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ABSTRACT In the past decade, how to improve the fidelity of maneuver gaming and the synergy of
target allocation has become a key issue in cooperative autonomous air combat researches. To address
the problem, this study proposes a maneuver decision-making algorithm based on an optimized dynamic
Bayesian network and a target allocation decision-making algorithm based on an optimized hybrid particle
swarm optimization. In maneuvering decision-making, the state transition’s reliability and the air combat’s
autonomy are enhanced through considering the effect of sliding mode control. The Bayesian network is
improved through introducing a strategy for dynamic prior probability updating. The computation is reduced
and the efficiency is increased through pruning the minimax search tree according to visual prediction. In tar-
get allocation decision-making, the algorithm’s convergence speed is greatly accelerated and the solution’s
global optimality is improved through introducing immigrant particles. The algorithm’s application scope is
expanded through proposing a solution principle about unequal quantity combat situations. Furthermore, the
end criterion is specially designed to fit real-world combats through introducing a fire control. The simulation
results show that the designed decision-making algorithms are more effective in solving the problem of
cooperative autonomous air combat, which indicates that the various improvements introduced in this study
are reasonable and effective.

INDEX TERMS Cooperative autonomous air combat, maneuver decision-making, target allocation decision-
making, sliding mode controller, dynamic Bayesian network, hybrid particle swarm optimization.

I. INTRODUCTION
At the beginning, the advantages of UAVs over manned
aircraft give birth to the studies on autonomous air combat.
Afterwards, the disadvantages and limitations of a single
UAV in combat further promote researches on cooperative
autonomous air combat (CAAC). Autonomous decision-
making is the most vital procedure in CAAC. It is responsible
for providing UAVs with offensive/defensive strategy selec-
tions based on real-time battlefield situations, so that these
UAVs can overcome enemies or save themselves [1], [2], [3].

The associate editor coordinating the review of this manuscript and

approving it for publication was Ming Xu .

Though great efforts have been devoted in researches on
CAAC in recent decades, some flaws still exist in cur-
rently adopted autonomous decision-making methods that
hinder CAAC from being large-scaled used in military [4].
Autonomous decision-making in air combat can be divided
into two parts: maneuver decision-making and target alloca-
tion decision-making.

Maneuver decision-making is about UAVs’ behaviors to
plan specific flight instructions and track specific flight tra-
jectories for certain combat purposes. Various algorithms
have been applied. For example, differential game method
can ensure an optimal decision result, but needs extremely
accurate models that are hard to build [5]. Approximate

128276 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0001-8218-5878
https://orcid.org/0000-0001-8115-1094
https://orcid.org/0000-0002-2568-2568
https://orcid.org/0000-0001-6996-0577


Z. Wang et al.: High-Fidelity Decision-Making and Simulation for Cooperative Autonomous Air Combat

TABLE 1. Comparisons of related works with our work.

dynamic programming method can alleviate the computa-
tion pressure, whereas the results tend to have insufficient
generalization abilities [6]. Bayesian network (BN) enables
machines to take correct decision-making operations by emu-
lating the expert’s actions [2], [3], and is appropriate for
air combat at various distances from a theoretical point of
view [4], whereas the accuracy of decisions highly depends
on the the acquisition of empirical knowledge.

Target allocation decision-making refers to the matching
between ourselves and enemies, and aims to achieve group
optimization under a certain scale. Three kinds of method
are in common use presently, including mathematical pro-
gramming method, negotiation method and swarm intelli-
gence method. Mathematical programming method, such as
Hungarian algorithm [7], has the features of simple structure
and easy implementation. Its essence is to traverse all feasible
spaces, which leads to large-scale calculation and low opera-
tion speed. Negotiation method, such as distributed algorithm
[8], has strong robustness but requires higher computing and
communication abilities of UAVs themselves. Swarm intelli-
gence method, such as genetic algorithm [9], particle swarm
optimization algorithm [10], [11], and simulated annealing
algorithm [12], has the advantages of high convergence speed
and simple operation, but may fall into local optimization and
cause the decreased accuracy of the solution attributed to the
randomness of initial settings [13].

To solve some aforementioned flaws in those existed meth-
ods, we propose an optimized dynamic Bayesian network
(DBN) method for maneuver decision-making and an opti-
mized hybrid particle swarm optimization (HPSO) method
for target allocation decision-making. Table 1 shows the main
advantages of our work compared with related works. Firstly,
in the optimized maneuver decision-making method: (1)To
enhance the state transition’s reliability and the air combat’s
autonomy, we propose a method of executing combat maneu-
vers according to sliding mode flight controller (SFC). (2)
To improve the dynamic performance and decision-making
ability of BN, we propose a method of updating the posterior
probabilities as the combat going on. (3) To raise the comput-
ing efficiency and decision timeliness, we propose a method
of pruning the minimax search tree based on visual predic-
tion. Secondly, in the optimized target allocation decision-
making method: (1) To accelerate the convergence speed and
ensure the global optimum solution, we propose a method of

FIGURE 1. Force model of the UAV.

introducing immigrant particles when the iteration falls into
local optimization. (2) To reinforce the cooperation between
UAVs and expand the application scope of algorithm, we pro-
pose an allocation strategy when the UAV numbers of two
sides are unequal. Last but not the least, in the combat end
criterion: To narrow the gap between simulations and real air
combats, we propose a method of introducing a fire control
system to determine the combat end. The simulation results
prove that the designed CAAC system has higher fidelity and
better decision-making capability. The system could provide
a simple and convenient solution to maneuver decision.

II. METHODS
A. FLIGHT MODELING
Flight modeling depends on force analysis [14]. As shown
in Fig. 1, Ocxbybzb is the Body Axis system, Ocxgygzg is the
Earth Axis system, and Ocxayaza is the Wind Axis system.
Regarding the aircraft as a rigid body, its force model can
be established on the basis of these three coordinate systems.
Main variables required for modeling are summarized in
Table 2.

