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ABSTRACT The steady-state operation with low error and the fast dynamic response in transient of the
DC-DC converter circuits depend on the controller design. The performance of the controller used in DC-
DC converters, which vary the level of DC voltage depends on the controller coefficients. Although classical
methods are often used to determine these coefficients in controller design, various modern optimization
methods have been recently used. In this study, the DC-DC buck converter control simulation is performed
with FOPID, PID and TID controllers. Aquila Optimizer, African Vultures Optimization Algorithm and
Hunger Games Search optimization algorithms are used to determine the coefficients of these controllers
in the literature. However, Fitness-Distance Balance Based Runge Kutta is employed first time for PID
controller in buck converter in this study. The performance indices integral absolute error, integral square
error, integral time absolute error, and integral time squared error are employed to assess the outcomes.When
the results obtained are examined, the FOPID controller gives the best results in the control of the buck
converter. These results are obtained by using the coefficients determined by the Fitness-Distance Balance
Based Runge Kutta (FDBRUN) optimization algorithm. It has better performance than the other algorithms.

INDEX TERMS Fractional-order PID controller, buck converter, optimization techniques.

I. INTRODUCTION
Power electronics converters are used in photovoltaic sys-
tems, smart grids, electric vehicles, uninterrupted power sup-
plies, many industrial applications and products. In power
electronics converter topologies, which are generally con-
trolled by pulse width modulation semiconductor power
switches are used, and they are controlled by different control
strategies. Inductors, capacitors and diodes are also used in
various placement depending on the topology. The converter
has nonlinear behavior due to the presence of semiconductor
elements such as diodes and switches. Therefore, lineariza-
tion is required for modeling this type of converters.

Power electronics converters have different topologies
such as DC-DC, AC-DC or DC-AC converters according
to the point of use. Switched mode DC-DC converters are
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used in many industrial and technological products which
work with DC current. Various DC-DC converters such as
buck, boost, buck-boost, sepic, cuk, flyback etc. are used
in different applications. The buck converter is a basic non-
isolated converter type used in applications where the output
voltage is lower than the input voltage.

As in many power electronics converters, Proportional-
Integral (PI) or Proportional-Integral-Derivative (PID)
controllers are commonly used in buck converter control.
In addition, fuzzy logic control [1], sliding mode control [2],
hysteresis control [3], dead beat control [4] are frequently
used control methods. The controlled electrical quantity
varies depending on the application in which the converter
is used. PID controller is used in buck converter control in
various applications such as speed control in motor appli-
cations, photovoltaic (PV) panel power control solar in sys-
tems, output voltage control in switched power supplies and
many applications. This controller ensures that the applied
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error signal reaches the zero value in the shortest time with
minimumovershoot. The reference signal is obtainedwith the
algorithm using controller, and switching signal is produced
by PWM controller using reference signal. By using the
output voltage reference and the measured output voltage
produced in a buck converter which the output voltage is
controlled, an error is obtained and given to the PID con-
troller. The controller generates the modulation signal that
reduces this error to zero, and switching signals are obtained
with the help of pulse-width-modulation (PWM). In order to
eliminate the effect of a disturbing input, which occurs during
the operation of the converter the controller must respond
in a robust, dynamic, fast, and stable manner. The dynamic
response speed, steady-state response, and stability of the
converter depend on the PID coefficients. The determination
of these coefficients plays an essential role in the controller
performance. There are various methods which are used to
determine the coefficients.

The methods used for PID controller coefficient detection
can be divided into 3 basic categories: rule-based, formula-
based, and optimization-based [5]. In rule-based methods,
a rule-based PID-like fuzzy controller was used in motor
torque control by using a PD-like fuzzy controller and a
parallel PI controller. The use of a minimum rule-based
fuzzy controller reduced the challenges experienced in torque
control [6]. The Antlion Optimization (ALO) method was
used to compare the performance of the fractional-order Par-
ticle Swarm Optimization (PSO)-based PID controller with
the PSO-based PID controller in the fuzzy-based fractional-
order PID controller design utilized in buck converter control.
The designed controller has been proved to be more robust
under various operating situations such as noise and load
variations [7]. Temperature and level control were carried out
with real-time experimental application using the fuzzy-rule
based automatic adjustment approach in the design of the
Internal Model Control (IMC) based PID controller, where
only the closed loop time constant parameter needed to be
adjusted [8].

