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ABSTRACT In urban cities, the information about the type or class of street floors enables a wheeled mobile
robot to perform many tasks ranging from traversability region identification, localization and the choice of
wheel control strategy. In this paper, we considered a new task named as street floor segmentation (SFS)
using an RGB camera. The SFS can be considered as the generalized problem of the existing traversability
region identification problem in urban situations. Our SFS has two special classes for the possible application
to the traversability region identification and they are traversable and non-traversable curbs. The SFS using
an RGB camera is implemented using a real-time semantic segmentation (SS) network. A booster module
named as Dynamic Context-based Refinement Module (DCRM) was developed to enhance the performance
of the SFS. Our network was applied to real-world applications, and its validity is demonstrated through
experiment.

INDEX TERMS Real-time, traversability, street floor, segmentation, curb, urban.

I. INTRODUCTION
When a wheeled mobile robot moves in urban cities, the
information about the type or the class of the street floor on
which the robot moves can be utilized in various ways for
the robot’s reliable and safe navigation. For example, when
a wheeled delivery robot moves in a city, the robot should
move only on a sidewalk and crosswalk; it should not move
on a driving road. Thus, when it moves from the sidewalk
to the grass, the control strategy of the wheels should be
changed to ensure that the robot does not slip on the grass.
Thus, although the recognition of the street floor type is quite
important for robot navigation, it has rarely been studied
and only the related problems have been considered. The
typical example of the related problems will be to identify
the traversable region using various sensors [1], [2]. However,
traversable region identification is only a subset of street floor
type recognition because if we know the type or the class of
the street floor, we can easily identify the traversable region
based on the class of the street floor on which a robot moves.
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On the other hand, with the development of deep learn-
ing, numerous problems in robotics have been tackled using
learning-based methods. For example, the classical loop
closing is replaced with the learning-based image matching
[3], [4], and the classical visual odometry (VO) is being
combined with the learning-based VO [5], [6], [7].

In this paper, we considered a new task named as real-time
street floor segmentationusing an RGB camera. SFS is a new
task that includes traversable region identification in urban
situations as a subset, and produces a per-pixel street floor
classification map as shown in Fig. 1.

Here, we use a real-time semantic segmentation (SS) deep
learning network to realize SFS. The key feature of SFS is
that we consider two different types of curbs as different
classes for the possible application to the traversable region
identification for a wheeled robot. Specifically, curbs can
be divided into traversable curb and non-traversable curb in
Korea, as shown in Fig. 2. Understandably, distinguishing
these two types of curbs is quite critical for safe robot nav-
igation. For example, if a wheeled robot tries to move up a
non-traversable curb, the robot is likely to collide with the
curb. Conversely, if the wheeled robot tries to move down
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FIGURE 1. Examples of the dataset used in street floor segmentation.

FIGURE 2. Two types of curbs. A wheeled robot can pass the only
traversable curbs safely.

a non-traversable curb, the robot is likely to be overturned.
To distinguish between the two types of curbs, we can use an
additional range sensor such as a LIDAR because two types
of curbs have different elevation, but the LIDAR requires the
high cost. Some may think that cheap sonar or IR sensors
can be used for curb detection. But it is quite difficult to
detect curb using sonar or IR sensors, and we have to use
multiple sonar sensors [8]. In addition, because the sonar and
IR sensors measure semantic information, it should be used
together with an RGB camera to fully understand the street
floor.

Here, we considered the SFS for a wheeled robot using
an RGB camera. One might think that simple supervised
learning (=semantic segmentation) will distinguish these two
types of curbs, but this is not enough because the two types of
curbs look quite similar. To resolve the ambiguity between
the two types of curbs, we have to use not only the shape
of the curbs but also the context information around the
curb. Specifically, the two types of curbs look similar, but
they are used under different contexts: Non-traversable curbs
are always alone, whereas traversable curbs are always with
braille blocks made for blind persons, as shown in the figure.
Thus, the problem that we have to tackled in this paper was
formulated as follows:

1) SFS should be conducted to assign a class to every
pixel, when an RGB image is presented.

2) The classes used in the SFS include the traversable and
non-traversable curbs.

3) The network should run fast enough for application to
the wheeled mobile robot.

