.

FIGURE 16. Maximum prediction error in 307 terms of X-parameter with
double ELM.

In addition, when the frequency is 1GHz, Pin is 36 dBm,
Vgs is −3.9V, and Vds is 8V, the fitting situation of the
double layer BP neural network is shown in Fig.8. The overall
fit is better than Fig.6. But some point errors much larger
than 0 are still significant, which reflects the limitation of
double layer BP neural network in X-parameter modeling.
And the relative error of double layer BP neural network
is displayed in Fig.9.It is seen that in this case the relative
error of double layer BP neural network is also basically
within [−1,1]. Although there are fewer points near −1 and
1 than in Fig.7, most of the points are concentrated between
[−0.75, 0.75]. And a small part of the relative errors is con-
centrated near 0. Hence the relative error in this case is better
than Fig. 7.
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FIGURE 17. Maximum prediction error distribution of X-parameter.

FIGURE 18. Fitting results of interpolation at frequency=3 GHz,
Pin = 30 dBm, Vgs = −1.9 V and Vds = 20 V .

FIGURE 19. Fitting results of interpolation at frequency=1 GHz,
Pin = 36 dBm, Vgs = −3.9 V and Vds = 8 V.

When the test set is used to verify the BP neural network
prediction model, the maximum prediction error in each
group of 307 predicted values is obtained, and the results are
shown in Fig.10. The maximum error range is within [0, 0.8],
but most of the errors are concentrated around [0.5,0.6], while
the errors around [0,0.3] are few. Moreover, the mean square
error of the prediction model is 0.1455. And the double layer
BP model takes 65 seconds in training and testing.

The X-parameter prediction model based on ELM is illus-
trated in Fig. 11. With the same input and output, the number
of neurons in the hidden layer is four finally.

When working at the frequency of 3 GHz, with Pin of
30 dBm, Vgs of −1.9 V and Vds of 20 V, the fitting curve

TABLE 2. Resource occupancy of double layer BP neural network, ELM
and ADS.

between the predicted data and the expected data for ELM is
illustrated in Fig. 12. It can be seen that the fitting rate of the
model near 0 is ideal, and some data deviating from 0 can be
roughly fitted, but few data have errors. Even so, the error of
ELM is smaller than the double layer BP neural network in the
same case. And the relative error of ELM prediction model
is shown in Fig.13. It is seen that some points are around
1 or −1, but most of them are around [−0.5, 0.5]. Relative
errors concentrated around 1 or −1 are reduced compared
with double layer BP neural network.

In case of frequency is 1 GHz, Pin is 36 dBm, Vgs is−3.9 V
and Vds is 8 V, the fitting results of ELM is shown in Fig.14.
It can be seen that the fitting results are very ideal, basically
all points can be well matched. However, only very few points
have errors, and the errors are within the acceptable range.
The relative error of ELM prediction model in this case is
shown in Fig.15. It can be seen that most points are around
[−0.5, 0.5], the overall situation is better than double layer BP
neural network. So according to the result of relative error, the
prediction credibility of ELM is better than double layer BP
neural network.

Similarly, when ELM prediction is adopted, the maximum
error of each test set is obtained, which the result is shown
in Fig.16. Although the maximum error range of each group
is [0,0.8], it can be roughly seen that the maximum error of
ELM greater than 0.6 is relatively small. Finally, the mean
square error of ELM is calculated as 0.0027, and training and
testing of the ELM model takes 10 seconds.

In order to clearly show the maximum error distribution
of BP and ELM, Fig.17 is depicted. The error of double layer
BP neural network is mostly concentrated in the range of [0.4,
0.6], while the error range of ELM is mostly in the range of
[0, 0.4]. It is demonstrated that the error of double layer BP
neural network is larger than ELM.

Besides building the neural network model, an interpola-
tion experiment of X-parameter is performed. It is used to
verify whether interpolation method can achieve better pre-
diction of X-parameter. The interpolation method is utilized
to calculate X-parameter of when f = 3 GHz, Pin=30 dBm,
Vgs = −1.9 V and Vds = 20 V , and the fitting result is
shown in Fig.18. The error of X-parameter calculated by the
interpolation method is relatively large. And the fitting effect
of points far from 0 is not good, even the fitting of some points
closes to 0 is not ideal.

The interpolation experiment with f = 1 GHz, Pin =
36 dBm, Vgs = −3.9 V and Vds = 8 V is carried out here,
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FIGURE 20. X-parameter model.

FIGURE 21. Schematic of the harmonic balance simulation.

and the fitting result is shown in Fig.19. It can be seen that
although the fitting situation of the data in the former part is
generally ideal, the fitting situation of the data in the latter part
is not optimistic, and the error is relatively large. It is proved
from the interpolation experiments that the neural network
model has a greater advantage than the interpolation method
in predicting X-parameters.