According to flight dynamic theories, the motions of the
barycenter (Oc in Fig.1) and the rotations around the barycen-
ter under Body Axis system can be written in scalar form
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TABLE 2. Variables and their meanings.

as (1) [15], [16]. For the convenience of writing, sin θ and
cos θ are abbreviated as Sθ and Cθ , et al.

u̇ = rv− qw− gSθ +
X
m

v̇ = pw− ru+ gCθSφ +
Y
m

ẇ = qu− pv+ gCθCφ +
Z
m

ṗ =
IzL+IxzN + Ixz(Iz + Ix + Iy)pq− [Iz(Iz−Iy)+ I2xy]qr

IxIz−I2xz

q̇ =
M + (Iz − Ix)rp− Ixz(p2 − r2)

Iy

ṙ =
IxzL+IxN + [Iz(Iz−Iy)+ I2xy]pq−Ixz(Ix − Iy + Iz)qr

IxIz−I2xz
α = arctanw/u
β = arcsin v/(u2 + v2 + w2)

(1)

Then the motions of the aircraft under Earth Axis system can
be derived through coordinate axis transformation [15], [16]:

ẋg = CθSψu+
(
SφSθCψ − CφSψ

)
v

+
(
CφSθCψ + SφSψ

)
w

ẏg = CθSψu+
(
SφSθSψ + CφCψ

)
v

+
(
CφSθSψ − SφCψ

)
w

żg = −Sθu+ SφCθv+ CφCθw
θ̇ = qCφ − rSφ
φ̇ = p+ qSφ tan θ + rCφ tan θ
ψ̇ =

(
qSφ + rCφ

)
sec θ

(2)

Autonomous flight controller is often underappreciated
in previous reports [17]. To highlight the unmanned con-
cept in CAAC, we manage to apply a second-order sliding
mode flight controller (SFC) to the given six-DOF flight
model [18]. The logic is to ensure that the system states can
converge to the sliding mode manifolds s = ṡ = 0 in limited
time with reference to appropriate control laws [19], [20],
[21]. Rewrite (1) into the following form:

ẋ = f (x)+ g (x) u (3)

where x ∈ Rn, u ∈ Rn are the state vector and the control
vector, respectively. Assume the state to be tracked is xc, then
the tracking error can be defined as e = xc − x. Now that the
control problem has been transformed into finding the input
u that makes e stable:

u = g−1 (e) [ė− f (e)] (4)

If the sliding mode surface function and the approach law are
selected as: s = e+ λ

∫
edt

ṡ = −ρ · sign (s)− ks
(5)

then control vector u can be designed as:

u =

{
g−1(e)[−f (e)− λ(e)− ρ · sign(s)− ks] ṡ 6= 0
g−1(e)[−f (e)− λ(e)] ṡ = 0

(6)

The basic structure of the SFC applied in this paper is
shown in Fig. 2. Assume that ṗc, q̇c and ṙc are the desired
angular accelerations of the aircraft. Combing (1) and (6),
the control quantities of pitch, roll and yaw channels can
be worked out as δx , δy and δz, respectively. Usually, δx
is equivalent to δr (rudder deflection angel), δy is equiv-
alent to δa (aileron deflection angle), and δz is equivalent

FIGURE 2. A second-order sliding mode flight controller.
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to δe (elevator deflection angle).

δx = [(I2z − IzIy + I
2
xz)qr− Ixz(Iz + Ix − Iy)pq− IzL

pp
+ (IxIz − I2xz)(ρ1sign(s1))/λ1 + ṗc)]/IzL

δx

δy = [Ixz(p2 − r2)− (Iz − Ix)pr − IxMαα

− IxMqq+ Iy(ρ2sign(s2)/λ2 + q̇c)]/M δy

δz = [Ixz(Ix − Iy + Iz)qr − (I2z − IzIy + I
2
xz)pq

− N rr − IxNββ + Izρ3sign(s3)/λ3 + Izṙc]/N δz

(7)

where λ and ρ with numeric subscript are proportional gain
coefficients. Lp, Mβ , Nα , et al. are aerodynamic derivatives.

The aerodynamic derivatives’ form indicates that the aero-
dynamic data and the flight model are directly linked with the
rudder deflection angles [22]. In this case, the controller can
imitate the operation of pilots in manned air combat, which
is consistent with the concept of DBN (described later).

B. MANEUVER DECISION-MAKING
Compared with differential games and other methods, the
maneuver decision-making model based on Bayesian net-
work is able to be applied to the decision-making of near,
medium and long range air combat at the same time, which is
a great advantage [23], [24]. However, BN has very strong
dependent on the empirical data, which means BN cannot
provide valid decisions for UAVs throughout the whole battle
process if in lack of authentic empirical data [25]. To address
this problem, a more effective DBN system is designed here.
The optimized DBN enables UAVs to modify and update the
prior probabilities in real-time with regard to their current
situations during the air combat.

First and foremost, the blue side is regarded as our side
whereas the red side is regarded as the enemy side under nor-
mal circumstances. A one-to-one maneuver decision-making
model based on DBN is shown in Fig. 3. With the help of
influence diagram [26], the DBN model can be presented in
the form of an acyclic directed graph composed by nodes and
directed arcs. These nodes and arcs demonstrate the logic of
maneuver decision-making in a very intuitive way. Taking
the blue side as an example, the steps of making maneuver
decisions within a time interval k ∼ (k + 1) are as follow:
Step 1: At time k , get the observation state ZRk through

observing the red side’s flight state XRk ;
Step 2: Calculate the current combat state for the blue side

CB
k through comparing blue side’s flight state XBk and the

observation status ZRk ;
Step 3: Assess the current combat state and obtain the

posterior probability P(2B
k |C

B
k ) according toC

B
k and the prior

probabilities P(2B
k );