To realize our idea, we proposed a new module named
Dynamic Context-based Refinement Module (DCRM) as
depicted in Fig. 3. DCRM was applied after the SS network.
The preceding SS network used the shape of an image, while
the following DCRM focuses on using the context informa-
tion to realize SFS. The DCRM consists of two parts: Pooling
Up-sampling Dynamic Filter (PUDF) and adjustment score
normalization (ASN). The PUDF is a dynamic filter that
uses the context information of a given pixel. The ASN is
a normalization module that stabilizes the function of PUDF
by forcing the sum of the adjusting scores to become zero.

The contribution of this paper is twofold:
1) We developed a new task named SFS. The problem SFS

considered in this paper is a subset of semantic seg-
mentation (SS) problem, but SFS has two key features.
(i) The receptive field of SFS is wider than the that of
SS, which will be explained in Section III.B. (ii) The
distinction between traversable and non-traversable
curbs is very important because the autonomousmobile
robot should traverse the curb in the urban street. The
problem SFS is also a superset of traversable region
identification problem. To our best knowledge, only
some studies regarding traversable region identifica-
tion have been conducted, and none of the study fully
consider the characteristics of traversability in urban
situations (traversability of curbs). Since SFS is a
larger problem than traversable regions detection, the
classes of our SFS should include two types of curbs,
traversable curb and non-traversable curb.

2) We proposed a new module named DCRM to tackle
the SFS. Our module DCRM exploits the context infor-
mation of pixels. The module aims at improving the
segmentation accuracy in real time by looking wide
and using the context information around a given pixel.
When DCRM is combined with the previous real-
time SS networks such as BiSeNet [9], SwiftNet [10],
and AFPNet [11], the accuracy is improved. Our SFS
network which consists of SS network and DCRM,
as shown in Fig. 3, is end-to-end trainable.

The remaining part of the paper is organized as follows:
In Section II, related works are discussed. In Section III, the
problem SFS considered herein is formulated and the details
of our network are explained. Experimental setup and results
are presented in Section IV. Finally, some conclusions are
drawn in Section V.

II. RELATED WORK
A. TRAVERSABLE REGION IDENTIFICATION
USING AN RGB CAMERA
Classical traversable region identification methods [1], [2]
mainly use a range sensor such as 3D LIDAR to measure the
elevation of the floor. However, they have the shortcomings
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FIGURE 3. Outline of the street floor segmentation network. Our network consists of a semantic segmentation network
and DCRM. DCRM refines the street floor segmentation score.

that sematic information of the road is not fully exploited,
and the range sensor used in the identification is relatively
expensive. Understandably, the traversable region identifica-
tion using an RGB camera is more attractive than using a
range sensor.

In [12], GONet was trained with many positive images of
traversable places, but just a small set of negative images
depicting blocked and unsafe areas. Positive examples were
collected simply by operating a robot through traversable
spaces. The GONet used Generative Adversarial Networks
(GANs) to predict the traversablity of the given road. In [13],
VUNet synthesizes future images for given virtual robot
velocity commands using only RGB images at previous and
current time steps. Then, VUNet predicts the traversability
of the image by applying the synthesized future images to
GONet [12]. In [14], the traversability of the area surrounding
a mobile robot was estimated by dividing the image into sev-
eral bins and training the deep learning network to learn the
reachable area from each bin. This paper demonstrates good
performance when it is applied to mountains, plains, or at
least on country roads. However, it cannot be applied to urban
streets because it does not consider semantic information.
The paper [14] focuses only on the physical traversability
without considering semantics of the road. In [15], a semantic
segmentation network was used to classify the ground, stairs,
slopes of an indoor and it was combined with SLAM, making
semantic SLAM. Further, the segmentation result was refined
by fusing the semantic segmentation result and the depth.
But it cannot be applied in real-time outdoors or in urban
situations. This is because range sensors will have more data
in a large space. In [16] and [17], the traversability of the road
was estimated using semantic segmentation in urban situa-
tions. By training the deep learning network, the traversabil-
ity was estimated from various cameras. However, [15],
[16], and [17] did not fully consider the characteristics of
traversability in urban situations (traversability of curbs) and
the deep learning network structure suitable for traversability
estimation.