The Ziegler Nichols approach, one of the formula-based
methods extensively used in PID design, and the Cohen-
Coon [9] method were utilized in the design of the PID
controller used in the drinking water filtering system, and
their performances were compared [10]. For fractional-order
PID (FOPID), a novel Ziegler Nichols autotuning approach
with smaller overshoot, improved durability and steady-state
response, and shorter sitting time was developed [11].

Maximum power point tracking in solar systems was
accomplished using a PID controller optimized with the
Cuckoo Search Algorithm (CSA). The global maximum
power point in the shaded condition was calculated, and the
oscillation created at that point is removed [12]. The PSO
techniquewas used to compute the PID controller coefficients
of a bidirectional buck-boost converter utilized in small satel-
lite applications. [13]. Moth-Flame Optimization (MFO) was
used in wind turbine blade angle control to prevent oscillation
in output voltage and power [14]. FOPID controller of a boost

converter was optimized with Queen Bee assisted Genetic
Algorithm (QBGA) in [15] to demonstrate the robustness
of the proposed controller. In the brushless DC motor con-
trol (BLDCM), a new technique called GEO-RPFNN, which
the combination of Golden Eagle Optimization (GEO) and
Radial Basis Function Neural Network (RBFNN) was pro-
posed. The parameters of the PID controller were optimized
with the proposed algorithm, and better results with regarding
to torque ripple, power factor and THD of stator current [16].
The coefficients of PID controller were optimized with fuzzy
particle swarm optimization algorithm in the buck converter,
and the result were given in the integral of time-weighted
absolute error (ITAE) performance index [17]. A feedback-
type two-degree-of-freedom proportional-integral-derivative
(FB2PID) controller was optimized with a bat algorithm (BA)
in a parallel dc-dc converter (PDCC). The dynamic response
and robustness of the PDCC was improved with the opti-
mization [18]. A four-switch buck-boost dc-dc converter used
in Proton Exchange Membrane Fuel Cell (PEMFC) is con-
trolled with FOPID controller for voltage compensation, and
the controller parameters were optimized with a stochastic
inertia weight PSO algorithm. [19]. Ant colony optimization
(ACO) algorithm was used to determine the optimum PID
controller parameters of matrix converter [20]. A new design-
ing method based on Strength Pareto Evolutionary Algorithm
(SPEA) was proposed for fractional-order PID controller that
was used for boost converter control. The better start-up
response was achieved with the new method [21]. The PID
parameters of zeta converter was optimized with Ant colony
Optimization. The zeta converter that is a fourth order sys-
tem was reduced to second order, and PID coefficients were
optimized [22]. LCC resonant converter that was controlled
with PID controller was presented in [23]. The PID controller
was tuned with differential evolution optimization (DEO),
grey wolf optimization (GWO) and grasshopper optimization
(GOA) algorithms. Integral absolute error (IAE), integral
square error (ISE) and integral time absolute error (ITAE)
were used as performance indices. The interleaved buck-
boost converter was controlled with PID, and the coefficients
were optimized with PSO algorithm [24].

PID, FOPID, and TID (tilt-integral-derivative) controllers
were used to operate a buck type step-down converter in
this study. The coefficients of these controllers have been
optimized for the first time with the Fitness-Distance Bal-
ance Based Runge Kutta (FDBRUN) [25] algorithm in the
literature and presented in comparison with the results of the
Aquila Optimizer (AO) [26], African Vultures Optimization
Algorithm (AVOA) [27] and Hunger Games Search (HGS)
[28] optimization algorithms. The S-domain circuit model
of the circuit is derived in order to employ these optimiza-
tion approaches. The controller coefficients derived by four
distinct optimization approaches are used to evaluate the
converter response, and the results are presented.