Step 4: Establish an utility value function JBk about the pos-
terior probability P(2B

k |C
B
k ) and combat state CB

k , then solve
out the maneuver uBk that maximizes the situation evaluation
JBk through minimax search tree;
Step 5:Apply the automatic flight controller (SFC) tomake

the blue side UAV transfer from XBk to XBk+1 based on uBk ;
Step 6: Take the posterior probability P(2B

k |C
B
k ) of time k

as the prior probabilities P(2B
k+1);

Step 7: Repeat step 1 to step 6 until the air combat ends.
The core of decision-making behaviors based on

dynamic Bayesian network is to determine the criterion
of decision-making and the algorithm for solving out the
maneuver. In other words, the core is to establish a reasonable
utility function Jk and adopt an efficient method of searching

FIGURE 3. The influence diagram of a dynamic Bayesian network.
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FIGURE 4. Top view of the combat state between two UAVs.

maneuver uk [27], [28]. Therefore, step 4 is the most critical
one of the above seven steps.

1) FLIGHT STATE
At time point k in an air combat, a plane’s flight state can be
described in the form of a vector:

X ik =
[
x ik , y

i
k , z

i
k , ψ

i
k , φ

i
k , θ

i
k ,V

i
k

]
i ∈ [B,R] (8)

where state variables x ik ,y
i
k , z

i
k are the positions of the aircraft

in Earth Axis system. ψ i
k , θ

i
k , φ

i
k are the Euler angles: yaw

angle, pitch angle and roll angle respectively. V i
k is the ground

velocity.

2) COMBAT STATE
Combat state is the relative position of two UAVs in three-
dimensional space at a certain moment. It includes the posi-
tion and the direction information (Fig. 4).

At time point k in the air combat, the combat state is
demonstrated as C i

k = f i
(
XBk ,X

R
k

)
, i ∈ [B,R]. For blue

side, CB
k can be defined as CB

k =
(
aBk , χ

B
k , dk , η

B
k

)
, aB1 , χ

B
2 ∈

[0,π]. ak and χk are the leading angle and lagging angle of
blue side relative to red side respectively; dk is the physical
distance between the two UAVs; ηk = EB/ER is the ratio of
the blue side UAV’s energy to the red side UAV’s.
ak , χk and dk can be obtained according to geometric

knowledge, as shown in (9).
Edk =

(
xRk − x

B
k , y

R
k − y

B
k , z

R
k − z

B
k

)
= (1x,1y,1z)

EV B
k = V B

k

(
cosφBk sinψ

B
k ,cosφ

B
k cosψ

B
k ,sinφ

B
k

)
6 aBk = arccos

[
EV B
k ·
Edk/

(∣∣∣ EV B
k

∣∣∣× ∣∣∣Edk ∣∣∣)]
6 χRk = π −

6 aBk

(9)

ηk then can be calculated by definition, as shown in (10).{
ηk = EB/ER
Ei = H + V 2

i /g i ∈ [B,R]
(10)

whereH is the altitude and g is the gravitational acceleration.

3) MANEUVER DECISION-MAKING
Maneuvers in actual air combat determines how planes act
during the battle. Taking Pougatcheff Cobra Maneuver as an

example, it allows a plane to quickly change speed, so that
the battlefield situation shall be reversed in an instant [29].

Previous studies commonly use typical maneuver library
as the object of maneuver decision-making [4], [5], [6].
By comparison, we hope that the obtained result could cover
as many positions as possible. From the perspective of over-
load, the maneuver flight of a UAV can be described with
the tangential overload nx and the normal overloads ny, nz.
Tangential overload nx = X/mg is parallel to the direction
of flight speed, which means the maneuver of changing the
flight speed. Normal overload ny = Y/mg is perpendicular
to the direction of flight speed, which means the maneuver
of ascending or descending in the vertical plane. And normal
overload nz = Z/mg is also perpendicular to the direction
of flight speed, which means the maneuver of left or right
turning in the horizontal plane. Therefore, rather than using
the typical maneuver library, we choose to regard the cur-
rent position of aircraft X ik as the reference point and then
retrieve the position of next moment with seven kinds of
overload commands within the decision-making time interval
k ∼ (k + 1): 1. nxc, 2. nyc, 3. nzc, 4. nxc and nyc, 5.
nxc and nzc, 6. nyc and nzc, 7. nxc, nyc and nzc. Compared
with the typical maneuver library, these seven commands
have an advantage that they can provide a more complete
description of the UAV’s motions in three-dimensional space.
The motion types considered in the typical maneuver library
method are limited. This limitation usually results in a prob-
lem that the UAVmay not be able to reach the most favorable
position if adopting the typical maneuver library method in
making maneuver decision-making. However, if adopting the
above-proposed method which is based on the seven over-
load commands, the UAV is able to carry out more complex
motions, and reach more potential positions. The most favor-
able position may exist in these extra potential positions. This
design of optional maneuvers based on overloads is named as
Overload-limited Maneuver. The Overload-limited Maneu-
ver, to a certain extent, solves the above-mentioned problem
caused by limited considerations of the motion types.

After working out what maneuver to do at the next time
interval, the estimate position of the UAV at the next moment
can be obtained. The estimate position is remarked as X̃ ik+1.
The following step is to consider the effect of the automatic
flight controller. Only if the UAV do can fly to the position
X̃ ik+1 stably within the time interval, can the decided maneu-
ver be effective. As mentioned in Chapter A, the SFC adopted
in this paper is designed to track the desired accelerations
and the desired angular accelerations, rather than the desired
overloads. Therefore, it is needed to establish a relationship
between the accelerations and the overloads.

According to the definitions of nx , ny, nz, forces Xc, Yc and
Zc can be obtained. 

Xc = gnxc
Yc = gnyc
Zc = gnzc

(11)
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Combining (1) and (11), a set of desired accelerations (u̇c,
v̇c, ẇc) can be obtained. (u̇c, v̇c, ẇc) brings the change of
velocities, resulting in a set of desired velocities uc, vc, wc.
uc, vc, wc cause the change of moments, resulting in a set of
desired moments Lc, Mc, Nc.