B. DEEP LEARNING AND REAL-TIME
SEMANTIC SEGMENTATION
Deep learning [18], [19], [20] is demonstrating excellent
performance in many visual recognition tasks such as image
level classification [21], object detection [22], and SS [23].
Among them, SS is a pixel-level classification problem.

In order to use SS in mobile robotics, the networks should run
in real-time. However, most of popular general SS networks
cannot run in real-time due to heavy computation load.

Recently, several real-time SS networks have been pro-
posed. In particular, BiSeNet [9], SwiftNet [10], and AFP-
Net [11] achieved high performance and high speed among
real-time semantic segmentation networks. As the name sug-
gests, BiSeNet uses two paths to extract spatial information
and context information, separately. SwiftNet is famous for
its simple and high-performance decoder structure, and it
also achieves high SS performance and fast processing time.
AFPNet proposes the local memory module to up-sample the
SS results effectively.

C. DYNAMIC FILTER
Dynamic filter [24] is a content-adaptive convolution filter;
and its weights are dynamically generated through a fil-
ter generating network conditioned on input images. Here,
the key difference between a conventional static filter and
a dynamic filter is that the same convolution weights are
applied to all the input images in the static filter, whereas the
convolution weights change depending on the input image
in the dynamic filter. Thus, the dynamic filter enables us
to handle a variety of input images in a single and unified
framework. The dynamic filter consists of a filter-generating
network and a dynamic filtering layer. The dynamic filter
achieves high performance in several tasks. For example, high
performance is achieved in object detection [25] and seman-
tic segmentation [26] by applying a dynamic filter. But the
dynamic filter has the shortcoming that dynamic filter is weak
in generalization and has poor robustness [27], [28]. Because
of this, dynamic filter sometimes diverges. If divergence
occurs, the output from the dynamic model can be extremely
large for some inputs.

III. PROPOSED METHOD
A. PROBLEM FORMULATION
Let us suppose that RGB images I ∈ RH×W×3 and their
ground truths (GTs) annotated at the pixel level as G (I) ∈
{0, 1}H×W×C are presented, where C denotes the number of
the SFS classes. The set of SFS classes are CSFS = {Non-
traversable, Asphalt road, Crosswalk, Sidewalk, Indoor floor,
Braille block, Pedestrian priority road, Grass, Cement road,
Traversable curb, Non-traversable curb} and their examples
are given in Fig. 1, where C = |CSFS | = 11. The goal of our
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FIGURE 4. Key difference between SFS and the general SS. An instance in
SFS is usually much larger than that in SS, so SFS needs larger receptive
field than SS.

paper was to train our networkN (·) in end-to-endway so that
the loss between the output of the network N (I) and its GT
G (I) is minimized. As said, the key feature of our problem
formulation is that the traversable and non-traversable curbs
should be considered as different classes even though they
look quite similar.

B. WHY DYNAMIC CONTEXT-BASED REFINEMENT
MODULE (DCRM)?
The only difference between our SFS network and existing
real-time SS networks is DCRM. That is, SFS network =
SS network + DCRM. One might think why we have to use
DCRM in SFS. The key difference between SFS and general
SS is that an instance in SFS is usually much larger than the
one in SS. For example, let us consider an instance labeled
as a sidewalk and an instance which might be labeled as a
human in the SS, as shown in Fig. 4.
If the receptive field of the convolution filter is as large as

indicated using yellow boxes, the convolution filter applied
to the instance of the sidewalk does not include context
information, whereas the filter applied to the instance of a
human includes much context information. This implies that
we have to look wider (=widen the receptive field) in SFS
than in SS. Obviously, we can widen the receptive field by
deepening the network, but we cannot do it because of the
real-time requirement. Thus, we developed a shallow module
DCRM, which aims to widen the receptive field while spend-
ing minimal extra computation.

To increase the performance by adding modules, we need
to design the suitable structure for the problem. Simply
adding a structure to a network does not always improve

the performance [20] and increasing the performance with
less computation is even more challenging. We developed a
structure that solves the SFS problem well by considering the
characteristics of the SFS problem. The SFS problem requires
a wide receptive field and can improve recognition perfor-
mance by adaptively considering the surrounding semantic
information. For the design of an adaptive structure, we used
a dynamic filter.

