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ABSTRACT As a powerful method in signal processing, time-frequency analysis shows the characteristics
of signals in the form of a joint domain distribution of time and frequency. The S-transform is one of the
most effective and frequently used algorithms for time-frequency analysis of seismic signals. To address
the problems of fixed time window, such as single time-frequency resolution and poor energy aggregation,
an adaptive generalized S-transform algorithm is proposed. In this method, we designed a new generalized
Gaussian window function with four variable parameters to obtain the optimal time-frequency distribution.
The proposed window function uses time-frequency aggregation as the objective function for parameter
optimization. Combined with the calculation results of the time-frequency aggregation and time-frequency
distribution, we proved that the proposed method has a satisfactory analysis effect and anti-noise perfor-
mance. In addition, a simulation experiment of the seismic signal is carried out using this algorithm, and the
results show that the proposed adaptive generalized S-transform enhances the time-frequency resolution and
energy aggregation in seismic signal analysis.

INDEX TERMS Signal processing, time-frequency analysis, Gaussian window, generalized S-transform,
energy aggregation.

I. INTRODUCTION
Ground penetrating radar (GPR) is often used in underground
exploration [1], [2]. GPR transmits high-frequency electro-
magnetic pulses to the ground, and then the information of the
underground medium is resolved through signal analysis of
the reflected wave. However, owing to the uneven distribution
and the variety of underground media, the signal propagation
path and vibration amplitude vary. In addition, there are vari-
ous noise effects in the seismic wave acquisition, resulting in
time-varying nonstationary signals.

Therefore, it is necessary to analyze the seismic signals.
The traditional Fourier transform is a global signal analysis
method that cannot analyze the local details of the signal.
Because of the complexity of GPR data, this method cannot
meet actual needs. Time-frequency (TF) analysis methods
[3] represent the TF characteristics of signals, and they are
used extensively in seismic signal processing [4], [5]. This
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algorithm overcomes the shortcomings of the time-frequency
domain separation of Fourier transform. The approach can
more precisely analyze the frequency components contained
in each time bin and the changes in each frequency com-
ponent with time. TF analysis of seismic signals and the
extraction of feature information [6], [7], [8] are extremely
important in geological identification and exploration.

Existing and mature TF analysis algorithms include the
short-time Fourier transform (STFT) [9], continuous wavelet
transform (CWT) [10], andWigner-Ville distribution (WVD)
[11]. The STFT analysis signal was converted from a
1-dimensional time domain to a 2-dimensional TF joint distri-
bution. The fast Fourier transform intercepts signals through
a window function for analysis. Then, the window is shifted,
and the process is repeated until the spectrum of the signal
is obtained along the time axis. The STFT can adequately
describe the local characteristics of seismic signals. However,
the STFT is limited in that its window function is fixed
for nonstationary signals, leading to a single fixed resolu-
tion. Because it does not use a window function, WVD is

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 127863

https://orcid.org/0000-0002-1528-2827


L. Jiang et al.: Adaptive Generalized S-Transform Algorithm for Seismic Signal Analysis

a high-precision TF analysis method with high TF aggre-
gation and is not constrained by the uncertainty principle.
However, this was accompanied by a large number of cross
interference terms. In practical applications, owing to the
existence of interference terms, the obtained spectrum cannot
precisely analyze the characteristic information of the sig-
nal. Therefore, the pseudo-Wigner Ville distribution (PWVD)
[12] and smooth pseudo-Wigner Ville distribution (SPWVD)
[13] have been proposed to eliminate cross terms, but the
application effect in seismic signals is still unsatisfactory.

In 1996, Stockwell proposed the S-transform (ST) [14].
ST is a phase transformation of a CWT with a special basis
wavelet. Simple harmonic waves and Gaussian functions
are two important components of ST and CWT. In CWT,
harmonic and Gaussian windows perform the same scaling
and translation. However, in ST, the simple harmonic part
can be used as a telescopic transform in the time domain.
The Gauss function can be transformed by translation in
addition to the stretching transformation. Under the same
conditions, ST has a higher TF aggregation than the other TF
analysis methods. The window function of ST can adaptively
reduce the width with an increase in frequency. Therefore,
it has a higher frequency resolution at low frequencies and
a higher time resolution at high frequencies. However, the
general ST has no parameters that can be used to change the
Gaussian window function, which cannot be changed once
it is selected. Therefore, many scholars [15], [16], [17] have
proposed a generalized S-transform (GST) with different
window functions, which is widely used in non-stationary
signal processing [18], [19], such as feature extraction of
seismic signals [20], [21], reservoir identification [22], [23],
and seismic signal compensation [24], [25].