Lc = ρ(u2c + v
2
c + w

2
c)bSCL

Mc = ρ(u2c + v
2
c + w

2
c)c̄SCM

Nc = ρ(u2c + v
2
c + w

2
c)bSCN

(12)

Combining (1) and (12), a set of desired angular accelerations
ṗc, q̇c, ṙc can be obtained. Then combining (7) with (12),
a control quantity set uik can be solved out, as shown in (13).
The control quantity set (uik ) enables the UAV to move from
the current position X ik to the future position X̃ ik+1.

uik = fSFC
(
X ik , X̃

i
k+1

)
= {δr , δa, δe} (13)

Then combining uik , (1) and (2) together, the actual position
that the UAV can reach at time k + 1 in fact can be derived
and recorded as X ik+1. In this way, the UAV completes a state
transition based on the maneuver decision considering the
effect of the automatic flight controller.

4) OBSERVATION STATE
The enemy side’s flight states cannot be obtained directly
in fact, which is the main source of uncertainty in air com-
bat [26]. To bring simulations closer to real combat, it’s
designed that one can only obtain the other one’s state with
noise.

At time point k in air combat, the observation state of red
side for blue side is set as:

zBk = C i
k

(
sBk , s

R
k

)
+ ζk (14)

where C i
k

(
sBk , s

R
k

)
is the combat state mentioned above, ζk

is the observation noise and is simulated by Gaussian white
noise in this work.

5) STATE ASSESSMENT
State assessment is carried on by the aircraft in combat at
each time, which refers to the probability distributions of
one UAV’s combat situation after a certain maneuver. Situ-
ations are divided into four categories: Superiority (2i

k =

1), Neutrality (2i
k = 2), Inferiority (2i

k = 3), and
Mutual Disadvantage (2i

k = 4). For blue side, Superiority
shows possibility to defeat red side; Neutrality represents
they tied up; Inferiority indicates blue side is in great dan-
ger; Mutual Disadvantage means they both have opportunity
to win.

Prior probabilities can be defined as P
(
2i
k = j

)
, j =

1, 2, 3, 4. It is easy to get that
∑4

j=1 P
(
2i
k = j

)
= 1. The

posterior probability of the state assessment is given as:

P
(
2i
k = j |C i

k

)
=

P
(
2i
k = j

)
P
(
C i
k | j
)∑4

j=1 P
(
2i
k = j

)
P
(
C i
k | j
)

, P
(
2i
k+1 = j

)
(15)

Equation (15) means that the posterior probability is based
on probability distributions, and can be more realistic by
taking the combat state into consideration. P

(
C i
k | j
)
is the

FIGURE 5. Minimax search tree for maneuver decision-making.
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conditional likelihood probability, which is often artificially
defined according to C i

k :

P
(
C i
k |j
)
= P

(
aik , χ

i
k , dk , η

i
k | j
)

= p
(
aik | j

)
· p
(
χ i2 | j

)
· p (dk | j) · p

(
ηik | j

)
(16)

where p
(
aik | j

)
, p
(
χ i2 | j

)
, p (dk | j) and p

(
ηik | j

)
denote con-

ditional likelihood probabilities in combat situation 2i
k .

6) SITUATION EVALUATION
An utility function J ik is applied to reflect the preferences of
the aircraft in combat, as shown in (17).

J ik
(
U r
k , · · · ,U

r
k+N ,U

b
k , · · · ,U

b
k+N

)
=

∑k+N

k

∑4

j=1
P
(
2i
k = j |C i

k

)
U i
(
j,C i

k

)
(17)

where N is the forward step number. U i
(
j,C i

k

)
is the utility

according to C i
k :

U i
(
j,C i

k

)
= λaj U

i
j

(
aik
)
+ λ

χ
j U

i
j

(
χ ik

)
+ λdj U

i
j (dk)

+ λ
η
j U

i
j

(
ηik

)
(18)

where λ()j are weighting factors which satisfy λaj +λ
χ
j +λ

d
j +

λ
η
j = 1.
The optimalmaneuver action and the corresponding largest

utility value for each time point shall be determined by the
minimax method (Fig. 5). The minimax method assumes that
the opponent is smart, which means that the maneuver is

obtained under the circumstance that the opponent has taken
a sufficiently advantageous maneuver [30].

Obviously, the computation of searching will increase
exponentially as the expected level rises [31]. To solve
the problem, the idea is that one could foresee the future
movement of target aircraft to some degree via a visual
check, which is inspired by human pilots’ experience [32].
The basic principle of this method is that the position of
enemy aircraft relative to our aircraft at the next moment
[xtob, ytob, ztob]Tk+1 is able to be predicted by the information
at the current moment. The predicted position is record as
[xtob, ytob, ztob]∗Tk+1. xtobytob
ztob

∗
k+1

=

 xtobytob
ztob


k

+ vt1t

 (iat · ibo)(iat · jbo)
(iat · kbo)


− vo1t

 cosαocosβosinβo
sinαocosβo

 (19)

where [xtob, ytob, ztob]Tk is the target aircraft’s position
relative to our aircraft’s body axis at time point k;
[iat ,jat , kat ]T is the aerodynamic coordinates of the target
aircraft; [iao,jao, kao]T is the aerodynamic coordinates of
our aircraft; vo and vt are the velocity of our own air-
craft and the target one respectively; αo and βo are the
angle of attack and the angle of sideslip for our aircraft
respectively.

Based on this idea, we can eliminate some maneu-
vers that the target enemy cannot take, thereby realiz-

FIGURE 6. Minimax search tree after pruning.
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ing pruning the search tree and reducing the amount of
calculation (Fig. 6).