C. WHY DYNAMIC FILTER IN DCRM?
In this subsection, we explain why we use not a normal
(=static) convolutional filter but a dynamic convolutional
filter [24] in DCRM. As shown in Fig. 3, our DCRM takes
the pixel-wise class score map from SS network and outputs
its refined version. Fig. 5 showswhywe need a dynamic filter.
First, let us consider Fig. 5a. In the figures on the left column,
a yellow braille block is located on the upper right side of
a traversable curb (=colored in green). DCRM can increase
(=refine) the score of the traversable curb by considering the
braille block located on the upper right side of a traversable
curb, or by assigning high values to the upper right weights
in the convolution filter. Here, dark yellow denotes the high
weights, whereas light yellow denotes the low weights in a
convolution filter. If a static filter is used, the same filter
should be applied to other situations such as the figures on
the right column of Fig. 5a. Here, a yellow braille block is
located on the lower right side of a traversable curb (=colored
in green). If the same filter which has the high values in the
upper right weights as shown in Fig. 5a is applied to the
figures on the right column, not the braille block but the road
which is located on the upper right side of the traversable curb
will affect the traversable curb, degrading the segmentation
performance.

To solve the above problem, we have to change the filter
weights depending on the input image. That is the reason
why we use a dynamic filter in DCRM. The key feature
of the dynamic filter is that the filter weights are generated
dynamically conditioned on the input image. Let us consider
Fig. 5b. The filter on the left column should be generated such
that the upper right weights have the high values, whereas the
filter on the right column should be generated such that the
lower right weights have the high values to refine the score
map. Understandably, the reason is that a yellow braille block
is located on the upper right side of a traversable curb on the
right column, but a yellow braille block is located on the lower
right side of the traversable curb in the right column.

D. DYNAMIC CONTEXT-BASED REFINEMENT MODULE
The architecture of DCRM is given in Fig. 6. As shown in the
figure, it has three paths from input to output. The top path is
a filter generating network of the dynamic filter, and it out-
puts the filter weight. The filter generating network CONV1
was implemented using very shallow convolution networks.
When a per-pixel classification result NSS (I) returned from
the SS network is presented, the tensorNSS (I) goes through
a shallow network CONV1 on the top path, and the shallow
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FIGURE 5. Static filter vs. dynamic filter. The dynamic filter enables
content-adaptive learning.

network outputs a pixel-wise filter weight W with a size of
H ×W ×C×C , where H ×W denotes the size of the output
of the SS network. Thus, for each pixel (h,w) ∈ H ×W , the
filter generating network CONV1 outputs a fully connected
filter with the size of C × C , where, C × C means the score
refinement from C classes to C classes. Obviously, the fully
connected filter was implemented using 1× 1 convolution.
The path in the middle is actually a main convolution

filter and its weights are provided by the filter generating
network on the top path. The key feature of the path is
pooling followed by upsampling: Pooling downsamples the
input H × W into H

S ×
W
S by max pooling and upsampling

restores the reduced tensor HS ×
W
S to the original sizeH×W ,

when S is size and stride of pooling. One might think that
pooling (=downsampling) followed by upsampling means
‘‘doing nothing’’ and why we have to do null operations. The
reason for them is that theywiden the receptive field, enabling
DCRM to use the context information from the nearby pixels.
One also might think that one can use a deep convolution
layer to widen the receptive field, but it is not suitable for
real-time applications. The goal of our pooling followed by
upsampling is to widen the receptive field while consuming
minimal additional time. The top two paths come from the
dynamic filter and this part is named as Pooling Up-sampling
Dynamic Filter (PUDF)

The path at the bottom is the skip connection (=identity
mapping) and it is motivated by the residual module in
ResNet [20]. The path ensures at least the performance
obtained when the DCRM is not used at all.