In the second part of the study, the mathematical equations
and modeling of the buck converter are presented. FOPID
and TID controllers used in closed loop control algorithm are
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FIGURE 1. Buck converter topology.

explained in Section 3. In Section 4, FDBRUN algorithm,
which is the metaheuristic optimization algorithm proposed
in the study is mentioned. The simulation study with dif-
ferent optimization algorithms and controllers is given in
Section 5 and the obtained results are given in Section 6.

II. MODELING OF BUCK CONVERTER
Because switched-mode power supplies are more efficient,
they have many applications such as television, electric vehi-
cles, mobile devices, and uninterruptible power supply. Buck
converter, which is switched-mode power supply have a vari-
ety of applications and is used to decrease the DC volt-
age level. The converter, which is made up of passive parts
like inductors and capacitors as well as switching elements
like MOSFETs and diodes is controlled by modifying the
MOSFET’s duty cycle. The voltage waveform produced by
high-frequency switching is filtered by the LC filter at the
output, a constant DC voltage is obtained.

When the PWM signal is applied to the MOSFET in the
converter, the input voltage is also applied to the LC filter.
The voltage created on the LC filter ends as a result of
switching the MOSFET is seen in Fig. 2a. It is seen that the
LC filter voltage, which is a square wave takes the value of
the input voltage when the switch is turned on and becomes
zero when the switch is turned off. Simultaneously, when
voltage is applied, the inductance current increases, and when
no voltage is applied, the current reduces. Inductance current
and output voltage vary depending on the duty cycle of the
switching signal as seen in Fig. 2b and Fig. 2c.

Because it is a switched-type converter, the buck converter
circuit seen in Fig. 1 is classified as a nonlinear system.
Different circuit equations occur and electrical quantities
change depending on the conduction state of the semiconduc-
tor switch positioned at the input part of the circuit. While
the switch is turned on, energy is stored in the inductance
while the output is supplied.When the switch is turned off, the
energy stored in the inductance is delivered into the output.
The energy balance is accomplished and the desired output is
obtained by applying the duty cycle computed by the control
algorithm.

Firstly, the system must be linearized before designing
the converter’s control. The dynamic equations of the buck
converter used to make the system linear are given in equa-
tions (1) and (2). In these equations, Vi is the input volt-
age, v0 is the output voltage, L is the inductance, C is the
output capacitor, R is the output load resistance, and d is

FIGURE 2. Buck converter waveforms: (a) LC filter voltage, (b) Inductor
current, (c) Output voltage.

FIGURE 3. Small-signal model of the buck converter.

the switching state. When writing the equations, the circuit
equations that occur when the switch is turned on and off are
employed. The state variables in these equations are induc-
tance current and capacitor voltage. The transfer function of
the converter can be calculated using these equations.

diL
dt
= −

v0
L
+ d ×

Vi
L

(1)

dv0
dt
=

iL
C
−

v0
R× C

(2)

Fig. 3 depicts the converter’s signal-flow graph theory
flow. The transfer function of the converter to be investigated
can be obtained using this flow.

The s-domain transfer function of the converter obtained
by using equations is given in equation (3). The study exam-
ines the performances of different control structures in differ-
ent optimization techniques utilizing this transfer function,
which gives the fluctuation of the output voltage based on the
duty cycle.

G(s) =
v̂o
d̂
= Vi

1
L×C

s2 + s 1
R×C +

1
L×C

(3)

Equations (4) and (5) can be used to compute the minimal
inductance and capacitor value that should be used based on
the ripple amount (iL) and switching frequency (fs) deter-
mined while designing the buck converter. As the equations
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FIGURE 4. Control block diagram of the converter.