C. TARGET ALLOCATION DECISION-MAKING
The target allocation decision-making of many-to-many
CAAC refers to assigning all enemy UAVs to our UAVs,
so as to reach the optimal overall attack utility. The matching
function (objective optimization function) is given as below:

max
(∑n

j=1
Uijta

j
i

)
i = 1, 2 · · ·m; taji ∈ [0, 1]∑m

i=1
taji ≤ l j = 1, 2 · · · , n; 1 ≤ l ≤ m∑m

i=1

∑n

j=1
taji ≥ n

(20)

where taji represents whether enemy UAV j is allocated to our
UAV i or not, taji = 1 means yes and taji = 0 means no; Uij is
the utility function value when our UAV i fight against enemy
UAV j; l is the number of UAVs fighting against enemy UAV
j at the same time after allocation; m is the total number of
our UAVs; n is the total number of enemy UAVs.

Equation (20) describes a typical non-deterministic poly-
nomial complete (NP-C) problem [33]. To address it, a HPSO
algorithm is adopted here. And an optimized HPSO is pro-
posed to accelerate the change of particles in the later iteration
stages by introducing a judgement parameter.

1) STANDARD HPSO
The HPSO algorithm is developed on the basis of the
PSO algorithm. A PSO algorithm is an intelligent algorithm
which simulates the foraging behavior of birds [34]. It can
achieve the extremum optimization by following the indi-
vidual extremum and group extremum [35]. The method of
updating particles is given as below:{
Vk+1 = wVk + l1r1

(
Pkbest − Xk

)
+ l2r2

(
Gkbest − Xk

)
Xk = Xk + Vk+1

(21)

where w is the inertia weight coefficient; k is the current
number of iterations; X is the position of particles; V is the
velocity of particles; l1 and l2 are the learning factors; r1 and
r2 are random numbers distributed in interval [0, 1]; Pbest
and Gbest are the individual extremum and group extremum
respectively.

Based on (21), the standard HPSO algorithm draws lessons
from genetic algorithm about crossover operation and muta-
tion operation when updating particles [36].

2) OPTIMIZED HPSO
Comparedwith PSO algorithm, the standard HPSO algorithm
does not update the particle position by tracking the extreme
value, so as to prevent the influence of contrived inertia
weight, particle speed and learning rate [37]. However, the
convergence speed of the standard HPSO algorithm is fast at

FIGURE 7. Flow chart of the optimized HPSO algorithm.

the early stage of iteration and is slow at the later stage of
iteration. With the increase of iteration numbers, the particles
become more and more similar as the population converges,
which may lead to local optimal solutions [38].

The way to avoid the condition is introducing a judge-
ment parameter named $ . When iterating, if the difference
between the group extrema of several adjacent iterations is
less than$ , it is considered that the algorithm falls into local
optimization. The immigrant particle should be introduced
by this moment. Their fitness ought to be calculated and
then comparedwith existed particles. The particle with higher
fitness will be selected and retained. It is worth mentioning
that immigrant particle is only introduced when local opti-
mization happens, which means the global search ability is
improved whereas the calculation quantities do not increase
a lot.

Steps of the optimized HPSO algorithm are as follows (see
Fig. 7):
Step 1: Initialize, set the maximum number of iterations

Num, set the number of particle populations K , generate K
numbers of distribution schemes as the initial particle swarm,
calculate the fitness of each particle, record the initial individ-
ual extremum Pbest and the global extremum Gbest ;
Step 2: Cross over each particle in the swarm with

Pbest , calculate the fitness of the two particles generated by
crossover operation, select and retain the one with better
fitness as a new particle, update Pbest if the fitness of the new
particle is better than the original Pbest ;
Step 3: Cross over the new particle obtained in step 2 with

Gbest , calculate their fitness, select and retain the one with
better fitness as a new particle, update Pbest if the fitness of
the new particle is better than the original Pbest ;
Step 4:Mutate the new particle obtained in step 3, calculate

its fitness; update Pbest if the fitness of the new particle is
better than the original Pbest ;
Step 5:DetermineGbest according to the updatedPbest , end

the iteration if the maximum number of iterations is reached,
go to step 6 if not;
Step 6: Calculate the difference between Gbests of several

iterations, go to step 2 directly if the difference is greater
than $ , go step 2 after introducing immigrant particles and
updating the swarm if not;

However, numbers of UAVs on both sides are usually dif-
ferent in real air combats [39]. It is prone to have difficulties
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FIGURE 8. (a) Principle and (b) graphical solution of the proportional guidance method.

in initializing the particle swarm due to constraints. Solutions
are as follows:

First of all, suppose that our side have m number of UAVs
and the enemy side has n number of UAVs. Then, a matrix
U about utility is established to describe the relationship
between UAVs.

U =


U11 U12 · · · U1n
U21 U22 · · · U2n
...

...
...

...

Um1 Um2 · · · Umn

 (22)

When m > n, supplement m− n columns of constants C1 on
the right side of the matrix, as shown in (23).

U =


U11 U12 · · · U1n

m−n︷ ︸︸ ︷
C1 · · · C1

U21 U22 · · · U2n C1 · · · C1
...

...
...

...
... · · ·

...

Um1 Um2 · · · Umn C1 · · · C1

 (23)

C1 is a constant less than all other elements in the matrix.
In this case, there will be another m− n number of our UAVs
after target allocation. Thus, the next step is to allocate the
redundant UAVs regarding real-time mission requirements.
For example, if adopting defense principle, they will be
assigned to the enemy UAV which poses the greatest threat
to our targets; if adopting marking principle, they will be
assigned to the enemy UAV which has the strongest flight
performance; if adopting annihilation principle, they will be
assigned to the enemy UAV which has the poorest combat
advantage.

When m < n, supplement n − m rows of constants C2 on
the bottom of the matrix, as shown in (24).

U =


U11 U21 · · · Um1

n−m︷ ︸︸ ︷
C2 · · · C2

U12 U22 · · · Um2 C2 · · · C2
...

...
...

...
... · · ·

...

