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ABSTRACT Sign language production aims to automatically generate coordinated sign language videos
from spoken language. As a typical sequence to sequence task, the existing methods are mostly to regard
the skeletons as a whole sequence, however, those do not take the rich graph information among both joints
and edges into consideration. In this paper, we propose a novel method named Spatial-Temporal Graph
Transformer (STGT) to deal with this problem. Specifically, according to kinesiology, we first design a
novel graph representation to achieve graph features from skeletons. Then the spatial-temporal graph self-
attention utilizes graph topology to capture the intra-frame and inter-frame correlations, respectively. Our
key innovation is that the attention maps are calculated on both spatial and temporal dimensions in turn,
meanwhile, graph convolution is used to strengthen the short-term features of skeletal structure. Finally, due
to the generated skeletons are based on the form of skeleton points and lines so far. In order to visualize the
generated sign language videos, we design a signmesh regressionmodule to render the skeletons into skinned
animations including body and hands posture. Comparing with states of art baseline on RWTH-PHONEIX
Weather-2014T in Experiment Section, STGT can obtain the highest values on BLEU and ROUGE, which
indicates our method produces most accurate and intuitive sign language videos.

INDEX TERMS Transformer, graph convolution, human mesh reconstruction, sign language production.

I. INTRODUCTION
As a useful language, sign language conveys information
through gestures and spatial movements of limbs. It is the
most natural way for hearing-impaired people to interact
with the outside world. Sign language production (SLP)
aims to automatically translate spoken language sentences
into the corresponding sign language videos. Both accurate
and vivid SLP can significantly improve the communication
quality for the Deaf community. Sign glosses are interme-
diary words that match the meaning of spoken language.

The associate editor coordinating the review of this manuscript and

approving it for publication was Hossein Rahmani .

As shown in Fig. 1, our work can be divided into two parts:
(1) Translating gloss sequences for spoken language sen-
tences into the corresponding sign pose sequences. (2) Gen-
erating skinned-based animations from skeleton sequences.

Recently, Transformer-based methods [1], [2], [3], [4], [5]
became the most widespread methods to produce skeletons
for SLP. However, there is still a problem in these works:
such architecture always ignores the structural relationships
of the human skeletons, by which poor performance would
be obtained. Thereupon, the existing SLP method [4] devises
a spatial-temporal graph convolution (GCN) as pose gener-
ator which implemented from a standard 2D convolution.
Skeletal graph self-attention [6] encodes the spatio-temporal
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FIGURE 1. The overall architecture of STGT, which composes of gloss sequence encoder, skeleton sequence decoder and sign mesh
regression module. The encoder learns semantic features from source sentences and the decoder captures both intra-frame and
inter-frame correlations between dynamic skeletons. Sign mesh regression module takes the skeletons from the encoder-decoder
network, and renders the final output into skinned sign language animation.

connectivity into the node features while calculating atten-
tion matrices. To deal with the problem, we conduct two
self-attention layers with different dimensions in turn and
equip with GCN to strengthen the short-term structure fea-
tures lacked in attention results.

Due to the small motion ranges of hands and large
range of motions in upper limbs, based on kinesiology,
we propose a novel graph partition strategy with a combi-
nation of connectivity and motion relationship. The novel
graph topology is characterized by a partitioned lapla-
cian matrix, which makes the encoded representation more
comprehensive.

To facilitate the analysis of sign language, we design a
sign mesh regression module for animating the generated
skeleton sequences. We employ SMPL [7] for generating
skinned body shapes of the upper limb and MANO [8]
model accurate reconstruction of hands. The skinned meshes
of different parts are assembled by a fast Copy-and-Paste,

providing a more comprehensive and graphic sign language
video which can better reflect the real 3D structure of the
human body.

The major contributions of our work are summarized as
follows:
• We introduce a novel Spatial-Temporal Graph Trans-
former, STGT, considering both the intra-frame and
inter-frame correlations. It is able to exploit the spatial
displacements and temporal dynamics of skeletal data
more effectively. Meanwhile, the gated fusion module
is proposed for modeling both long-term and short-
term dependencies of skeletal structure in an efficient
way.