To further optimize the TF resolution and energy aggrega-
tion of the ST, a new variable four-parameter Gaussian win-
dow function is proposed. The TF aggregationwas optimized,
and the best window parameters were selected to achieve
better TF characterization.

For this study, the aim is to develop a method with higher
time-frequency accuracy, we proposed an adaptive general-
ized S-Transform (AGST) algorithm. Moreover, AGST has
better noise resistance and higher time-frequency resolution
when analyzing seismic signals.

II. STANDARD S-TRANSFORM
In 1996, Stockwell solved the limitations of CWT and STFT
with ST. The basis function of ST is the product of a simple
harmonic wave and a Gaussian function, where the simple
harmonic wave only performs scaling transforms in time
domain and the Gaussian function performs both scaling
and translation transforms simultaneously. For signal x(t) ∈
L2(R), where L2(R) is the finite energy function space, the ST
expression is

ST(τ, f ) =

+∞∫
−∞

x(t)
|f |
√
2π

exp(−
(t − τ )2f 2

2
) exp(−j2π ft)dt

(1)

where x is a continuous signal to be analyzed, f is the fre-
quency, and τ is the location of the window on the time axis.

The Gaussian window function is expressed as follows:

ω(t, f ) =
1

σ (f )
√
2π

exp(
−t2

2σ (f )2
) (2)

where the standard deviation function is defined as:

σ (f ) =
1
|f |

(3)

The time window function of ST contains a frequency factor
that is inversely proportional to the time window width. For
high-frequency signals, the window function has a small
width and good time resolution. For low-frequency signals,
the window has a large width and good frequency resolution.
Moreover, ST has the stability of non-destructive reversibility
and is unaffected by linear cross terms.

Standard ST solves the problems of fixed window shape
and single resolution that exist in the traditional TF analysis
method. However, the window shape of the standard ST
has a fixed relationship with the frequency, and the window
function only varies linearly with the frequency. Therefore,
ST does not have enough satisfactory time-frequency resolu-
tion when analyzing more complex signals.

III. MODIFIED S-TRANSFORM
A. GENERLIZED S-TRANSFORM
In view of the shortage of ST, Reference [21] proposed adding
two window factors to the standard Gaussian window to
enhance the flexibility of the window. The standard deviation
function is expressed as:

σ (f ) =
1
λf p

, p ∈ [
1
2
,
3
2
] (4)

where p is the attenuation factor, and λ is the regulation
factor. p and λ are generally determined manually, and many
attempts to obtain the values of the parameters are required
to achieve the best effect. To simplify the tedious manual
attempts as well as make the window shape more diverse
based on nonlinear frequency changes and more appropriate
to the needs of actual signals, based on previous results,
this paper proposes to modify the Gaussian window, increase
the window control parameters, and optimize the parameters
according to the TF aggregation. The modified window func-
tion is

ω(t) =
1

σnew(f )
√
2π

exp(−
t2

2σ 2
new(f )

) (5)

where the standard deviation function is

σnew(f ) =
Cf D

Af + f B
(6)

Therefore, the modified GST expression is

GST(τ, f ) =

+∞∫
−∞

x(t)
Af + (f )B

C(f )D
√
2π
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FIGURE 1. The influence of window parameters. (a) The influence of
parameters A and B. (b) The influence of parameters C and D.