In the above experiments, although the operation of the
interpolation method is not restricted to a single software, its
prediction ability for X-parameter is limited, and it is far less
accurate than ELM and double layer BP neural network. And
through the experiments on double layer BP neural network
and ELM, it can be concluded that ELM is better than double
layer BP neural network in terms of fitting situation, error or
training time.

Moreover, the resource occupancy of X-parameters
obtained by using double-layer BP neural network, ELM
and ADS is shown in Table 2. In general, it can be seen
that ADS spends more time and occupies more computer
resources when extracting data. And using neural network
to obtain X-parameter occupies the least resources. Among
them, BP neural network takes more computer resources than
ELM because it takes longer time to train and test.

In conclusion, when the two methods are used to establish
a prediction model, ELM modeling is relatively ideal and
has small resource occupation, which means that ELM is
more effective than the double layer BP neural network in
X-parameter modeling.

B. VALIDATE PREDICTIVE MODEL
Harmonic balance simulation focuses on signal frequency
domain characteristics and is good at handling the analysis

TABLE 3. Spectrogram errors of double layer BP neural network and ELM.

TABLE 4. Modulus errors of double layer BP neural network and ELM.

of nonlinear circuits. Therefore, harmonic balance simulation
has become the most common method for nonlinear system
analysis. This method can be used to simulate noise, gain
compression, harmonic distortion, etc. in nonlinear circuits,
which is faster than traditional SPICE simulation. Based on
these advantages of harmonic simulation, the X-parameter
model is verified by this method.

In order to verify the error of the model in the actual
circuit, harmonic balance simulation is carried out. Finally,
spectrogram of the third harmonic and the modulus of the
output voltage for the X-parameter models are obtained.

Accordingly, a verification and prediction model of
X-parameters is constructed. The prediction data and
expected data of the double layer BP neural network and
ELM are generated into the corresponding the X-parameter
model. When the X-parameter model is generated, the X4P
module in ADS is adopted, and then the.xnp parameter
file is imported into the module. Because the.xnp file is a
GMDIF file, the file type must be selected as GMDIF when
imported into the X4P module. Otherwise, the generation of
the X-parameter model will fail. It is worth noting that these
X-parameter models are generated by X-parameter with a
frequency of 3 GHz, Pin of 30 dBm, Vgs of −1.9 V and Vds
of 20 V.

The generated X-parameter model is shown in Fig.20.
Where terminal 1 of the X-parameter model is the gate input,
terminal 2 is the drain output, terminal 3 is the gate volt-
age, terminal 4 is the drain voltage, and the Ref terminal is
grounded. The X-parameter model can be used to simulate
CGH40010F transistors in ADS, such as load pull, harmonic
balance simulation and so on. Thus, the relationship between
X-parameter file and X-parameter model can be seen.
X-parameter file is obtained by ADS to represent the large
signal characteristics of the transistor under certain condi-
tions, while X-parameter model is generated by importing
X-parameter file into X4P module.
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FIGURE 22. Schematic of power amplifier by using X-parameter model.

FIGURE 23. Small Signal Simulation Results of S11 and S22.

After that, the CGH40010F transistor in Fig. 2 is replaced
by the X-parameter models. Then the balance simulation
circuit is designed in ADS to obtain the harmonic balance
simulation schematic as shown in Fig. 21. After simulation,
the corresponding spectrograms for the double layer BP neu-
ral network and ELM are obtained.

For the sake of comparison, the standard spectrum has been
acquired. Where the fundamental wave is −21.670 dBm, the
second harmonic is −21.566 dBm, and the third harmonic is
−41.919 dBm.

Then X-parameter spectrogram predicted by the dou-
ble layer BP neural network model is obtained. And the
fundamental, second, and third harmonics of X-parameter
spectrogram predicted by the double layer BP neural network
model are−12.145 dBm,−20.257 dBm, and−27.326 dBm,
respectively. The spectrogram error can be calculated by (11):

Di = Ei − Pi (11)

whereDi is the error of the ith harmonic, Ei is the ith harmonic
of the standard spectrum, and Pi is the ith harmonic of the
predicted X-parameter model.

Compared with the standard spectrogram, the error can
be obtained as 9.525 dBm, 1.309 dBm, and 14.593 dBm,
respectively, as shown in Table 1. That is to say the error of
the second harmonic is small, but the fundamental error and
the third harmonic error are significant.

Finally, the spectrogram obtained by X-parameters mod-
eled by ELM can be obtained. The fundamental, second,
and third harmonics are −20.997 dBm, −21.880 dBm,
and −38.829 dBm, respectively. Similarly, the errors for
fundamental, second and third harmonic are 0.673 dBm,
0.314 dBm, and 3.09 dBm, respectively, as shown in Table 3.
It is concluded that the three harmonic errors of X-parameters

are controlled within the range of [0, 4], the modeling accu-
racy is higher than double layer BP neural network.