• In graph topology representation, an additional motion
relation between fingers is combined with bone connec-
tivity. Moreover, we explicitly utilize the novel graph
representation inductive bias in self-attention layers,
which further improve the model performance.
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• To produce realistic and visual sign language videos,
a signmesh regressionmodule is presented for rendering
skinned sign language animations from skeletons. To our
knowledge, this is the first work of skinned-based sign
language production.

Experiments demonstrate the superior performance of our
method to the competing methods on RWTH-PHOENIX-
Weather-2014T dataset. We achieve BLEU-1 score of 36.01
and ROUGE score of 37.62 on STGT(C&M), which
increases 1.49 BLEU score and 1.34 ROUGE score than
reproduced Saunders’ results [6] in a fair comparison.

The rest of this paper is organised as follows: In Section 2,
we survey the related works in the field of SLP and human
mesh reconstruction. In Section 3, we introduce the novel
graph representation, gloss sequence encoder, sign sequence
decoder and sign mesh regression module. We share our
experimental details in Section 4, the quantitative results
and the qualitative examples are also presented here. Finally,
we draw conclusions in Section 5 and suggest future
work.

II. RELATED WORK
A. GRAPH CONVOLUTIONAL NETWORK AND
TRANSFORMER
Several works have considered Transformer [9] and Spatial-
Temporal Graph Convolutional Network(ST-GCN)) [10] to
process the spatial-temporal connectivity in non-Euclidean
datasets. The original Transformer operates on fully con-
nected graphs representing all connections between the
tokens. So that it sticks to poor performance when the graph
topology has not been encoded into the node features. While
ST-GCN introduced high-level semantics such as both the
spatial and temporal edges from data, it could provide strong
complementarities to Transformer.

The combination of graph and transformer has many
applications in other fields. Guo et al. [11] proposed a
self-attention based graph neural network for traffic forecast-
ing, which is specialized for capturing the temporal dynamics
of traffic data by self-attention and using graph convolu-
tion module to capture the spatial correlations. Specific to
skeleton-based human action recognition, a recent study by
Plizzari et al. [12] model dependencies between joints by
the self-attention operator and use a two-stream mechanism
for conditionally building the natural human body struc-
ture. Dwivedi et al. [13] proposed a generalization of trans-
former neural network architecture for arbitrary graphs which
is extended to both node and edge feature representation.
Inspired by their works, our mining of sign language infor-
mation is extended to the edge dimension, which represents
the relative distance of joints during gesture movement.

B. SIGN LANGUAGE PRODUCTION
Sign language production is a fundamental problem in
neural machine translation and has been widely attracting
a lot of attentions in recent years [14], [15], [16], [17].
Since Transformer [9] adopts the self-attention mechanism

without convolution, which has made great breakthroughs in
the field of natural language processing. Saunders et al. [1]
proposed the first Transformer-based SLP model to learn the
mapping between spoken language sentences and sign pose
sequences in an end-to-end manner. The above researches
usually convert the sign pose sequences into Euclidean data
which seriously ignores the original structure, semantics and
other characteristics of the skeletal data.

Further, Saunders et al. [6] proposed a spatial-temporal
skeletal graph attention layer that embeds a hierarchi-
cal body inductive bias into the self-attention mechanism.
Huang et al. [4] developed spatial-temporal graph convolu-
tion layers into the pose generator which is able to capture
both intra-frame and inter-frame information of sign language
videos. However, all these methods disregard each joint has
different contributions to gestures expression. Both motion
relationship and the action amplitude will influence the sign
language meaning. To make an efficient representation of
non-Euclidean data, we define a novel graph partition strategy
constructing the upper limb and hands respectively.

