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ABSTRACT For the widely used multilayer perceptrons (MLPs), there exist singularities in the parameter
space where Fisher information matrix (FIM) degenerates on these subspaces. The singularities seriously
influence the learning dynamics of MLPs which have attracted many researchers’ attentions. As FIM plays
key role in investigating the singular learning dynamics of MLPs, it is very important to obtain the analytical
form of FIM. In this paper, for the bipolar activation function based MLPs with general Gaussian input,
by choosing bipolar error function as the activation function, the analytical form of FIM are obtained. Then
the validity of obtained results are verified by taking two experiments.

INDEX TERMS Fisher information matrix, multilayer perceptrons, singularity, bipolar error function,
general Gaussian input.

I. INTRODUCTION
As one of the most important subject in computer science,
artificial intelligence has been developed fast in the last years
and has been successfully applied in various areas and appli-
cations [1], [2], such as pattern recognition, computer vision,
intelligence control etc [3], [4], [5]. For artificial intelligence,
artificial neural networks play key roles in achieving such
outstanding performance [6], [7]. Multilayer perceptrons
(MLPs), which are typical feedforward neural networks, also
have beenwidely applied in artificial intelligence [8], [9]. The
main advantages of multilayer perceptrons are that they are
easy to handle and can approximate any continuous function
arbitrary well.

However, different with the regular learning machines,
when researchers used MLPs to different applications, they
found that there were some strange behaviours in the learning
process of MLPs [10]. For example, there are many local
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minima, the learning process may become very slow and
the so-called plateau phenomenon can often be observed
(an example is shown in Fig. 1) [11]. In view of the
wide applications of MLPs, the reasons why the training
processes often suffer from such difficulties have attracted
many researchers’ attentions. Research results indicate that
these singular behaviours are because of the network structure
of feedforward neural networks which have hidden layers.
Due to the existence of hidden layers, there exist subspaces
in the parameter space of feedforward neural networks where
the Fisher information matrix (FIM) is singular on such
subspaces [12], [13]. These subspacesmainly cause the above
singular learning behaviours of MLPs, thus we call these
subspaces as singularities.

As the FIM degenerates on singularities, the subspaces
become Riemann manifolds, not Euclidean spaces in the
case of regular learning machines, which leads to three
problems [11], [14]: 1) invalidation of the classic paradigm
of Cramer-Rao theorem; 2) failure to determine approximate
network structure. For example, for the commonly used
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FIGURE 1. Plateau phenomenon occurred in the learning process of MLPs.

model selection criteria, such as Akaike information criterion
(AIC), Bayes information criterion (BIC) and minimum
description length (MDL), researchers find that these criteria
often fail to determine approximate network structure;
3) non Fisher-efficiency of standard gradient descent method.
Instead of gradient descent direction, the Riemann gradient
(natural gradient) descent direction becomes the steepest
descent direction [15], then using standard gradient descent
method to train neural networks will face many diffi-
culties on the singularities. Therefore, it is very worthy
to investigate the learning dynamics near singularities in
MLPs.

Given that FIM plays fundamental and vital role in
investigating the singular learning dynamics of MLPs,
obtaining the analytical form of FIM has two important
significances: 1) make us convenient to detailed analyze
the mechanism of singular learning dynamics; 2) make it
easier to design better learning algorithms to overcome the
serious influence of singularities. Thus the main contribution
of this paper is to obtain the analytical form of FIM for the
bipolar-error-function-based MLPs with general Gaussian
input. Further we also show the potential of analytical form
to design better algorithms.

The rest of this paper is organized as follows. A brief
review of related work is presented in section 2. In section 3,
the analytical form of FIM is obtained. In section 4, we verify
the validity of the obtained results through simulation studies.
Section 5 states conclusions and discussions.

II. RELATED WORK
In this section, we provide a brief overview of previous work
on the mechanism of singular learning dynamics.

By investigating the geometric structure of MLPs, [16]
proved that the global minimum of the smaller model
could be a local minimum or a saddle point of the larger
model and illustrated various singularities in detail. For
layered networks, by taking general mathematical analy-
sis, [17] obtained universal learning trajectories near the
overlap singularity. Further researchers aimed to take more

detailed theoretical analysis on the learning dynamics near
singularities. However, the widely used activation functions,

such as log-sigmoid function
1

1+ e−λx
and hyperbolic

tangent function tanh(x), can not be integrated, which
limits researchers to take quantitative analysis of learning
dynamics. In order to overcome this problem, the error

functions φ(x) =
1
√
2π

∫ x
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exp
(
−
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)
dt and φ(x) =√
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π

∫ x

0
exp

(
−
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t2
)
dt , were chosen as the activation

function of MLPs in unipolar and bipolar case, respectively
[11], [18]. Then different cases of MLPs with different
type of activation functions, including toy model case [19],
regular case [20], [21], and unrealizable case [22], have been
investigated and diverse results have also been obtained. [23]
obtained the analytical form of FIM in RBF networks
and investigated to what extent RBF networks would be
influenced by singularities.