At the end of the path in the middle, adjustment score
normalization (ASN) is added to prevent PUDF from chang-
ing the sum of total score. Specifically, it is known that the
dynamic model has a risk of divergence when the generaliza-
tion performance is degraded [27], [28]. If divergence occurs,
the output from the dynamic model can be extremely large for
some inputs. PUDF is also the case. To solve the problem,
we used an adjustment score normalization defined by

σ (T )h,w,c = Th,w,c −
1
C

C∑
c=1

Th,w,c (1)

where σ (·) is output from the ASN, T is the output of PUDF,
C is the number of types of floors, and h,w, c is the vertical,
horizontal, and depth position of the score, respectively. The
ASN forces the sum of the adjustment scores to become
zero and prevents PUDF from changing the sum of the
total score

IV. EXPERIMENT
A. DATASET
To implement our SFS, we built our dataset using our wheeled
robot platform. Our wheeled robot platform is a Jackal UGV
robot and Intel RealSense Depth Camera D435 is installed
on the robot as shown in Fig. 7. Using the platform, we col-
lected 1,251 training and 355 validation images, respectively.
As explained in Section III-A, 11 classes were defined, and
the collected images are annotatedmanually at the pixel level.
Examples of the collected images and their GT images are
given in Fig. 1. Each image has a size of 1,280× 640.

B. TRAINING DETAILS
Our SFS network consists of an SS network and DCRM.
We use three popular real-time SS networks for the appli-
cation to a wheeled mobile robot, and they are BiSeNet [9]
SwiftNet [10], AFPNet [11]. The three SS networks are
initially pretrained on ImageNet [21]. Our SFS network con-
sisting of SS network and DCRM is trained end-to-end.
We use 20 as the value of S which is size and stride of
pooling in PUDF. We train our SFS networks on the training
set in Section IV.1 using the following settings: online hard
example mining, the auxiliary loss function, a polynomial
schedule with learning rate of 0.01, weight decay of 0.0005,
and coefficient of 0.9. Training images were cropped to
640× 640 with a scale range [0.5 2.0] and horizontal flipping
with a probability of 0.5 was applied to the training images.
Our SFS networks were trained using 12 mini-batches for
50,000 epochs, with the first 1,000 epochs reserved for
warning-up. In all experiments, we performed five indepen-
dent runs and compute the average of mIoUs over the five
runs. Here, we used a single TitanXP with CUDA 11.0,
CUDNN 8.0, and PyTorch 1.4.0 for training and evaluation.
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FIGURE 6. Architecture of the DCRM. The DCRM consists of Pooling Up-sampling Dynamic Filter (PUDF) and Adjustment Score
Normalization (ASN). ⊗ is filter application operation. The DCRM adjusts scores using nearby semantic information.

FIGURE 7. Robot and camera.

C. DCRM
To see the effectiveness of the DCRM, we compared the
SFS performance in two cases of using DCRM and not
using DCRM. The SFS performances measured in mIOU are
summarized in Table 1 for the two cases. The results in the
table clearly show that the SFS performance was improved
for the three different SS networks when the proposed DCRM
was used after the SS networks. Specifically, the accuracy
of cement road increased significantly, and that for the two
types of curbs are also increased in all networks. The rea-
son for it might be that the traversable curbs were always
next to braille blocks, as explained in Section III. Further,
as the instances of cement roads usually lack local features,
so large receptive field of DCRMmight help to recognize the
cement roads. Some classes had the mixed results. That is,
the accuracy of the remaining classes is increased by DCRM
in some networks, whereas the accuracy was decreased after
applying DCRM in the other network. For example, the IoU
of crosswalk is increased in BiSeNet and AFPNet, whereas
it was decreased in SwiftNet. Overall, however, the number
of classes with increased performance was larger than that of
the classes with decreased performance. Further, the amount
of increase was higher than that of the decrease, increasing
the overall accuracy of SFS networks.

In addition, since the additional computation of the DCRM
is small, our SFS networks also run in real-time even if the
DCRM is added. The exact run speed of our SFS network is
given in the third row of Table 1.

Examples of our SFS are given in Fig. 8. From the figure,
we can see the DCRM worked well for the curbs and the
instances which need wide receptive field. As explained,
DCRM has two features: (1) It leverages the context informa-
tion and (2) it widens the receptive field. Understandably, the
two types of curbs have different context neighbors, and their
accuracy were improved by DCRM, as shown in the first two
rows of Fig. 8. Further, instances of Asphalt road, Crosswalk,
Sidewalk need wide receptive field and their accuracy is also
enhanced by DCRM, as shown in the last three rows of Fig. 8.
A full video clip in which our SFS network is applied to the
test set is also submitted as a supplemental file.