C. HUMAN MESH RECONSTRUCTION
In human mesh reconstruction, a skinned vertex-based model
reconstructs the skin that is represented by 3D mesh and
can be regarded as the modeling of real geometry. Skinned
multi-person linear model (SMPL) [7] is used to parame-
terize the basic attributes of the human body model, such
as a wide variety of body shapes in natural human poses.
SMPL uses skeletons to drive meshes for deformation. It con-
sists of 6890 vertices, 13776 triangular meshes and 24 joints,
however the reconstructed 3D surface does not include hand
details. Hand model with articulated and non-rigid deforma-
tions (MANO) [8] is an end-to-end learnable model which
provides a compact mapping from hand poses to mesh blend
shape corrections. Faces Learned with an articulated model
and expressions (FLAME) [18] assumes a whole head map-
ping, captures the 3D rotation of the head, and alsomodels the
neck area. SMPLX [19] computes a 3Dmodel of human body
pose, hand pose, and facial expression. It combines SMPL
with FLAME head model and MANO hand model, yielding
in natural and expressive results.

III. METHODOLOGY
In this section, we introduce technical details of the proposed
spatial-temporal graph transformer (STGT) with sign mesh
regression for sign language production (SLP), and Fig. 1
shows its overall architecture. We first formulate the SLP
task as a spatial-temporal translation problem. Given the
source spoken language sentence X = (X1,X2, . . . ,XS )
with S glosses, we focus on translating it into the corre-
sponding target sign poses sequence Y = (Y1,Y2, . . . ,YT )
with T frames. Intra-frame skeletons are expressed as Yt =
(yt1, y

t
2, . . . , y

t
G) ∈ RG and contained G joints, where

ytg denotes the position of joint g at time t. Our goal is to
fit our model of maximizing the computation of conditional
probability P(Y |X ).
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FIGURE 2. The graph topology representation and adjacency matrix of right hand. Exploiting Dynamic Information. As a demonstration, we choose seven
finger joints, calculating the adjacency matrix, degree matrix and normalized laplacian matrix respectively.

Firstly, a novel graph representation method is introduced
for understanding human skeletons in sign language action.
Then we elaborate on the spatial-temporal graph transformer
block, automatically capturing both intra-frame and inter-
frame correlations between dynamic skeletons. Finally, the
SLP results are displayed in the form of skinned-based
animation by our proposed sign mesh regression module,
which moves beyond the visual presentations of previous
methods.

A. NOVEL GRAPH REPRESENTATION
1) NOVEL GRAPH PARTITION STRATEGY
In sign language gestures, the role of hands in semantic
representation is the most obvious. The second is the upper
limb, which collaborates with the hands to perform the elabo-
rate sign language expression through the lifting or lowering
action. Due to themotion amplitude between hands and upper
limb being different, we divide the skeleton sequence into
three parts: the upper limb, the left and right hands. The
graph based on sign language skeleton can be constructed
as a combination of sub-graphs corresponding to each part,
where the adjacent sub-graphs have at least one common joint
(the wrist joint). As shown in the Fig. 2, the right hand
sub-graph representation can be formulated as a spatial
adjacency matrix symbolizing the intra-frame relationship
between each joint.

2) NOVEL SPATIAL ADJACENCY MATRIX
Previous work [6] builds the spatial adjacency matrix only
by the skeleton structure. It ignores that, during sign lan-
guage communication, joints in different fingers are often
connected due to the motion relationship. On the basis of
the skeleton graph, we give a supplementary motion rela-
tionship graph associated with finger movement. As shown
in the Fig. 2, finger joints include metacarpophalangeal

point (MCP), proximal interphalangeal point (PIP) and distal
interphalangeal point (DIP). Because the thumb has high
freedom and flexibility, we divide the thumb joints into a
motion graph separately. The other four fingers have the same
structure, and the same joint of different fingers will have a
similar movement trend. Therefore, we have established the
motion relationship graphs of fourMCP joints, four PIP joints
and four DIP joints.

Our spatial adjacency matrix A ∈ RG×G takes both the
connectivity and the motion relationship within a frame into
consideration. The extended motion relationship strengthens
the rationality and sensitivity of humans poses in sign lan-
guage actions. The topology analysis of left hand Al can be
formalised as:

Al [i] [j] =


1 if Con(i, j) = True
1 if Mot(i, j) = True
0 otherwise

(1)

where Con(i, j) and Mot(i, j) indicate the joints have the
connectivity and the motion relationship respectively. Degree
matrix D ∈ RG×G is a diagonal matrix where Dl [i] [j] =∑

jAl [i] [j], and the elements on the diagonal are the degrees
of each joint. I ∈ RG×G is an identity matrix, which
represents self-connections. Due to imbalanced weights
may undesirably affect the matrix spectrum, we use the
symmetrically normalized laplacian matrix Llsym for undi-
rected graph representation. Normalisation can be formulated
as:

Llsym = I l −D−
1
2AlD

1
2 (2)

It is noteworthy that the ultimate Lsym is actually a parti-
tioned matrix which is composed of the left hand laplacian
matrix Llsym, right hand laplacian matrix Lrsym, and the upper
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limb laplacian matrix Lusym:

Lsym =


Llsym O O

O Lrsym O

O O Lusym

 (3)

B. IMPLEMENTATION DETAILS OF GLOSS SEQUENCE
ENCODER
The encoder learns semantic features from an embedded
gloss sequence X̃ ∈ RS×dmodel , where S denotes the number
of sign glosses and dmodel represents the dimension of embed-
ded vectors. The order information plays an important role in
neural machine translation tasks since it defines the syntax
of sentences and the composition of videos. Hence, we equip
with the positional encoding in (4) which aims at explicitly
inducing the order bias into the gloss sequence.

PE(d, 2i) = sin

(
d

10000
2i

dmodel

)

PE(d, 2i+ 1) = cos

(
d

10000
2i

dmodel

)
(4)

where d is the relative index of each gloss in the sequence and
i is introduced to distinguish odd-even.
The architecture of gloss sequence encoder closely resem-

bles the classical transformer [9], which is composed of N
blocks with multi-head self attention (MHA) and feed for-
ward network (FFN). MHA projects query vectorQ, key vec-
tor K and value vector V through h different linear transfor-
mations, and finally concatenate h different attention results
of the global gloss sequence. Then theMHA outputs pass into
the FFN, which is a fully connected network with two linear
layers. The basic operation in MHA is the scaled dot-product
attention defined in (5):

Attention(Q,K ,V ) = softmax
(
QKT
√
dk

)
V

Q = X̃WQ, K = X̃WK , V = X̃WV (5)

where dividing by
√
dk is to prevent the saturation led by soft-

max function and the input X̃ is projected by three matrices
WQ
∈ RdQ×dmodel , WK

∈ RdK×dmodel , WV
∈ RdV×dmodel to

the corresponding representationsQ,K , V . Since the encoder
consists of a stack of identical layers, the residual connection
and layer normalization are used inside the blocks to ensure
stable training as the encoder goes deeper.

C. IMPLEMENTATION DETAILS OF SKELETON SEQUENCE
DECODER
1) POSITIONAL LAPLACIAN EIGENVECTORS ENCODING
The embedded skeleton sequence after the positional encod-
ing in (4) is symbolized by Ỹ = (Ỹ1, . . . , ỸT ) ∈ RG×T×dmodel ,
where G is the total number of joints, T is the total frames
number and dmodel represents the dimension of embedded

vectors. The action information of skeleton sequence mainly
exists inside a single frame (in spatial dimension), while the
motion track information is contained between consecutive
frames (in temporal dimension). We build the undirected
graph G = (V, E) to represent spatial-temporal structure,
where the node features V = {ytg | g = 1, . . . ,G and
t = 1, . . . ,T }, t represents the frames in temporal domain,
and g represents skeleton joints in spatial domain. The spa-
tial edge features Es = {ytiy

t
j | (i, j) ∈ G} contains both

the connectivity of skeletons and the motion relationship,
which expresses the relationship between joint i and joint j at
frame t . We also tried to learn the representations of temporal
edge features Et = {ytiy

t+1
i } through connecting the joints

between adjacent frames. Finally, we convert the spatial graph
Gs and temporal graph Gt into laplacian matrices Lssym ∈
RG×G and L tsym ∈ RT×T followed by (1) (2) (3). In order

to integrate Ỹ with Lssym and L tsym, we expand them along
the spatial and temporal axes to generate Ls ∈ RG×G×T and
Lt ∈ RT×G×T .