Since the Riemann gradient (natural gradient) descent
direction becomes the steepest descent direction on the
singularities, the natural gradient method was proposed
to overcome the serious influence of singualarities [24].
As it is very hard to obtain the explicit form of FIM and
its inverse, researchers proposed adaptive natural gradient
algorithms where the inverse FIM is calculated by directly
using approximation formula [25], [26], [27] and applied
natural gradient method in big data fields and deep neural
networks [28], [29], [30].

Due to the non-integrated property of hyperbolic tangent
function, we cannot obtain the analytical form of FIM.
In this paper, we choose the bipolar error function φ(x) =√

2
π

∫ x

0
exp

(
−
1
2
t2
)
dt as the the activation function of

MLPs, and obtain the analytical form of FIM.

III. ANALYTICAL FORM OF FISHER INFORMATION
MATRIX
In this section, the learning paradigm of MLPs is introduced
at first and then the analytical form of FIM is obtained.

The bipolar-activation-function based multilayer percep-
trons with one hidden layer are defined as follows:

f (x, θ ) =
k∑
i=1

wiφ(x, J i), (1)

where x is the input, k is the hidden node number,
J i and wi are the weight from input layer to hidden
node i and weight from hidden node i to output layer,
respectively. φ(·) is a bipolar activation function. Then θ =
{J1, · · · , Jk ,w1, · · · ,wk} represents all the parameters of
the model. In order to obtain the analytical form of FIM
and overcome the non-integrated property of hyperbolic
tangent function, in this paper, we choose the bipolar error
function as the activation function, namely φ(x, J i) =√

2
π

∫ JTi x

0
exp

(
−
1
2
t2
)
dt .
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For the regression mission, an unknown teacher function is
needed to be approximated:

y = f0(x)+ ε, (2)

which generates a number of observed data (x1, y1), · · · ,
(xt , yt ). The additive noise ε usually subjects to a Gaussian
distribution with mean 0 and variance σ 2

0 .
Generally the input x is assumed to be subject to Gaussian

distribution, in this paper, we investigate the general Gaussian
input case, i.e. probability density function of x is:

q(x) = (
√
2π )−n|6|−

1
2 exp

(
−
1
2
(x− µ)T6−1(x− µ)

)
,

(3)

where n is the input dimension,µ is the expectation value and
6 is the covariance matrix.

We choose the square loss function to measure the error:

l(y, x, θ ) =
1
2
(y− f (x, θ ))2, (4)

and use the gradient descent method to minimize the loss:

θ t+1 = θ t − η
∂l(yt , xt , θ t )

∂θ t
, (5)

where η is the learning rate.
The FIM is defined as follows [11]:

F(θ) =
〈
∂f (x, θ )
∂θ

∂f (x, θ )

∂θT

〉
, (6)

where 〈·〉 denotes the expectation with respect to the teacher
distribution. The teacher distribution is given by:

p0(y, x) = q(x)
1

√
2πσ0

exp

(
−
(y− f0(x))2

2σ 2
0

)
. (7)

Then we introduce the types of singularities. As shown
in [11], besides of the overlap singularity and elimination
singularity in the parameter space of unipolar-activation-
function-based MLPs, there also exists opposite singularity
for the bipolar-activation-function-based MLPs (1), thus
there are total three types of singularities:

(1) Opposite singularity:

R1 = {θ |J i = −J j}, (8)

(2) Overlap singularity:

R2 = {θ |J i = J j}, (9)

(3) Elimination singularity:

R3 = {θ |wi = 0}. (10)

Now we aim to obtain the explicit expression of FIM. For
the Gaussian input case, the covariation matrix 6 plays a
center role and the value of µ does not essentially influence
on the analytical process, without loss of generality, µ is
adopted as 0 in this paper.

Before we give the analytical form of FIM, we firstly

obtain the explicit expressions of

〈
∂φ(x, J i)
∂J i

∂φ(x, J j)

∂JTj

〉
,

〈
∂φ(x, J i)
∂J i

φ(x, J j)
〉
, and

〈
φ(x, J i)φ(x, J j)

〉
, which play key

role in obtaining the analytical form of FIM. For simplicity,
we note:

Q1(J i, J j) =

〈
∂φ(x, J i)
∂J i

∂φ(x, J j)

∂JTj

〉
. (11)

Q2(J i, J j) =
〈
∂φ(x, J i)
∂J i

φ(x, J j)
〉
. (12)

Q3(J i, J j) =
〈
φ(x, J i)φ(x, J j)

〉
. (13)

Then in Lemma 1, we give the explicit expressions of
Eqs. (11)-(13).
Lemma 1: The explicit expressions of Q1(J i, J j),

Q2(J i, J j) and Q3(J i, J j) are given as follows:

Q1(J i, J j) =
2
π
|6|−

1
2 |A(J i, J j)|

1
2A(J i, J j), (14)

Q2(J i, J j) =
2
π
|6|−

1
2 |A(J i, J j)|

1
2B(J i)−1J j, (15)

Q3(J i, J j) =
2
π
arcsin

JTi 6J j√
1+ JTi 6J i

√
1+ JTj 6J j

, (16)

where:

A(J i, J j) = (6−1 + J iJTi + J jJ
T
j )
−1
= 6

−6

(
(1+ JTj 6J j)J iJ

T
i + (1+ JTi 6J i)J jJ

T
j

(1+ JTi 6J i)(1+ J
T
j 6J j)− (JTi 6J j)2

−
JTi 6J j(J iJ

T
j + J jJ

T
i )

(1+ JTi 6J i)(1+ J
T
j 6J j)− (JTi 6J j)2

)
6,

(17)

|A(J i, J j| =
|6|

(1+ JTi 6J i)(1+ J
T
j 6J j)− (JTi 6J j)2

, (18)

B(J i) = 6−1 + J iJTi , (19)

B(J i)−1 =
(
6−1 + J iJTi

)−1
= 6 −

6J iJTi 6

1+ JTi 6J i
. (20)

Proof: We present the calculation processing in
Appendix.
Now we can give the analytical form of FIM in Theorem 1.
Theorem 1: The analytical form of FIM F(θ) is given by:

F(θ ) =
〈
∂f (x, θ )
∂θ

∂f (x, θ )

∂θT

〉
=

[
F1(θ ) F2(θ )
F3(θ ) F4(θ )

]
,

where:

F1(θ ) =


w2
1Q1(J1, J1) · · · w1wkQ1(J1, Jk )

w1w2Q1(J1, J2)
T
· · · w2wkQ1(J2, Jk )

...
...

...

w1wkQ1(J1, Jk )
T
· · · w2

kQ1(Jk , Jk )

 ,
(21)

F2(θ ) =


w1Q2(J1, J1) · · · w1Q2(J1, Jk )
w2Q2(J1, J2) · · · w2Q2(J2, Jk )

...
...

...

wkQ2(J1, Jk ) · · · wkQ2(Jk , Jk )

 , (22)
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F3(θ ) = F2(θ )T , (23)

F4(θ ) =


Q3(J1, J1) Q3(J1, J2) · · · Q3(J1, Jk )
Q3(J1, J2) Q3(J2, J2) · · · Q3(J2, Jk )

...
...

...

Q3(J1, Jk ) Q3(J2, Jk ) · · · Q3(Jk , Jk )

 .
(24)

Proof: Firstly we define:

F1(θ )

=



〈
∂f (x, θ)
∂J1

∂f (x, θ )

∂JT1

〉
· · ·

〈
∂f (x, θ )
∂J1

∂f (x, θ )

∂JTk

〉
〈
∂f (x, θ )
∂J2

∂f (x, θ )

∂JT1

〉
· · ·

〈
∂f (x, θ )
∂J2

∂f (x, θ )

∂JTk

〉
...

...
...〈

∂f (x, θ )
∂Jk

∂f (x, θ )

∂JT1

〉
· · ·

〈
∂f (x, θ )
∂Jk

∂f (x, θ )

∂JTk

〉


,

(25)

F2(θ )

=



〈
∂f (x, θ )
∂J1

∂f (x, θ )
∂w1

〉
· · ·

〈
∂f (x, θ )
∂J1

∂f (x, θ )
∂wk

〉
〈
∂f (x, θ )
∂J2

∂f (x, θ )
∂w1

〉
· · ·

〈
∂f (x, θ )
∂J2

∂f (x, θ )
∂wk

〉
...

...
...〈

∂f (x, θ )
∂Jk

∂f (x, θ )
∂w1

〉
· · ·

〈
∂f (x, θ )
∂Jk

∂f (x, θ )
∂wk

〉


,

(26)

F3(θ )

=



〈
∂f (x, θ )
∂w1

∂f (x, θ )

∂JT1

〉
· · ·

〈
∂f (x, θ )
∂w1

∂f (x, θ )

∂JTk

〉
〈
∂f (x, θ )
∂w2

∂f (x, θ )

∂JT1

〉
· · ·

〈
∂f (x, θ )
∂w2

∂f (x, θ )

∂JTk

〉
...

...
...〈

∂f (x, θ )
∂wk

∂f (x, θ )

∂JT1

〉
· · ·

〈
∂f (x, θ )
∂wk

∂f (x, θ )

∂JTk

〉


,

(27)

F4(θ )

=



〈
∂f (x, θ )
∂w1

∂f (x, θ )
∂w1

〉
· · ·

〈
∂f (x, θ )
∂w1

∂f (x, θ )
∂wk

〉
〈
∂f (x, θ )
∂w2

∂f (x, θ )
∂w1

〉
· · ·

〈
∂f (x, θ )
∂w2

∂f (x, θ )
∂wk

〉
...

...
...〈

∂f (x, θ )
∂wk

∂f (x, θ )
∂w1

〉
· · ·

〈
∂f (x, θ )
∂wk

∂f (x, θ )
∂wk

〉


,

(28)

then from Eq. (1) and Eq. (6), we have

F(θ ) =
[
F1(θ ) F2(θ )
F3(θ ) F4(θ )

]
. (29)

For Eqs. (25)-(28), by using the results in Lemma 1,
we have:

F1(θ ) =


w2
1Q1(J1, J1) · · · w1wkQ1(J1, Jk )

w1w2Q1(J1, J2)
T
· · · w2wkQ1(J2, Jk )

...
...