× exp(−
(Af + (f )B)2(t − τ )2

2C2(f )2D
) exp(−j2π ft)dt

(7)

The normalized parameter 1
σ (f )
√
2π

makes the window a unit
area, so that the amplitude of the new generalized TF trans-
form has the same meaning as the Fourier transform. Because
the new window is a function of frequency with multiple
parameters, the shape change of the window is related to the
window parameters and frequency f , which means that the
new GST is a multiresolution signal analysis method. When
[A, B, C , D] = [0, 1, 1, 0], the new window is equivalent to
the standard Gaussian window. Fig. 1 reveals the influence
of the window parameters. In the time domain, the window
length becomes narrower as parameters A, B, and D increase,
and longer as parameter C increases. The window amplitude
increased as parameters A, B, and D increased and decreased
as parameterC increased. ParametersC andD had the largest
influence on the window and were used to roughly adjust the
window shape, whereas parameters A and B had a relatively
small influence on the window and were used to fine-tune the
window shape.

To ensure the energy aggregation of the TF analysis, the
window shape cannot be too wide or narrow. Therefore, the
σnew(f ) is restricted as follows:

S < σnew(f ) < M (8)

where S is nTs, M is lTs, n and l depend on the signal to
be analyzed. To select the appropriate window width, after
a large number of experiments, n is taken as 10 and l is
1000 respectively in this paper. The four parameters were
restricted as follows

nTs(Afmax + f Bmax)− Cf
D
min ≤ 0

Cf Dmax − lTs(Afmin + f Bmin) ≤ 0
0 ≤ A,B,C,D ≤ 2

(9)

B. PARAMETER OPTIMIZATION
To further improve the resolution of TF analysis, we propose
a new algorithm named AGST. The TF Concentration Mea-
surement (CM) [26], [27] was used for window parameter
optimization as the objective function. For the GST of the
signal, CM is expressed as

CM =
1

+∞∫
−∞

+∞∫
−∞

|GST (t, f )|dtdf

(10)

where |GST (t, f )| is expressed as

|GST (t, f )| =
GST (t, f )√

+∞∫
−∞

+∞∫
−∞

|GST (t, f )|2dtdf

(11)

This method is analogous to the definition of a ‘peak’ in
statistics. Different window parameters result in different
TF distributions and resolutions. When CM is larger, the
TF distribution becomes more concentrated. During window
parameter optimization, first, the standard deviation function
of GST is limited; then, the GST parameters are selected
within the limited conditions, the CM of the TF energy
aggregation is calculated, and finally, all parameters within
the limited conditions are traversed to obtain the CM set.
The parameters are then optimized to screen out the win-
dow parameters Aopt ,Bopt ,Copt , and Dopt , where the CM is
the largest. Finally, the optimized parameters were used to
obtain the generalized TF transform under the condition of
an optimal window. This new TF transform with optimized
parameters is known as the AGST.

IV. SIMULATION
A. MULTICOMPONENT SIGNAL
The Ricker wavelet is the most commonly used form of a
seismic wavelet in the construction of seismic signal models.
The composite signal x(t) in Fig. 2 is composed of three
sub-wave signals, where x1(t) is a signal with a dominant
frequency of ricker wavelet of 10 Hz distributed at 0.1 s, 0.5 s
and 0.8 s, x2(t) is a signal with a dominant frequency of ricker
wavelet of 30 Hz distributed at 0.2 s, 0.3 s, 0.6 s and 0.7 s, and
x3(t) is wavelet signal with a dominant frequency of 80 Hz
distributed at 0.1 s, 0.4 s and 0.65 s. The expression of x(t) is
as follows:

x1(t) = 0.1× [1− 2(10π(t − 0.1))2]e−(10π(t−0.1))
2
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FIGURE 2. Comparison of various TF analysis methods. (a) Synthetic signal. (b) STFT. (c) CWT. (d) SPWVD. (e) Standard ST. (f) AGST.

−0.1× [1− 2(10π (t − 0.5))2]e−(10π(t−0.5))
2

+0.1× [1− 2(10π (t − 0.8))2]e−(10π(t−0.8))
2

x2(t) = 0.1× [1− 2(30π (t − 0.2))2]e−(30π(t−0.2))
2

+0.1× [1− 2(30π (t − 0.3))2]e−(30π(t−0.3))
2

+0.1× [1− 2(30π (t − 0.6))2]e−(30π(t−0.6))
2

+0.1× [1− 2(30π (t − 0.7))2]e−(30π(t−0.7))
2

x3(t) = 0.1× [1− 2(80π (t − 0.1))2]e−(80π(t−0.1))
2

+0.1× [1− 2(80π(t − 0.4))2]e−(70π(t−0.4))
2

+0.1× [1− 2(80π(t − 0.65))2]e−(80π(t−0.65))
2

x(t) = x1(t)+ x2(t)+ x3(t) (12)