U1n U2n · · · Umn C2 · · · C2


T

(24)

C2 is a constant greater than all other elements in the matrix.
In this case, there is no need to do additional target allocation
operations.

Aforementioned operations ensure that the generated ini-
tial particle swarm can meet the needs of target allocation as
long as the swarm is a positive integer random arrangement
from 1 to the utility matrix’s order.

D. END CRITERIA
In previous studies on air combat, the end criteria are gener-
ally simple. There are mainly two kinds: one is setting a cone-
shaped attack zone to represent the attack performance of a
fighter [1], [2], [3], another is constructing a value function
that describes the payoff of an attack [23], [29].

To fight closer to the real world, a fire control system is
especially involved here. It is designed according to the prin-
ciple of proportional guidance method. As shown in Fig. 8(a),
the basic law is:

dσm/dt = K · dqtm/dt (25)

where K is the proportional constant; σm is the angle between
the missile velocity vector and reference line; qtm is the angle
between the sight line and reference line [40], [41].

The graphical solution of proportional guidance method
is given in Fig. 8(b). According to the trigonometric
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relationship, we can obtain:

c = [(x tk − x
m
k−1)

2
+ (ytk − y

m
k−1)

2
+ (ztk − z

m
k−1)

2]1/2

βk−1 = arccos[(r2k−1 + s
2
t − c

2)/2rk−1st ]
6 mkatk = π − (σk−1 − qk−1 + βk−1)
c1 = rk−1sinβk−1/ sin 6 mkatk
c2 = rk−1sin(σk−1 − qk−1)/ sin 6 mkatk
amk = c1 − sm, atk = c2 − st
c3 = (am2

k + at
2
k − 2amk · atk · cos 6 mkatk )12

d̃q = 6 tkmkb ≈ 6 tkmk−1tk−1 = arccos
r2k−1 + c

2
− s2t

2rk−1c
(26)

Compared with the real dq, the d̃q obtained at this moment
may have a large error, especially when the missile is close
to the target [42], [43]. Equation (27) provides a method to
correct d̃q as dq∗. dq∗ is closer to dq much more than d̃q.

q̃k = qk−1 + d̃q
σ̃k = σk−1 + K · d̃q

6 m̃katk = arccos
(c1 − sm)2 + c23 − (c2 − st )2

2(c1 − sm)c3
dq∗ = d̃q− σ̃k − q̃k −

6 mkatk
K + 1

qk = qk−1 + dq∗

σk = σk−1 + K · dq∗

(27)

The number of iterations depends on the requirement. Usu-
ally, two iterations are enough.

xak = x tk−1 + c2/st ·
(
x tk − x

t
k−1

)
yak = ytk−1 + c2/st ·

(
ytk − y

t
k−1

)
zak = ztk−1 + c2/st ·

(
ztk − z

t
k−1

)
xmk = xmk−1 + sm/c1 ·

(
xak − x

m
k−1

)
ymk = ymk−1 + sm/c1 ·

(
yak − y

m
k−1

)
zmk = zmk−1 + sm/c1 ·

(
zak − z

m
k−1

)
(28)

Then, a condition (FS) is defined to represent the final
stage of an autonomous air combat.

FS ,


∣∣XBk (1 : 3)− XBk (1 : 3)∣∣ < 100 m

P
(
2i
k = 1

∣∣C i
k

)
>
∑4

j=2
P
(
2i
k = j

∣∣C i
k

)
,

i = B,R

(29)

When one side enters the final stage, it will begin to con-
duct an additional decision while doing Maneuver Decision-
making [44], [45], [46]: shoot a virtual missile that follows
the above-mentioned fire control law. When the calculation
shows the missile can hit the enemy’s aircraft (the distance
between missile and target dmt is less than 10 m) within next
five simulation time intervals, then it is determined that one
side wins and the air battle is in the end.

TABLE 3. Calculation formulas of conditional likelihood probabilities.

TABLE 4. Utility functions of four combat situations.

TABLE 5. Weighting factors of four combat situations.

TABLE 6. Initial states of two aircraft in Mutual Disadvantage case.

III. SIMULATION RESULTS
Conditional likelihood probabilities, utility functions and
weighting factors in this paper are designed according to
different situations (see Table 3–5).

To reiterate, blue side is regarded as our side while red
side is regarded as enemy side in all the following simulation
cases.

A. 1-TO-1 MANEUVER DECISION-MAKING SIMULATIONS
In all simulations below, our plane fights on the basis of the
optimized DBN and the Overload-limited Maneuver, while
the enemy plane relies on the standard BN and the typi-
cal maneuver library. In order to verify our optimization,
we selected two typical initial situations (Mutual Disadvan-
tage and Inferiority) for simulation.

1) MUTUAL DISADVANTAGE CASE
Mutual Disadvantage means they both have opportunity to
win. This initial situation (see Table 6) shows that both UAVs
are in great dangerous.
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FIGURE 9. Flight trajectories of (a) Mutual Disadvantage case and (b) Inferiority case.

TABLE 7. Initial states of two aircraft in Inferiority case.

The simulation result is presented in Fig. 9(a). Both sides
tried to escape the risk through scissor maneuvers. After a
series of scissor maneuvers and S-breaking maneuvers, the
situation changed. The blue UAV entered a slight advantage
situation through smaller and faster turns and the red UAV
began to defend. The red UAV then expected to get rid of
the blue UAV through climbing and decelerating, or diving
and accelerating. However, the red UAV was still closely
followed by the blue UAV. Finally, after several rounds of
decision-making, with the gradual update of the blue UAV’s
prior probability, the blue UAV successfully predicted the red
UAV’s actions, and achieved an absolute advantage by taking
smaller but faster maneuvers. Then the fire control system
judged that the red UAV shall be shot down by blue side in no
time. The combat ended. The whole air combat process cost
about 100 steps, which equals to about 25 s in real world.