...

w1wkQ1(J1, Jk )
T
· · · w2

kQ1(Jk , Jk )

 ,
(30)

F2(θ ) =


w1Q2(J1, J1) · · · w1Q2(J1, Jk )
w2Q2(J1, J2) · · · w2Q2(J2, Jk )

...
...

...

wkQ2(J1, Jk ) · · · wkQ2(Jk , Jk )

 , (31)

F3(θ ) = F2(θ )T , (32)

F4(θ ) =


Q3(J1, J1) · · · Q3(J1, Jk )
Q3(J1, J2) · · · Q3(J2, Jk )

...
...

...

Q3(J1, Jk ) · · · Q3(Jk , Jk )

 . (33)

Till now, the analytical form of FIM has been obtained.

IV. SIMULATION EXPERIMENTS
In this section, we take three experiments to illustrate
the validity and importance of the obtained results. From
Eq. (21), we can see that we only need to know the student
parameters to obtain the FIM during training process. Thus
the type of teacher model does not play a significant role. For
convenience and without loss of generality, we investigate the
case that the teacher model also has the form of MLPs, i.e.
Eq. (2) can be rewritten as:

y = f0(x) = f (x, θ0)+ ε =
M∑
i=1

viφ(x, t i)+ ε, (34)

whereM is the hidden unit number.
θ0 = {t1, · · · , tM , v1, · · · , vM } represents all the teacher
parameters. As can be noticed, this assumption is based on
the universal approximation ability and is reasonable.

Now we introduce three indexes which are very important
to show the experiment results:

1) inverse condition value of FIM
This index is used to judge whether the FIM is singular.

When the matrix is nearly singular, the condition value will
become very large, i.e. the inverse of condition value will
become near 0;

2) h1(J i, J j) = 1
2‖J i − J j‖

2

This index is used to judge whether two hidden units J i and
J j overlap. If MLPs has been affected by overlap singularity,
J i = J j, then h1(J i, J j) = 0;
3) h2(J i, J j) = 1

2‖J i + J j‖
2

This index is used to judge whether MLPs have been
affected by opposite singularity. If MLPs has been affected
by opposite singularity, J i = −J j, then h2(J i, J j) = 0.
Thenwewill take two experiments to visually represent the

learning dynamics ofMLPs, which will verify the correctness
of Theorem 1 and illustrate the potential to design better
algorithms based on the obtained analytical form of FIM.
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For given teacher parameters, by choosing the initial student
parameters, we use gradient descent method to accomplish
the training processes. In the following figures of experiment
results, ’◦’ and ’×’ represent the initial state and final state,
respectively.

A. LEARNING TRAJECTORIES IN ERROR FUNCTION BASED
MLPs
This experiment is taken to verify the correctness of the
obtained analytical form of FIM, i.e. on the singularity, the
FIM is singular and otherwise the FIM is regular. We choose
the teacher and student model to both have 6 hidden units, i.e.
M = 6 and k = 6. The additional noise is ε ∼ N (0, 0.05) and

the covariance matrix of Gaussian input is 6 =
[
0.8 0.3
0.3 0.6

]
.

The learning rate is chosen as η = 0.002. Then we give the
singular cases of learning dynamics which are affected by
singularities and regular case, respectively.
Case 1 (Opposite Singularity): the learning process is

influenced by opposite singularity.
In this case, the learning process is affected by opposite

singularity. We choose the teacher parameters are:

t = [t1, t2, t3, · · · , t6]

=

[
−1.5755 −1.5637 −0.5704
0.6475 −1.8524 0.1433

−0.1654 0.6669 1.8897
−0.6730 1.9557 1.0012

]
, (35)

v = [v1, v2, v3, · · · , v6]

= [1.3678, 1.3952, 0.3849,

− 0.8077, 1.3364, − 1.0324]. (36)

The initial student parameters are:

J (0) =
[
J (0)1 , J

(0)
2 , J

(0)
3 , · · · , J

(0)
6

]
=

[
−1.6520 −1.1852 −0.9653
−1.6410 −0.2991 1.9378

1.9594 −0.4168 −0.0718
−1.4052 0.4970 −1.4433

]
, (37)

w(0)
= [w(0)

1 ,w
(0)
2 ,w

(0)
3 ,w

(0)
4 ,w

(0)
5 ,w

(0)
6 ]

= [1.4240, 0.7876, 1.2879, 1.2908, 1.8043, 1.2281].

(38)

The final student parameters are:

J = [J1, J2, J3, · · · , J6]

=

[
−1.7850 −1.6606 0.3827
−1.3509 0.6381 1.5688

0.8872 −0.7958 0.7886
−1.4834 0.9384 −0.9560

]
, (39)

w = [w1,w2,w3,w4,w5,w6]

= [2.0482, 1.2480, 1.4727, 0.4057, 1.7249, 0.9203].