FIGURE 5. FOPID block diagram.

show, increasing the switching frequency causes the induc-
tance and capacitor values for the same current and voltage
ripple to decrease.

Lmin =
(Vi − V0)× D
2×1iL × fs

(4)

Cmin =
1iL

8× fs ×1v
(5)

III. CLOSED-LOOP CONTROLLED BUCK CONVERTER
Open-loop and closed-loop control are the two basic control
architectures of converters. If a regulation is not required,
open-loop control is applied. It can control the system if
each electrical quantity is stable. However, output voltage
of the converter changes when a disturbance occurs in the
system. To regulate the output, closed-loop control structure
is required. Fig. 4 depicts the closed-loop control block dia-
gram of the converter. In the figure, v̂0(s), v̂ref (s), êv(s) ve
d̂(s) defines output voltage, reference value of output voltage,
voltage error and duty cycle, respectively. The controller
attempts to reduce the output voltage error to zero while
ensuring that the desired output voltage is reached.

There are various types of regulators used in closed loop
control. In this study, PID, FOPID and TID regulators were
examined.

A. FRACTIONAL ORDER PROPORTIONAL INTEGRAL
DERIVATIVE (FOPID) CONTROLLER
The FOPID controller transfer function is given in (6). In the
equation, kp, ki, kd , λ and µ define the proportional con-
stant, integral constant, derivative constant, integral order and
fractional derivative order, respectively. In Fig. 5, the block
diagram of FOPID controller is seen. The reference signal is
obtained by summing the results obtained by passing the error
value of the control signal through proportional, integral, and
derivative blocks.

GFOPID(s) = kp +
ki
sλ
+ kd sµ (λ,µ > 0) (6)

If the integral order and fractional derivative order is λ =
1 and µ = 1, λ = 0 and µ = 1, λ = 1 and µ = 0,
λ = 0 and µ = 0, PID, PD, PI and P controller are
obtained, respectively. A generalized FOPID control extends

FIGURE 6. FOPID controller plane.

FIGURE 7. TID controller block diagram.

PID control from a point to a plane in Fig. 6, which shows
the relationship between FOPID and classical controllers.
Controllers that are formed depending on the values of µ and
λ parameters are seen in the figure.

B. TILT INTEGRAL DERIVATIVE (TID) CONTROLLER
The TID controller is a compensator with coefficients of kT ,
ki, kd and tuning parameter of n. TID controller, which has
a similar structure with PID controller, has s−1/n transfer
function with n parameter and kT parameter instead of pro-
portional coefficient kp.

IV. THE PROPOSED METAHEURISTIC OPTIMIZATION
ALGORITHM
A. RUNGE KUTTA OPTIMIZATION ALGORITHM
The RUN algorithm was presented to the literature by [25]
in 2021 as a new swarm-based optimization algorithm with
stochastic components. To get the best value, the researchers
employed the slope formula in the algorithm as a search logic
for all solution candidates in the population. The algorithm
consists of two stages: the search strategy using the Runge-
Kutta theory and the improvement of the solution quality. The
basic structure of the RUN algorithm will be explained in the
subsections of this section.

1) INITIALIZATION POPULATION
The first part of the RUN algorithm is defined as the creation
of the initial population in order to find the most suitable
solution candidate. The initial population is formed between
the minimum and maximum limit values of the control vari-
ables determined by the researcher. The initial population is
expressed mathematically as in (7).

xn,i = Li + rand × (Ui − Li) (7)

n represents each solution candidate in the population
(n = 1, 2, 3, . . . ,N ). N represents the number of randomly
generated solution candidates within the limit values, in other
words, the size of the population. Li and Ui show the limit
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values of the ith variable (i = 1, 2, 3, . . . ,D). rand represents
a randomly generated number between [0,1].

2) UPDATING SOLUTIONS
The algorithm starts the optimization process with the candi-
date solutions created in the initial population. At each iter-
ation, the candidate solutions use a search mechanism (SM)
based on the Runge-Kutta technique to update their locations
for the next iteration. The SM method plays an active role in
providing global (discovery) and local (exploitation) search.
This situation is given in detail in algorithm 1.