Considering that there is uncertainty in the observation of
each other’s position and state in air combat (see the section
of observation state), this Mutual Disadvantage case was
simulated for 20 times. Each time the blue side could win
the combat, which shows that the maneuver decision-making
algorithm adopted by the blue side is more advanced.

2) INFERIORITY CASE
Inferiority indicates the blue side is in great danger. This
initial situation (see Table 7) shows that the enemy plane is
occupying a favorable position and is chasing us.

The simulated trajectories are shown in Fig. 9(b). The red
UAVwas in a superior position at initial, in chasing of the blue

UAV. Meanwhile, blue side tried to get rid of red side through
climbing and diving. The blue UAV got rid of the red UAV
through a sudden change of direction. That is to say, although
the blue UAV was at an absolute disadvantage at first, it still
could reverse the situation in less than one minute through
better maneuvers, and finally turned defeat into victory. The
whole process cost about 220 steps (55s).

Likewise, 20 simulation tests were conducted, and the
overturn occurred in 14 times out of 20. This result shows
that even if the blue UAV is at a disadvantage at the begin-
ning, it still has a high probability of winning. This result
also proves that the blue UAV has better maneuver decision-
making algorithm.

B. TARGET ALLOCATION DECISION-MAKING
SIMULATIONS
Two different simulation cases are carried out in this part.
Both cases are simulated many times based on three different
algorithms. The parameter settings of the algorithm are as
follows:

(1) Genetic algorithm: The initial number of individuals
is set as 50, the crossover probability is set as 90%, and the
mutation probability is set as 5%;

(2) Standard HPSO: The initial particle number is set as 5;
(3) OptimizedHPSO: The initial particle number is set as 5,

the number of consecutive adjacent iterations is set as 15, the
decision parameter$ is set as 0.1.

The number of iterations is all set as 50 for the three
algorithms.

1) 8-TO-8 TARGET ALLOCATION CASE
The initial states of eight blue UAVs (our side) and eight red
UAVs (enemy side) are given in Table 8.
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TABLE 8. UAVs’ initial states of 8-to-8 case.

All three algorithms are simulated for 20 times, as shown in
Table 9. As will be readily seen, the result of the genetic algo-
rithm is the worst and that of the optimized HPSO algorithm
is the best. The standard deviation of the optimized HPSO
algorithm completely is the smallest. And the maximum,
minimum andmean value of the optimizedHPSO algorithm’s
solution are all better than those of the other two’s. Besides,
the average computing time of the optimizedHPSO algorithm
(0.105 s) is much less than that (0.216 s) of the genetic
algorithm, but just about 6% higher than that (0.099 s) of the
standard HPSO. That is, the optimized HPSO algorithm can
bring better target allocation results, while ensure a relatively
short computing time.

Fig. 10(a) and Fig. 11(a)–(c) show the results of one certain
simulation. As shown in Fig. 10(a), the final fitness value
of the optimized HPSO algorithm is the highest. A higher
fitness valuemeans our side poses a larger threat to the enemy.
Fig. 11(a)–(c) are the three different allocation results. Obvi-
ously, the allocation result of Fig. 11(a) is not as reasonable
as that of the other two figures, which is consistent with its
minimum fitness value. Comparing Fig. 11(b) and Fig. 11(c),
it can be found that the matching combination between B1,
B5,B6 and R4, R5,R8 delivers an obvious difference. The
standard HPSO algorithm’s allocation result is B1 → R5,
B5 → R4, B6 → R8, and the corresponding fitness value
of this matching combination is 1.953. The optimized one’s
allocation result is B1 → R4, B5 → R8, B6 → R5, and the
fitness value is 2.167, which is better for blue side. This is
because the UAVs’ initial states, especially the ψ i

0, will result
in their preferring to deal with enemies in specific areas.

Therefore, the optimized HPSO algorithm has better result
than the other two, which shows that our optimization is
successful.

2) 8-TO-6 TARGET ALLOCATION CASE
The initial states of eight blue UAVs (our side) and six red
UAVs (enemy side) are given in Table 10.

All three algorithms are simulated 20 times as well and the
relevant data are shown in Table 11. Similar to the 8-to-8

TABLE 9. Fitness value results of 8-to-8 target allocation.

TABLE 10. UAVs’ initial states of 8-to-6 case.

case, the average computing time of the optimized HPSO
algorithm (0.125 s) is much less than that of the genetic
algorithm, but merely a little more than that (0.112 s) of
the standard HPSO. And the maximum, minimum and mean
value of the optimized HPSO algorithm’s solution are better
as well. The smallest standard deviation proves once again
that our optimization on the HPSO algorithm is valuable and
meaningful. That is, the performance of the improved HPSO
algorithm is also superior when it comes to uneven air combat
cases.

Fig. 10(b) shows the fitness value change of the three
algorithms. Fig. 11(d)–(f) show the target allocation results.
Similarly, the optimized HPSO algorithm obtains best result.
Comparing Fig. 11(e) and Fig. 11(f), there are two main
differences. Firstly, in one-to-one matching, the optimized
HPSO algorithm’s results are B8 → R3, B1 → R1 while the
standard HPSO’s results are B8 → R1, B1 → R3. The speed
of B1 is much faster than that of R1, which results in a greater
advantage and a higher fitness value when B1 fights against
R1 rather than R3. Secondly, in many-to-one matching, the
optimized HPSO algorithm’s results are B3,B5→ R6, B5→
R2 while the standard HPSO’s results are B3,B7 → R6,
B7→ R2. The initial direction of B7 is much closer to R2 than
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FIGURE 10. Iteration process of (a) 8-to-8 target allocation case and (b) 8-to-6 target allocation case.

TABLE 11. Fitness value results of 8-to-6 target allocation.

R6. Therefore, there would be a small advantage in direction if
B7 fights against R2, but a great advantage if B7 fights against
R6. It is more suitable for B5 to fight against R6 instead of B7.