(40)

The experiment results are shown in Fig. 2, which represent
the trajectories of log scale of inverse condition number

FIGURE 2. Case 1 (Opposite singularity) in error function based MLPs.

of FIM, training error, output weights w and h2(5, 6),
respectively.

From Fig. 2(d), it can be seen that h2(5, 6) fast becomes
nearly 0 when the training process has started. When the
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training finishes, as shown in Eq. (39) which is the final
state of student parameters, hidden units J5 and J6 are
nearly opposite. The learning process is affected by opposite
singularity.Meanwhile, as can be seen in Fig. 2(a), the inverse
condition value of FIM is smaller than 10E − 15 till the end
of the training process, which implies FIM becomes nearly
singular. This is in accordance with theoretical analysis.
Case 2 (Overlap Singularity): the learning process is

affected by the overlap singularity.
For this case, two hidden units overlap during the learning

process and the learning dynamics are trapped in the overlap
singularity. We choose the teacher parameters are:

t =
[
1.5735 1.4947 −0.6714
0.4842 −0.3383 0.4107

−1.4781 −0.8529 1.8804
−1.5900 1.2991 −1.8494

]
, (41)

v = [1.1691, 0.2711, − 0.9127,

− 0.0828, − 1.0184, − 0.8792]. (42)

The initial student parameters are:

J (0) =
[
−0.4005 −0.7154 0.5955
−1.9145 −0.1857 −0.8117

1.8786 −1.7056 1.7659
0.0666 −1.4145 −1.6531

]
, (43)

w(0)
= [−1.9906, 1.8752, 0.0548,

1.4312, 1.3508, − 0.8365]. (44)

The final student parameters are:

J =
[
−1.2387 0.6071 0.7770
−1.5856 −0.4755 −1.4142

1.6056 −1.2290 1.9885
0.2559 −1.6032 −1.9087

]
, (45)

w = [−1.5883, 1.2941, 0.5979,

1.2793, 1.3623, − 0.6943]. (46)

The experiment results are shown in Fig. 3, which represent
the trajectories of log scale of inverse condition number
of FIM, training error, output weights w and h1(1, 5),
respectively.

From Fig. 3(d) and the final states of student parameters,
we can see that J1 and J5 nearly overlap, which implies
that the learning process is affected by overlap singularity.
As also can be seen in Fig. 3(a), the inverse condition value
of FIM decrease fast to nearly 0 and is finally smaller than
10E − 15, thus the FIM becomes nearly singular till the
end when the learning process has been affected by overlap
singularity.
Remark 1: It can be seen that the log scale of the inverse of

condition value obviously fluctuates at the end of the learning
process (Figure 3(a)). We think this is mainly because the
value is too small (smaller than 10E − 15), and even a slight
change of the parameters would cause the obvious fluctuation
of the condition number of the Fisher information matrix due
to the limit to the degree of accuracy of computer.

FIGURE 3. Case 2 (Overlap singularity) in error function based MLPs.

Case 3 (Elimination Singularity): the learning process is
affected by the elimination singularity.

For this case, one output weight crosses 0 during the
learning process and a plateau phenomenon can be obviously
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observed. We choose the teacher parameters are:

t =
[
−1.1997 −1.0310 −0.1054
−0.3513 0.5353 1.5588

1.2778 1.8295 1.9685
1.9941 0.2635 0.9331

]
, (47)

v = [−0.2133, 0.3684, − 1.1383,

−0.6795, 1.8381, 1.3734]. (48)

The initial student parameters are:

J (0) =
[
−0.9311 −1.4760 1.5680
1.9021 −0.6705 −0.4289

−1.9608 −0.5129 1.2863
0.0666 −1.4145 −1.6531

]
, (49)

w(0)
= [−1.2450, 0.4280, − 1.0404,

0.2285, − 0.3309, − 0.9585]. (50)

The final student parameters are:

J =
[
−2.1202 −1.7697 1.2750
0.9605 −1.5986 −0.6385

−1.5695 −1.4591 0.0598
2.2159 0.2291 1.6207

]
, (51)

w = [−1.1747, − 1.9794, − 0.2814,

0.4621, − 0.2280, − 1.0043]. (52)

The experiment results are shown in Fig. 4, which represent
the trajectories of inverse condition number of FIM, training
error, and output weights w, respectively.
From Fig. 4(c), we can see that w6 crosses 0 in the

learning process and the learning process is affected by
elimination singularity. During the stage w6 crosses 0, the
plateau phenomenon can be obviously observed in Fig. 4(b),
and FIM also degenerates at this stage (Fig. 4(a)). Then
the student parameters escape the influence of elimination
singularity and finally converge to the global minimumwhich
can be seen from the final state of student parameters (51)-
(52), meanwhile, the FIM also becomes regular in the late
stage in Fig. 4(a) as the learning dynamics are not influenced
by elimination singularity.
Case 4 (Fast Convergence): the learning process does not

suffer from the influence of singularities
For this case, the learning dynamics are not influenced

by any singularity and fast converge to the optimal value.
we choose the teacher parameters are:

t =
[
−1.7244 −1.9571 −0.2937
0.6628 −1.9488 −0.6609

−0.6621 0.5371 1.2059
1.9513 1.6839 0.2742

]
, (53)

v = [1.6296, − 1.2374, 1.7883,

1.7996, − 0.5046, − 1.0187]. (54)

The initial student parameters are:

J (0) =
[
−1.8579 −0.5237 −0.5872
−1.2815 −0.8620 −1.8846

FIGURE 4. Case 3 (Elimination singularity) in error function based MLPs.