Algorithm 1 Exploration and Exploitation Phases in RUN
Algorithm

if rand < 0.5
exploration phase
xn+1 = (xc + r × SF × g× xc)+SF×SM+µ×

xs
else

exploitation phase
xn+1 = (xm + r × SF × g× xm) + SF × SM +

µ× xss
end

The r and g used in algorithm 1 represents an integer
number as 1 or −1, and a random number between [0,2],
respectively. µ defines a random number and is calculated
based on equation (8). The expression randn in equation (8)
represents a random number with normal distribution. xs
ve xss expressions are explained mathematically as seen in
equation (9). xm ve xc are formulated as in equation (10).

µ = 0.5+ 0.1 × randn (8)

xs = randn× (xm − xc)

xss = randn× (xr1 − xr2) (9)

xc = ϕ × xn + (1− ϕ)× xr1
xm = ϕ × xbest + (1− ϕ)× xbest (10)

ϕ is expressed as a random number in the range [0,1].
xbest is defined as the best solution so far, while xlbest is
defined as the best solution obtained from each iteration.
While SF is defined as the adaptive factor that provides the
balance between exploration and exploitation, it is shown
mathematically as in equation (11).

SF = 2× (0.5− rand)× (a× e(−b×rand×
i

Maxi )) (11)

In the equation, a and b defines two constant number, i
defines current iteration number, andMaxi defines maximum
iteration number.

3) ENHANCED SOLUTION QUALITY
The enhanced solution quality (ESQ) method in this section
is employed to prevent the solution candidates used in the
optimization process from being caught in local solution
points or solution traps and to increase the solution quality.

The calculation of xnew2 according to this method is shown in
detail in algorithm 2. In the method, a random number of w
and rand are used together. The ESQmethod runs while rand
< 0.5, and xnew2 = xnew1 + r × w.

∣∣(xnew1 − xavg)+ randn∣∣
equation is used if w< 1, otherwise xnew2 =

(
xnew1 − xavg

)
+

r × w ×
∣∣(u× xnew1 − xavg)+ randn∣∣ is applied to enhance

the solution [29].

Algorithm 2 Calculation of the xnew2 via the Enhanced Solu-
tion Quality Method

if rand < 0.5
if w < 1
xnew2 = xnew1+ r×w×

∣∣(xnew1 − xavg)+ randn∣∣
else

xnew2 =
(
xnew1 − xavg

)
+ r × w ×∣∣(u.xnew1 − xavg)+ randn∣∣

end
end

w, xavg and xnew1 are, respectively, defined as a random
number, the average of three random solutions and a new
solution, and given in equation (12)-(14).

w = rand(0, 2)× e

(
−c×( i

Maxi )
)

(12)

xavg =
xr1 + xr2 + xr3

3
(13)

xnew1 = β × xavg + (1− β)× xbest (14)

The variable β expresses a random number between [0,1].
r is an integer that gets number of 1,0 or −1. c is calculated
using the equation of c = 0.5 × rand. If the solution xnew2
does not have a better solution than the current solution can-
didates, xnew3 is calculated, which allows the better candidate
solutions shown in algorithm 3 to be obtained.

Algorithm 3 Calculation of the xnew3
if rand < w

×xnew3 = (Xnew2 − randxnew2) +

SF (randxRK + (v× xb − xnew2))
end

The parameter of v is calculated by the equation
of v = 2× rand.