3) 8-TO-8 COOPERATIVE COMBAT CASE
The 8-to-8 case is selected for the simulation example of
many-to-many CAAC. The initial states information of blue
and red UAVs have been shown in Table 8. The target allo-
cation results derived from the optimized HPSO algorithm
are B1 → R4, B2 → R1,B3 → R6, B4 → R7, B5 → R8,
B6 → R5,B7 → R2, B8 → R3, as shown in Fig. 11(c). The
simulated trajectories are shown in Fig. 12.

Soon after the air combat began (11 steps of simulation),
R2 was quickly defeated by B7 due to the great disadvan-
tage caused by their initial states. Then, according to the
annihilation principle, the target allocation decision-making
algorithm determined a new target R3 for B7. After 47 steps,
R1 was defeated by B2. B2 then chose R8 as the next target.

After 91 steps, B4 defeated R7 and began to attack R4. After
94 steps, R3 soon fell into a disadvantage under the siege
of B7 and B8, and was finally defeated by B7. Based on the
proximity principle, R4 was also assigned to R7 and R8 as
the next target. R7 and R8 took this opportunity to approach
other friendly UAVs. After 104 steps, R6 was shot down by
B3. B3 then began to chase R4 as well. At this time, R4 was
the target of B1, B3, B4, B7 and B8 at the same time, and
was falling into a huge disadvantage. However, B7 and B8
were far away, the main threat to R4 actually came mainly
from B1, B3, B4. Not surprisingly, after 191 steps, R4 was
defeated by B3. At this very moment, there were only R5
and R8 left in the red side. Through the calculation of the
target allocation decision-making algorithm, the new match
result was B1 → R5, B2 → R8,B3 → R8, B4 → R5, B5 →
R8, B5 → R5,B7 → R8, B8 → R8. After 201 steps, B5 and
B6 had achieved great advantages in fighting, indicating that
they could quickly defeat their targets on their own without
help of other UAVs. Therefore, it is considered that the 8-to-
8 air combat is over. Total 201 steps are equivalent to 50 s in
real world.

The utility value changes of the blue and red side UAVs
are shown in Fig. 13. The utility value of the blue side was
greater than that of the red side in the process of the 8-to-8
air combat, indicating advantageous situations in the combat.
Consistent with the analysis in the previous paragraph, the
UAVs’ utility value would suddenly change at time step 11,
47, 91, 94, 104, 191 and 201, indicating the following three
situations: (1) The UAV was defeated and its utility value
would be reset to 0, such as R2 at time step 11 and R1 at time
step 47; (2) The UAV was pursued by several enemy UAVs
and its utility would suddenly decrease a lot, such as R3 at
time step 91 and R6 at time step 97; (3) The UAV got a new
target after defeating its original target, such asB3 at time step
104 andB7 at time step 191. This strongly proves that both the
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FIGURE 11. Results of 8-to-8 target allocation case based on (a) Genetic Algorithm, (b) standard HPSO and (c) optimized HPSO; Results of 8-to-6
target allocation case based on (d) Genetic Algorithm, (e) standard HPSO and (f) optimized HPSO.
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FIGURE 12. Flight trajectories of the 8-to-8 case: (a) Top view and (b) 3D view.

FIGURE 13. Utility value curve of the (a) blue side and (b) red side UAVs.

maneuver and the target allocation decision-making method
designed above can meet the requirements of handling many-
to-many cooperative autonomous air combat.

IV. CONCLUSION
In this paper, we have successfully designed a modular
and high-fidelity autonomous air combat system. We have
made some proper improvements on both the maneuver
decision-making and target allocation decision-making of
cooperative autonomous air combat. A sliding mode control
is especially involved when conducting maneuvers, so that
the reliability and authenticity of the decision-making and tra-
jectory results are greatly improved. A method to update the
prior probability in the dynamic Bayesian network is applied,
so that the problem of lacking enough expert knowledge is

solved to a certain extent. An unique visual way to pruning the
minimax search tree is applied, so that the decision-making
model’s complexity is appropriately reduced. A method of
introducing immigration particles into the hybrid particle
swarm optimization is proposed, so that the global optimality
of the matching result is ensured. A principle for extending
the target allocation algorithm’s application scenario is pro-
posed, so that the algorithm is able to handle air combat cases
with unequal number of participants. We also put forward a
new method about judging the end of air combat. A fire con-
trol is creatively introduced in the final stage of autonomous
air combat. The fire control ensures that the intelligence of
the enemy aircraft is not underestimated, hence one’s attack
can be evaded. This kind of combat end criterion enhances the
fidelity of simulation model and the confidence of simulation
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results. Therefore, it can be said that our work offers promis-
ing opportunities for the development of autonomous air
combat system.

However, there are still some limitations in our work. Some
contents are worthy of in-depth study in the future:

(1) Combat situations are usually more comprehensive in
real air combats. There is also a high probability that several
situations may overlap. The combat situations in this paper
are divided into four categories: Superiority, Inferiority, Neu-
trality and Mutual Disadvantage. These four situations are
typical, but not precise and specific enough. And when mak-
ing decisions, the four situations are regarded independent of
each other. Therefore, it is needed to make a more detailed
division of combat situations and take the coupling between
situations into consideration in future works.

(2) There are various fighting concepts of many-to-many
combat. Each concept has its own advantages and disadvan-
tages, and its corresponding target allocation criteria also has
differences. In this paper, we considered a fighting concept
about utility, which means the criteria is to maximize the
swarm’s total utility value. However, combat efficiency and
combat loss ratio, et al. can also be applied as criteria for
target allocation. For example, when efficiency is the priority,
it is reasonable for one side to pair several UAVs in Superi-
ority with one enemy UAV in Inferiority at the same time.
Through forming multiple many-to-one pairs, the enemy will
be downsized rapidly. Therefore, the impact of different fight-
ing concepts on target allocation results should be studied in
the follow-up.
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