−1.3052 1.8091 0.7872
−0.0195 −1.0615 −1.0158

]
, (55)

w(0)
= [1.6435, 1.7157, 1.3399,

−1.0196, 0.4613, 0.5325]. (56)

The final student parameters are:

J =
[
−1.6574 −0.4919 −0.7439
0.2770 −0.5973 −1.3315

−1.9050 1.6764 0.7410
−1.8704 −0.8679 −2.0478

]
, (57)

w = [1.3381, 2.0474, 0.4835,

−1.2688, − 0.7970, − 1.5295]. (58)
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FIGURE 5. Case 4 (Fast convergence) in error function based MLPs.

The experiment results are shown in Fig. 5, which represent
the trajectories of the inverse condition number of FIM,
training error and output weights w, respectively.

As can be seen from Fig. 5(b) and the final student
parameters, the learning dynamics quickly converge to
the global minimum and have not been affected by any
singularity. The FIM also remains regular during the entire
training process.

In the above 4 cases, we have shown the learning dynamics
belong to singular cases and regular case, respectively.
We can see that the FIM degenerates when the learning
dynamics are affected by singularities and remains regular
in other cases, which verifies the correctness of the obtained
results in Theorem 1.
Remark 2: Compared with bipolar error function, hyper-

bolic tangent function tanh(x) =
ex − e−x

ex + e−x
is the most

widely used bipolar activation function in MLPs. Although
the theoretical results in Theorem 1 are obtained based
on bipolar error function, we take another experiment to
illustrate that the results are also valid for hyperbolic tangent
function based MLPs. The experiment set up is the same
as in section 4.1. We choose the teacher parameters and
initial student parameters just the same in section 4.1. The
only difference is that hyperbolic tangent function is used to
replace the bipolar error function as the activation function
in the teacher and student models. The experiment results are
basically the same with the results shown in section 4.1. Thus
the analytical form of the FIM based on bipolar error function
can also be applied to the hyperbolic tangent function based
MLPs.

B. FIM BASED NATURAL GRADIENT DESCENT
ALGORITHM
As the natural gradient descent direction becomes the steepest
descent direction, researchers proposed natural gradient
method to overcome the influence of singularities, the
parameter modification formula is shown as follow:

θ t+1 = θ t − ηF(θ t )−1
∂l(yt , xt , θ t )

∂θ t
, (59)

where η is the learning rate and F(θ t ) is the FIM at
iteration t . Compared to standard gradient descent method,
the natural gradient method adds the inverse FIM item to the
modification of parameters.

From (59), we can see that computing the inverse FIM
plays a key role in natural gradient descent method. Unfortu-
nately, it is very hard to obtain the analytical form of inverse
FIM and directly computing the inverse FIM also requires
enormous computation cost. This limits the application of
natural gradient descent method. Then researchers proposed
adaptive natural gradient descent method, which used an
iteration formula to approximate the inverse FIM instead
of directly computing it. Although computing the inverse
of large dimension matrix still faces many difficulties, the
analytical form of FIM can help us to investigate better
approximation formula of inverse FIM, which will lead to a
significant improvement of adaptive natural gradient descent
algorithms.

In this experiment, we aim to present the performance of
natural gradient method by directly computing the inverse
FIM based on the obtained analytical form. We choose the
teacher model and student model both have 2 hidden nodes
and the input dimension is 1, i.e. M = 2, k = 2 and n = 1.
Then the experiment results will be shown by comparing
natural gradient descent (NGD) algorithm with standard
gradient descent (SGD) algorithm, where three singular
cases, including opposite singularity case, overlap singularity
case and elimination singularity case, are investigated. Due to
the difficulty in calculating the inverse FIM and the precision
limitation of the computer, we set the initial state of part of
student parameters to be optimal value, and only the rest part
of student parameters need to be modified.
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FIGURE 6. Case 1 (Opposite singularity) with NGD algorithm and SGD
algorithm (The final state of student parameters using SGD algorithm are
J1 = −0.2022 and J2 = 0.1917. The final state of student parameters of
NGD algorithm are J1 = −0.4945 and J2 = −1.0379.)

Case 1 (Opposite Singularity): For this case, we only
modify the student parameter J1 and J2, w1 and w2 are fixed
to be the optimal value and remains unchanged, i.e. w1 =

v1 and w2 = v2. We choose the teacher parameters are:
t1 = −0.49, t2 = −1.00, v1 = 0.95, and v2 = −0.25.
The initial state of student parameters are: J (0)1 = 0.98,
J (0)2 = −0.20. The MLP is trained 200 epochs using NGD
algorithm and 500 epochs using SGD algorithm, respectively.
The experiment results are shown in Fig. 6, which represent
the trajectories of inverse condition number of FIM, training
error, and h2(1, 2), respectively.
Case 2 (Overlap Singularity): For this case, w1 and w2 are

set to be the optimal value and we only modify the student
parameter J1 and J2. We choose the teacher parameters are:
t1 = 0.45, t2 = 1.38, v1 = −0.56, and v2 = 0.37.