B. THE PROPOSED METHOD: FITNESS DISTANCE
BALANCE-BASED RUN ALGORITHM
Metaheuristic optimization algorithms are caught in local
solution traps in the search process life cycle to find the
most suitable solution. In order to eliminate this undesirable
situation, [30] presented a method called fitness distance
balance (FDB) to the literature in 2020. In this method, it
is aimed to better select the solution candidates that guide
the search process by using fitness values. Cengiz et al. used
the FDB selection method to eliminate the disadvantage of
RUN algorithm being caught in local solution traps. The
fitness values of the solution candidates and their distance
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from the best solution candidate (Pbest ) in the population
are considered in the FDB selection process. FDB selec-
tion method is applied according to the following process
steps [31], [32], [33], [34], [35].

i. Optimization algorithms consist of n-unit candidate
solution spaces to solve the optimization problem. The
vector of solution candidates (population, P) in the
solution space and the vector of fitness values (F) of
these candidates are shown in equation (15).

P =

 p1...
p2

 =
 x11 · · · x1m
...

. . .
...

xn1 · · · xnm


n×m

,

F =

 f1...
fn


n×1

(15)

ii. The Euclidean distance of the i-th candidate solution pi
in the population to the best solution candidate pbest is
expressed as in equation (16).

n
i=1∀ Pi, DPi

=

√
(pi[1] − pbest[1])2 + (pi[1] − pbest[1])2

×

√
+ · · · + (pi[m] − pbest[m])2 (16)

iii. The distance of solution candidates in the population
from pbest is represented by the vector Dp given in
equation (17).

Dp ≡

 d1.
dn


n×1

(17)

iv. In the calculation of the FDB value, normalization is
required so that the vector of fitness values and distance
values of the solution candidates do not dominate each
other. Normalized fitness and distance values between
[0, 1] are used to calculate the FDB values (Sp) of
the solution candidates as normF and normDp, respec-
tively.

n
i=1∀ Pi, SP[i]=w ∗ normF[i]+(1−w) ∗ normDP[i]

(18)

In equation (18), w is expressed as the weight coef-
ficient representing the effects of the fit and distance
parameters on the FDB value, and the w coefficient is
accepted as 0.5.

v. The FDB values of the solution candidates in the solu-
tion space of the optimization problem are represented
as the n-dimensional Sp vector as in equation (19).

Sp ≡


s1
.

.

sn


n×1

(19)

TABLE 1. Buck converter parameters.

TABLE 2. The lower and upper limits of the controllers.

After the SP vector showing the FDB scores of the solution
candidates in the solution space of the optimization problem
is created, the roulette wheel method is used to select the
solution candidates to guide the search process to reach the
global solution point. The point where the FDB selection
method is applied is given in equation (20) [36].

xavg =
{X (fdb, :)+ X (fdb, :)+ X (fdb, :)/3; rand

< 0.7 (X (A, :)+ X (B, :)+ X (C, :)) /3; rand ≥ 0.7
(20)

The flowchart of FDBRUN algorithm is shown in Fig. 8.

V. SIMULATION RESULTS
In this section, comparative simulation results of buck con-
verter with PID, FOPID and TID control structures, optimal
parameters determined by FDBRUN, AO, AVOA, and HGS
optimization algorithms, are presented. Table 1 shows the cir-
cuit parameters of the buck converter. The transfer functions
given in (22)-(25), as shown at the bottom of the next page,
are derived depending on the parameters.

A. DESIGN OF THE DIFFERENT CONTROLLER
STRUCTURES VIA METAHEURISTIC ALGORITHMS
Controllers used in power electronics converters are expected
to dampen the oscillations that occur in sudden changes in
the system and minimize the steady state error. In order to
achieve this, the optimization of the controller coefficients
has an important role. The objective function used in any
optimization method is also important for better results. The
objective function given in (21) was preferred in the study
because it provides fast dynamic response, low overshoot,
short settling time and minimum steady-state error in sudden
changing system operating conditions. The function [37] was
firstly used in [38] for automatic voltage regulator.

J = (1− e−α)× (Ess +Mp)+ e−α × (Ts − Tr ) (21)

In this equation, α is defined as the weight coefficient
often set to 1, Ess defines the steady-state error, the percent
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FIGURE 8. Flowchart of the FDBRUN algorithm.