According to Fig. 2, the STFT has high energy aggregation
and time resolution at low frequencies, but the overall TF
energymodes are aliased,making it difficult to accurately dis-
tinguish the signal characteristics. Compared with the STFT,
the CWT improves the overall TF aggregation, but the TF
characteristics of the low- frequency and medium-frequency
signals remain difficult to distinguish. At the same time,
we also compared the GST in Reference [21]. It is worth
noting that both λA and p in Formula (4) need a lot of manual
attempts according to the signal to obtain the best analysis
effect. When λ = 1.2, p = 1.1, we get the best analysis
results in Fig. 2 (e). TF analysis performed by applying the
AGST proposed in this study is shown in Fig. 2 (f). After
optimization, the parameters were [A, B, C, D] = [0.8 128,
0.5 075, 1.0 211, 0.1 221]. Compare the analysis results of

10hz seismic wavelet and 30HZ seismic wavelet at 0.65s in
Fig. 2 d, Fig. 2 (e), and Fig. 2 (f), we can see that AGST
has the best TF analysis effect. Table 1 shows the quantitative
results of the TF aggregation comparison between the AGST
and traditional TF analysis methods. The results of the CM
also show that the AGST in this study has a satisfactory TF
aggregation effect. For an SPWVD, although the TF aggrega-
tion is significantly improved, it is difficult to distinguish the
signal characteristics owing to number of cross-interference
terms.
This algorithm has a significant effect on synthetic sig-

nals, reducing the signal interference phenomenon that exists
in traditional time-frequency analysis methods in the low-
frequency region, and has concentrated TF energy, high time
resolution, and clear signal distribution. To prove the sat-

isfactory anti-noise performance of AGST, we set the multi-
component Ricker wavelet signal with Gaussian white noise,
and AGST was performed on the signal at 10, 5, 3 and 1 dB.
The TF distribution of AGST is displayed in Fig. 3. Although
the TF energy of the original signal is still concentrated at
a low signal-to-noise ratio (SNR), the distribution of the
main components in the synthetic signal can be clearly dis-
tinguished. The signal did not become slightly blurred until
1 dB, and the time resolution remains relatively accurate.
Table 2 shows a comparison of CM between the AGST and
TF analysis methods under different signal-to-noise ratios.
Combined with the TF distribution in Fig. 3, as is shown
that, under the condition of low SNR, the cross term of
the SPWVD is too serious, and the frequency is difficult to
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TABLE 1. Comparison of the CM of the AGST and other TF methods.

FIGURE 3. Comparison of the anti-noise performance of the AGST and other TF methods. (a) AGST at 10 dB. (b) AGST at 5 dB. (c) AGST at 3 dB.
(d) AGST at 1 dB. (e) GST at 1 dB. (f) Standard ST at 1dB. (g) SPWVD at 1dB. (h) CWT at 1dB. (i) STFT at 1dB.

recognize. The signals at high frequency and low frequency
of the CWT overlap, and the TF characteristics of signals
at high frequency are difficult to express using standard ST
and STFT. Therefore, the AGST proposed in this study has
satisfactory anti-noise performance.

B. WEDGE MODEL
A wedge seismic signal model was designed with an acquisi-
tion time of 500ms and 60 seismic data points were collected.
A Ricker wavelet with a dominant frequency of 30 Hz was
used to synthesize the seismic records. At the top and bottom
of the model, the reflection coefficients were 0.4 and -0.4.