FIGURE 7. Case 2 (Overlap singularity) with NGD algorithm and SGD
algorithm (The final state of student parameters using SGD algorithm are
J1 = −0.6318 and J2 = −0.6024. The final state of student parameters
using NGD algorithm are J1 = 0.4436 and J2 = 1.3913.)

The initial state of student parameters are: J (0)1 = −0.99,
J (0)2 = −0.21. The MLP is trained 200 epochs using NGD
algorithm and 500 epochs using SGD algorithm, respectively.
The experiment results are shown in Fig. 11, which represent
the trajectories of inverse condition number of FIM, training
error, and h1(1, 2), respectively.
Case 3 (Elimination Singularity): For this case, J2 and

w2 remain invariable in the training process, i.e. J2 = t2 and
w2 = v2. Only the student parameters J1 and w1 are needed
to be modified. We choose the teacher parameters are: t1 =
0.40, t2 = 0.89, v1 = −0.32, and v2 = −0.90. The
initial state of student parameters are: J (0)1 = 0.21, w(0)

1 =

0.20. The MLP is trained 300 epochs using NGD algorithm
and 1000 epochs using SGD algorithm, respectively. The
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FIGURE 8. Case 3 (Elimination singularity) with NGD algorithm and SGD
algorithm (The final state of student parameters using SGD algorithm are
J1 = 0.3606 and w1 = −0.3547. The final state of student parameters
using NGD algorithm are J1 = 0.4255 and w1 = −0.3049.)

experiment results are shown in Fig. 11, which represent
the trajectories of inverse condition number of FIM, training
error, and w1, respectively.
For case 1 and case 2, as can be seen from Fig. 6 -

Fig. 7, when using SGD algorithm to train the MLPs, the
student parameters are trapped in opposite singularity or
overlap singularity till the end. In sharp contrast, when using
NGD algorithm to train the MLPs, the learning dynamics
can easily escape the influence of opposite singularity and
overlap singularity and converge to the global minimum. For
case 3, from Fig. 8, we can see that the learning process is
affected by elimination singularity. A plateau phenomenon
can be observed in Fig. 8(b) for SGD algorithm case and
the natural gradient algorithm can significantly reduce the
influence of elimination singularity.

All the experiment results of above three cases have
illustrated the efficiency of FIM based natural gradient
method to overcome the influence of singularities. Since
the analytical form of FIM have obtained in Theorem 1,
it is important to derive better approximation formula of
inverse FIM based on Theorem 1 in the future, which will
facilitate the application of natural gradient method to high-
dimensional systems.

V. CONCLUSION AND DISCUSSIONS
Multilayer perceptrons have been widely used in many field,
however the singularities existed in the parameter space
often seriously influence the learning dynamics. As Fisher
information matrix degenerates on the singularities, the
FIM plays a significant role in investigating the singular
learning dynamics. In this paper, for MLPs with general
Gaussian input, by choosing the bipolar error function as
the activation function, we obtain the analytical form of
FIM. In the experiment part, we have verified the correctness
of the analytical form, and finally showed the efficiency
of FIM-based NGD algorithm in comparison with SGD
algorithm. In the future, based on the obtained analytical form
of FIM, we aim to derive better approximation formulas of
inverse FIM that can be applied to high-dimensional systems.

APPENDIX
THE ANALYTICAL FORM OF Q1(Ji , Jj ), Q2(Ji , Jj ) AND
Q3(Ji , Jj )
From Eq. (2), we have

y− f0(x) = ε ∼ N (0, σ 2
0 ), (A-1)

then

1
√
2πσ0

∫
+∞

−∞

exp

(
−
(y− f0(x))2

2σ 2
0

)
dy

=
1

√
2πσ0

∫
+∞

−∞

exp(−
ε2

2σ 2
0

)dε = 1. (A-2)

Q1(J i, J j), Q2(J i, J j) and Q3(J i, J j) can be rewritten as:

Q1(J i, J j)

=

(√
2π
)−n
|6|−

1
2

∫
+∞

−∞

∫
+∞

−∞

∂φ(x, J i)
∂J i

∂φ(x, J j)

∂JTj

× exp
(
−
1
2
xT6−1x

)
×

1
√
2π

exp
(
−
1
2
(y− f0(x))2

)
dydx

=

(√
2π
)−n
|6|−

1
2

∫
+∞

−∞

∂φ(x, J i)
∂J i

∂φ(x, J j)

∂JTj

× exp
(
−
1
2
xT6−1x

)
dx. (A-3)

Q2(J i, J j) =
(√

2π
)−n
|6|−

1
2

∫
+∞

−∞

∫
+∞

−∞

φ(x, J j)