FIGURE 9. Curves of convergence profiles of FDBRUN algorithm.

overshoot is expressed as Mp, Ts defines the time to settle
in a band gap of ±2%, and Tr defines the rise time. In opti-
mization problems, it is necessary to determine the limits of
the variables defined as control variables. In this study, the
minimum andmaximum limit values of PID, FOPID and TID
controller parameters are used as in Table 2 [16].

Fig. 9 shows convergence profile of best runs of the pro-
posed FDBRUN algorithm for FOPID controller. As seen
from Fig. 9, the proposed FDBRUN algorithm converges to
the lowest fitness function value.

To ensure fair performance comparison, the number of
iterations as the stopping criterion and population size is set
to 50 and 25 respectively for each optimization algorithm.
During the determination of the controller parameters, all

TABLE 3. Optimized parameters of the PID, FOPID and TID controllers.

optimization algorithms are run 30 times. The optimal con-
troller parameters found by the optimization algorithms are
given in Table 3. When the values in Table 3 are examined in
detail, it is seen that the optimized controller parameters are
within the limit values in Table 2. The results obtained at the
end of 30 trials are statistically evaluated in Table 4.

The FOPID controller structure utilized in the buck con-
verter structure may be expressed as the structure with
the best objective function for each optimization technique
according to the PID and TID controllers when Table 4 is
reviewed in detail. As can be seen from the boxplot shown in
Fig. 10, the statistical performance of the FDBRUNoptimiza-
tion algorithm in all controllers is better than the performance
of other AO, AVOA and HGS algorithms.

TFAO(s) =
1.7316× 105s1.9463 + 2.7533× 109s0.2844 + 1.3345× 109

s2.2844 + 1.7316× 105s1.9463 + 1082.3 s1.2844 + 2.7641× 109s0.2844 + 1.3345× 109
(22)

TFAVOA(s) =
1.587× 105s1.862 + 7.8548× 109s0.0779 + 3.2277× 107

s2.0779 + 1.587× 105s1.862 + 1082.3 s1.0779 + 7.8657× 109s0.0779 + 3.2277× 107
(23)

TFFDBRUN (s) =
1.587× 105s1.862 + 7.8548× 109s0.0779 + 3.2277× 107

s2.0779 + 1.587× 105s1.862 + 1082.3 s1.0779 + 7.8657× 109s0.0779 + 3.2277× 107
(24)

TFHGS(s) =
1.7316× 105s1.7588 + 8.6337× 109s0.002 + 4.449× 108

s2.002 + 1.7316× 105s1.7588 + 1082.3 s1.002 + 8.6445× 109s0.002 + 4.449× 108
(25)
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FIGURE 10. Box plots of the optimization algorithms for the (a) PID, (b) FOPID and (c) TID controllers.

TABLE 4. Minimum, mean, maximum and standard deviation values for
each operating condition.

In the case of using FOPID as the controller in the system
shown in Fig. 4, the coefficients determined by the AO,
AVOA, FDBRUN and HGS algorithms and the transfer func-
tions obtained using the system parameters seen in Table 1 are
given in the equations (22)-(25), respectively.

1) TRANSIENT RESPONSE ANALYSIS OF THE BUCK
CONVERTER
During the optimization process, the best parameters of PID,
FOPID, and TID controllers are obtained using FDBRUN,
AO, AVOA, and HGS algorithms. The time responses of the
buck converter according to the obtained controller parame-
ters are shown in Fig. 11. Furthermore, Table 5 describes the
transient response criteria in detail, including overshoot, rise
time, settling time, and peak time. According to these values,
it is seen that the FDBRUN based FOPID controller is better
than other controllers in improving the transient response of
the buck converter system.