Fig. 4 a displays a synthetic seismic record based on
the wedge model. Fig. 4 b shows the TF map obtained by

applying the standard ST to the synthetic seismic record,
with a TF aggregation CM = 0.0 130. The interference
between the synthetic signals is severe in and near the 10th,
30th and 50th seismic data of the wedge model, and the
recognition effect of thin-layers is fuzzy. Fig. 4 (c) shows
the TF aggregation CM = 0.0 162 obtained by applying
the AGST proposed in this paper to the synthetic seismic
record. The parameters of the 60 channels data are optimized,
and a TF analysis is performed. Subsequently, the dominant
frequency was extracted, and an amplitude slice was created.
From the amplitude spectrum used to distinguish the thin-
layer interface, it clearly shows that the resolution is markedly
enhanced and the thin-layer identification becomes more
accurate.
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TABLE 2. Comparison of the anti-noise performance of TF methods at different SNR.

FIGURE 4. Analysis of wedge model. (a) Synthetic seismic record. (b) Standard ST. (c) AGST.

FIGURE 5. Analysis of horizontal thin-layer model. (a) Synthetic seismic record. (b) Standard ST. (c) AGST.

C. HORIZONTAL THIN-LAYER
A horizontal thin-layer model was designed. The model has
60 channels and an acquisition time of 600 ms. There is a
single reflection surface from channel 1 to channel 60 at
300 ms, with reflection coefficients of 0.4280 ms and 350 ms.
Horizontal thin-layers with a reflection coefficient of -0.4 can
be found at channels 25 to 60 and channels 7 to 30. The
seismic profile was obtained by the convolution of the hor-
izontal thin-layer model with a Ricker wavelet. As shown in
Fig. 5 (a), the dominant frequency of the Ricker wavelet was
60 Hz. One of them is extracted from the profile to calculate
the dominant frequency, and the TF distribution in Fig. 5 (b)
is obtained by the standard ST, with the corresponding CM=
0.0 175. Fig. 5 (c) shows the TF distribution map obtained
by the AGST using the method in this study, and its TF
aggregation was increased to CM = 0.0 217. Comparing the
two figures, Fig. 5 (c) clearly shows the position information
and shape characteristics of the thin-layer. Even if the depth
difference of the thin-layer between tracks 25 to 60 was
only 20 ms, the algorithm could still accurately identify the
thin-layer.

D. NATURAL SEISMIC SIGNAL
A natural seismic wave with a time sampling interval of
0.001 s and 601 data points was selected for analysis, see
Fig. 6. Fig. 6 (b) shows the TF joint distribution of the
standard ST of the seismic wave. Fig. 6 (c) shows the TF
joint distribution of the AGST of the seismic wave. The
optimized parameters from this method were [A, B, C , D] =
[0.2 803, 0.1 504, 1.2 802, 0.0 529]. Compared with the
traditional algorithm, the TF distribution shows that AGST
significantly improves the frequency resolution and elimi-
nates noise interference.

Finally, we extracted a section of natural seismic wave
data from 80 seismic channels and analyzed the 10th seismic
signal. The sampling interval was set to one, and there were
256 sampling points. There are two obvious wavelets with
dominant frequencies of 15Hz at the 98th and 110th sampling
points, and some small wavelets are scattered at other points.
Fig. 7 (a) shows the amplitude spectrum of the extracted sig-
nal. Fig. 7 (b) shows the TF distribution obtained by perform-
ing the standard ST. By applying the AGST, TF distribution
is obtained as is shown in Fig. 7 (c). When the two images
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FIGURE 6. Analysis of natural seismic signal. (a) Waveform. (b) Standard ST. (c) AGST.

FIGURE 7. Analysis of another natural seismic signal. (a) Waveform. (b) Standard ST. (c) AGST.

are compared, it is shown that AGST significantly improves
the time resolution and TF aggregation, as well as the ability
to distinguish the distribution of seismic wavelets.

V. CONCLUSION
An AGST for seismic signal analysis is proposed in this
paper in response to the shortcomings of traditional time
window functions, such as single window shape transforma-
tions and difficulty in meeting the needs of TF analysis for
complex non-stationary signals. To ensure that the AGST
has a higher TF aggregation and TF resolution, the algo-
rithm incorporates a new Gaussian window function with
four parameters that makes the window more flexible and
uses TF aggregation as the objective function for parameter
optimization. The simulation results show that AGST outper-
forms the traditional method in the thin-layer discrimination
of seismic signals, and the recognition is more accurate.
In addition, the algorithm exhibits an improved anti-noise
performance.
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