×
∂φ(x, J i)
∂J i

exp
(
−
1
2
xT6−1x

)
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×
1
√
2π

exp
(
−
1
2
(y− f0(x))2

)
dydx

=

(√
2π
)−n
|6|−

1
2

∫
+∞

−∞

∂φ(x, J i)
∂J i

×φ(x, J j) exp
(
−
1
2
xT6−1x

)
dx. (A-4)

Q3(J i, J j) =
(√

2π
)−n
|6|−

1
2

∫
+∞

−∞

∫
+∞

−∞

φ(x, J i)

×φ(x, J j) exp
(
−
1
2
xT6−1x

)
×

1
√
2π

exp
(
−
(y− f0(x))2

2

)
dydx

=

(√
2π
)−n
|6|−

1
2

∫
+∞

−∞

φ(x, J i)

×φ(x, J j) exp
(
−
1
2
xT6−1x

)
dx. (A-5)

We denote A(J i, J j)−1 = 6−1+J iJTi +J jJ
T
j and B(J i) =

6−1 + J iJTi , then we can have:

Q1(J i, J j) =
(√

2π
)−n
|6|−

1
2

∫
+∞

−∞

∂φ(x, J i)
∂J i

×
∂φ(x, J j)

∂JTj
exp

(
−
1
2
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)
dx

=
2
π

(√
2π
)−n
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1
2

∫
+∞

−∞

xxT exp
(
−
1
2
xT J iJTi x

)
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(
−
1
2
xT J jJTj x

)
exp

(
−
1
2
xT6−1x

)
dx

=
2
π

(√
2π
)
−n
|6|−

1
2

∫
+∞

−∞

xxT

× exp
(
−
1
2
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T
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)
dx

=
2
π

(√
2π
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1
2

∫
+∞

−∞

xxT

× exp
(
−
1
2
xTA(J i, J j)−1x

)
dx

=
2
π
|6|−

1
2 |A(J i, J j)|

1
2

(√
2π
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|A(J i, J j)|−

1
2

×

∫
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−∞

xxT exp
(
−
1
2
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)
dx
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2
π
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1
2A(J i, J j), (A-6)

Q2(J i, J j) =
(√

2π
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1
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√
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2
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exp
(
−
1
2
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2
π
|6|−
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(√
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×
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exp
(
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1
2
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)
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2
π
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1
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where:

B(J i)−1 =
(
6−1 + J iJTi

)−1
= 6 −

6J iJTi 6

1+ JTi 6J i
. (A-8)

A(J i, J j) =
(
B(J i)+ J jJTj

)−1
= B(J i)−1 −

B(J i)−1J jJTj B(J i)
−1

1+ JTj B(J i)−1J j

= 6 −
6J iJTi 6

1+ JTi 6J i

−

(
6 −

6J iJTi 6
1+JTi 6J i

)
J jJTj

(
6 −

6J iJTi 6
1+JTi 6J i

)
1+ JTj

(
6 −

6J iJTi 6
1+JTi 6J i

)
J j

= (6−1 + J iJTi + J jJ
T
j )
−1
= 6 −6

×

(
(1+ JTj 6J j)J iJ

T
i + (1+ JTi 6J i)J jJ

T
j

(1+ JTi 6J i)(1+ J
T
j 6J j)− (JTi 6J j)2

−
JTi 6J j(J iJ

T
j + J jJ

T
i )

(1+ JTi 6J i)(1+ J
T
j 6J j)− (JTi 6J j)2

)
6.

(A-9)
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According to the matrix determinant lemma:

|B(J i)| = |6−1 + J iJTi | = (1+ JTi 6J i)|6|
−1.

(A-10)

|A(J i, J j)|−1 = |B(J i)+ J jJTj | = (1+ JTj B(J i)
−1J j)|B(J i)|

= (1+JTj

(
6−

6J iJTi 6

1+JTi 6J i

)
(1+JTi 6J i)|6|

−1

= ((1+ JTi 6J i)(1+ J
T
j 6J j)

−(JTi 6J j)
2)|6|−1. (A-11)

|A(J i, J j| =
|6|

(1+ JTi 6J i)(1+ J
T
j 6J j)− (JTi 6J j)2

.

(A-12)

Then we calculate Q3(J i, J j).

Q3(J i, J j) =
∫
Q2(J i, J j) dJ i

=

∫
2
π
|6|−

1
2 |A(J i, J j)|

1
2B(J i)−1J j dJ i

=
2
π
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1
2

∫
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1
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dJ i

=
2
π

∫
1√

1− (JTi 6J j)
2

(1+JTi 6J i)(1+J
T
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× d
JTi 6J j√

1+ JTi 6J i
√
1+ JTj 6J j

=
2
π

arcsin
JTi 6J j√

1+ JTi 6J i
√
1+ JTj 6J j

+C0

 .
(A-13)

As Q3(0,0) = 0, we can get C0 = 0, then we have:

Q3(J i, J j) =
2
π
arcsin

JTi 6J j√
1+ JTi 6J i

√
1+ JTj 6J j

.

(A-14)
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