Therefore, the double layer BP neural network model only
has the ideal error of the second harmonic. In contrast, the
fundamental and the third harmonic errors are relatively large,
so the model cannot accurately characterize the nonlinear
characteristics of the transistor. While, the fundamental error,
the second harmonic error and the third harmonic error of the
ELM prediction model are all in the range of [0, 4].

For the purpose of further verifying the accuracy of the
prediction model, the three-harmonic modulus of the predic-
tion data are compared with the expected data, and the result
is displayed in the Table 4. It can be shown that the three
harmonic modulus error of double layer BP is much higher
than ELM. Through the above verification experiments, it can
be concluded that the error of ELM prediction model is lower
than the double layer BP neural network, so the model can
be used to model the X-parameters of transistors. The BP
neural network model is easy to fall into local optimum and
cannot reach global optimum, which leads to poor accuracy.
However, except for the number of neurons in the hidden
layer, other parameters of ELM are randomly generated,
so the optimal solution can be obtained quickly and the model
has a good accuracy.

C. DESIGN OF RF POWER AMPLIFIER BY USING
X-PARAMETER MODEL
X-parameter models can be used in nonlinear circuit
designs [30]. To verify the accuracy of the X-parameter pre-
diction model in circuit design, it is used in power amplifier
design.

Firstly, the predicted X-parameter is manually collated
into a.xnp format. Then, the .xnp file is imported into the
X4P module for the design of power amplifier. Because the
expected X-parameter model is used first when designing
amplifiers. Therefore, the expected X-parameter should be
imported into the X4P module.

After the bias circuit by using the expected X-parameter
is designed, the source pull and load pull simulation are
implemented. Then the optimal source impedance and load
impedance are obtained. Next, source impedance and load
impedance matching are performed. Finally, the schematic
of the power amplifier designed with the X-parameter model
is displayed in Fig. 22. It can be seen that the circuit struc-
ture is similar to Fig.2, which is also composed of four
parts. In addition, to enhance the stability of the circuit,
resistor R1 is added to the gate, and a capacitor C1 is
connected in parallel at R1 to reduce the gain and power
reduction.

When the design of power amplifier by using the expected
X-parameter is completed, the small signal simulation is
carried out. The small signal simulation results of S11 and
S22 is shown in Fig. 23. It can be seen that when the power
amplifier is running at 2.5 GHz, both S11 and S22 are less
than −10 dB, which indicates that most of the signal in the
amplifier can be output.

127814 VOLUME 10, 2022



Q. Lin et al.: Approach for Extreme Learning Machine-Based Microwave Power Device Modeling

TABLE 5. Output power errors of double layer BP neural network
and ELM.

In addition, harmonic balance simulation is carried out.
The output power simulated by the expected X-parameter
model at 2.5 GHz, 5.0 GHz and 7.5 GHz is 8.917 dBm,
5.206 dBm and −2.899 dBm, respectively.

In order to verify whether the predicted X-parameters can
be used in circuit design, the expected X-parameter model
is replaced by the predicted X-parameter model for har-
monic balance simulation. Finally, under the same conditions,
the output power of the double layer BP neural network
X-parameter prediction model at 2.5 GHz, 5.0 GHz and
7.5 GHz is 7.775 dBm, 3.770 dBm and 0.605 dBm, respec-
tively. And the output power of the ELM X-parameter
prediction model at 2.5 GHz, 5.0 GHz and 7.5 GHz is 8.828
dBm, 5.517 dBm and −3.208 dBm, respectively.

The output power error at different frequencies used by
double layer BP neural network and ELM predictive models
for amplifier design are shown in Table 5 . The error of
the ELM model is below 0.35 dBm, while the error of the
double layer BP neural network is below 2.5 dBm. It is
concluded that the accuracy of the ELM predictive model in
the actual circuit design is higher than the double layer BP
neural network. Therefore, the precision of ELM model is
sufficient for the power amplifier design.

IV. CONCLUSION
To characterize the nonlinear characteristics of microwave
power devices, double layer BP neural network and ELM
models are built here. In addition, the harmonic balance simu-
lation is carried out to verify the result. By comparison, ELM
has higher accuracy. Therefore, ELM can accurately char-
acterize the nonlinear characteristics of microwave power
devices than double layer BP neural networks. It can serve as
an essential method for further improving design efficiency
and performance for RF microwave circuit. In future, the
memory effect can be combined into the proposed ELM
model. As a future potential direction, the proposed modeling
technique can be further studied for other transistor modeling.
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