D. ABLATION STUDY
In this subsection, we conducted ablation experiments to see
the effects of the two internal operations within the proposed
DCRM: PUDF and ASN. The results of the ablation study are
summarized in Table 2. First, let us considered the running
speed of our SFS network including the DCRM, which is
given in the rightmost column of the table. When BiseNet
was used as an SS network, its FPS is 65.80 on Titan XP.
When our DCRM was added to the BiseNet, the FPS is
slightly decreased from 65.80 to 61.33 on Titan XP, and
this implies that our DCRM improved the performance while
consuming minimal computation. In table 2, the first row is
the vanilla BiSeNet and it is used as a baseline. As said before,
when DCRM was added to the BiseNet, the accuracy was
improved by almost 0.8% while consuming minimal time.
To see the effects of the two internal operations within the
DCRM, we removed them one by one. First, we replaced the
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TABLE 1. Experiment results of our SFS networks.

FIGURE 8. SFS results using BiSeNet and proposed DCRM. (a) Image, (b) Ground Truth, (c) Output of BiSeNet, (d) Output of BiSeNet+DCRM.
The yellow boxes indicate the regions in which the DCRM improved the SFS.

PUDF with a simple convolution. When PUDF was not used,
the accuracy decreased. Second, we removed the ASN in the
DCRM. In that case, the accuracy also decreased. From the
ablation study, we can see that our DCRMworked effectively
when the two internal modules were used together.

E. COMPARISON WITH OTHER MODELS
To show the validity of the proposed DCRM in the real-
time SFS problem, we compare our network with the
previous popular SS networks. The compared networks

are SegNet [29], Inception-v3 [15], [30] and Seq ERF-
PSPNet [16], [17]. SegNet is one of the most well-known
SS network; Inception-v3 [15], [30] and Seq ERF-PSPNet
[16], [17] are the recently reported networks which deal
with the traversable regions detection. In the experiment,
our method used BiSeNet [9] as a backbone, and we added
DCRM module. Experimental results are given in Table 3
From the table, we can see that our model achieves the best

accuracy among all the compared models. In particular, our
model demonstrates significant improvement in traversable
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TABLE 2. Experiment results of our SFS networks.

TABLE 3. Comparison of the proposed network with SegNet, Inception-v3, and Seq ERF-PSPNet.

TABLE 4. Network performance when hyper-parameters are changed.

and non-traversable curbs. The proposed model is not the
fastest among the compared models, but it is fast enough for
real-time SFS.

F. HYPER-PARAMETERS
In the additional experiments, we repeated the same exper-
iment as in Section IV-B while varying three parameters in
Table 4. The three parameters are an initial learning rate η,
weight decay λ used in L2 regularization and the power p of a
polynomial function which controls the decay of the learning
rate. First, let us consider the initial learning rate η. We con-
ducted the same experiments as in Section IV-B but changed
the initial learning rate η from 0.001 to 0.1 by increasing one
order of magnitude. The results are given below.

The best mIoU is achieved when the initial learning rate is
0.01. It seems that too small learning rate makes the training
much delayed and take long time. It is also likely that the too
small learning rate increases the possibility that the training

is trapped in local minima. On the contrary, too large learning
rate prevents us from exploiting the optimal solution around
near-optimal solutions, degrading the performance.

In the same way, we repeated the same experiment while
varying weight decay λ from 5 × 10−5 to 5 × 10−3 by
increasing one order of magnitude and varying the power p
of a polynomial function from 0.85 to 0.95 in increments of
0.05. When we use η = 0.01, λ = 5 × 10−4 and p = 0.90,
we achieved the best mIoU.

V. CONCLUSION
In this paper, we developed a new problem named SFS and
proposed a solution to the problem using deep learning net-
works. SFS is motivated by SS and can be applied to various
mobile robot applications including traversable region identi-
fication. To the end, the classes of our SFS include traversable
and non- traversable curbs, separately. Our solution to this
problem consisted of an SS network and DCRM. The DCRM
exploited the context information of the pixels to improve
SFS performance. Our networks were applied to real world
applications and our networks demonstrated the attractive
results.
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