2) FREQUENCY RESPONSE AND COMPARISON ANALYSIS
OF THE PERFORMANCE INDICES
The bode diagram that shows gain and phase margin of
the FOPID controller which parameters are determined by
optimization algorithms is given in Fig. 12. In addition, inte-
gral absolute error (IAE) [39], integral square error (ISE)
[40], integral time absolute error (ITAE) [41] and inte-
gral time squared error (ITSE) [42] performance indices
are used to evaluate the performance of the algorithms
in more detail. The formulas of the indices are given in

TABLE 5. Transient response analysis results of the system via the PID,
FOPID and TID controllers.

the equations (26)-(29).

IAE =

T∫
0

|e(t)| dt (26)

ISE =

T∫
0

e2(t)dt (27)

ITAE =

T∫
0

t |e(t)| dt (28)

ITSE =

T∫
0

te2(t)dt (29)

T is the simulation time, and e(t) is the error signal, accord-
ing to these equations. Performance indexes are examined
in two stages. In the first stage, the response of the system
under unchanged conditions is examined, while in the second
stage, the system response is examined in case of changes in
resistance (R), inductance (L) and capacitance (C) values.

The results of the performance indices according to the
system response of the FOPID controller under continuous
conditions are shown in Fig. 13 as a bar graph. The numer-
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FIGURE 11. Comparative step response analysis of the buck converter system: (a) FDBRUN
(steady-state), (b) FDBRUN (transient), (c) AO (steady-state), (d) AO (transient), (e) AVOA
(steady-state), (f) AVOA (transient), (g) HGS (steady-state), (h) HGS (transient).

ical values of the performance indices are given in Table 6.
Under continuous working conditions, the FDBRUN algo-
rithm has the best value in all performance indexes, according
to Table 6. In other words, the FDBRUN algorithm for the

IAE performance index has 9.8101%, 0.7911%, and 1.0284%
less values than the AO, AVOA, and HGS algorithms.

Fig 14 shows the results of the performance indices accord-
ing to the system response of the FOPID controller depending
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FIGURE 12. Bode plot of the buck converter system with a FOPID
controller adjusted via FDBRUN, AO, AVOA, and HGS algorithms.

on the change of the R-L-C parameters. According to the
change of R-L-C parameters, FDBRUN algorithm is seen
as the algorithm with the best value among the performance
indexes in Table 6. In addition, the FDBRUN algorithm has
33.4250%, 2.0632% and 3.2324% less values than the AO,
AVOA, and HGS algorithms, respectively for the IAE perfor-
mance index.

TABLE 6. Performance indices results for operating conditions.

VI. CONCLUSION
In this study, the performance of buck type step-down con-
verter with PID, FOPID and TID controllers is investigated.
The coefficients, which determines the performances of the
controllers are determined by AO, AVOA, FDBRUN and
HGS optimization methods. FDBRUNmethod is used for the
first time to optimize the PID controller in the buck converter
in the literature. When the steady state response of the buck
system is examined, the FOPID control structure has the best
objective function, and the best control response is obtained

FIGURE 13. Performance indices of algorithms for continuous operating conditions: (a) IAE, (b) ITAE, (c) ISE, (d) ITSE.
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FIGURE 14. Performance indices of algorithms for the conditions for changing RLC parameters: (a) IAE,
(b) ITAE, (c) ISE, (d) ITSE.

with the coefficients determined by the FDBRUN opti-
mization method. In the transient performance, the FOPID
controller, the coefficients of which are determined by the
FDBRUN optimization method, give the best response in
the parameters of transient peak value, percent overshoot,
rise time, settling time and time to peak value. When the
robustness of the algorithms is examined in detail in terms
of performance indices, the FDBRUN algorithm has the best
value in terms of performance indices calculated depending
on the controller parameters optimized by the optimization
algorithms in steady state conditions. It is seen that the
FDBRUN algorithm has the best value among the optimiza-
tion algorithms according to the performance indices after the
change of the R-L-C values in the system parameters. As a
result of the coefficient optimization, which is made with the
FDBRUN algorithm, the FOPID controller provides the best
performance in the system response. The results reveals that
the FDBRUN method achieves best performance compared
to other tested methods, and is applicable for coefficient
optimization in power electronics converter controller.
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