2) SPATIAL-TEMPORAL GRAPH SELF-ATTENTION
An advantage of Transformer is its global receptive field,
which we use to capture long-term interactions of skeleton
sequences. Instead of using the classical self attention in (5),
we introduce the spatial graph self-attention (S-GSA)module
to embed the intra-frame dependencies into the Query-Key
product matrix M . The query Qs ∈ RG×T×dmodel , key K s

∈

RG×T×dmodel , value V s
∈ RG×T×dmodel representations are

projected into different subspaces by applying multiple train-
able transformations to Ỹ . When calculating M , we use the
Einstein summation convention to convert the inner product
into the same dimension as Ls. The calculation procedure of
spatial graph self-attention is shown in (6).

M s
= Qs(K s)T ∈ RG×G×T

Attention(M s,V s,Ls) = softmax

(
M s
+ Ls√
d sk

)
V s (6)

where the spatial graph matrix Ls ∈ RG×G×T will be added
to M , and we set Ls as a learnable weight matrix during
training. Note that we equip with the masked mechanism [9]
in graph self-attention to prevent the leakage of future infor-
mation when decoding target sequences.

Wu et al. [20] prove that convolutions can be incorporated
into the Transformer to improve performance and robustness
for datasets containing local structures. Considering the local
information of skeleton sequences, we further use graph con-
volution (GCN) to make better initialize the weight of edge
information and strengthen the short-term features lacking
in S-GSA. Note that convolution can remember the position
information, so the position embedding operation dropped
here. The GCN operation in (7) calculates for each frame
separately based on Lssym ∈ RG×G, and concatenates all
results at last.

GCN (Ỹ ,Lssym) = ConcatTt (σ (W
GCNLssymỸt )) (7)
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where Ỹt ∈ RG×dmodel , WGCN
∈ Rdmodel×dmodel and σ are the

embedded skeletons at one time step, projection matrix and
sigmoid nonlinear activation, respectively.

Similar to S-GSA, we build the temporal graph self-
attention (T-GSA) module in (8) to capture the long-term
inter-frame correlations based on Lt ∈ RT×G×T . Note
that S-GSA is performed for each frame, while T-GSA is
performed for each joint. And we also use GCN to build
short-term dependencies in temporal dimension based on
L tsym ∈ RT×T .

M t
= Qt (K t )T ∈ RT×G×T

Attention(M t ,V t ,Lt ) = softmax

M t
+ Lt√
d tk

V t (8)

3) GATED FUSION MODULE
Especially, to combine with the local dependencies (GCNout )
and global dependencies (GSAout ) in an efficient way,
we design a gated fusion module to control information flows
with gates. in (9).

gate = σ (W 1Y +W 2GCNout +W 3GSAout + b) (9)

where W and b1 are the weight matrix and bias vector of the
fully connected layer. As a result, the output is obtained by
weighting GCNout and GSAout with the gate:

out = (1− gate)� GCNout + gate� GSAout (10)

where � is element-wise multiplication. Note that both
S-GSA and T-GSA outputs use this gated weighting method
to aggregate useful information with GCN outputs.

4) ENCODER-DECODER ATTENTION AND LOSS FUNCTION
After spatial-temporal graph self-attention layers, an
Encoder-Decoder attention layer is used to focus on the
appropriate alignment between gloss sequence and skeleton
sequence. Therefore, it likes the classical self attention in (5),
except creating the query matrix from the output of the
previous layer (Gated Fusion of T-GSA and GCN). The Key
and Value matrices come from the gloss sequence encoder
actually.

The output of our skeleton sequence decoder is a vector of
floats and we use a linear layer to turn that into the predicted
skeleton sequence Z ∈ RG×T×dmodel . Mean square error loss
MSE(Z, Ỹ) is utilized to fit out model minimizing the error
between predicted Z and the ground truth Ỹ .

D. SIGN MESH REGRESSION
The results of existing SLP approaches are mostly embod-
ied in the form of 2D joint points and lines, which leads
to abstract expression of the human body. Our sign mesh
regression module provides both body mesh parameter map
and hand mesh parameter map, which can jointly describe
the skinned sign language videos based on the skeleton
sequences Z .

For an efficient integration of SMPL [7] and MANO [8]
model, we refer to FrankMocap [21] to assemble body and
hands by a fast Copy-and-Paste. The 2D coordinates in Z are
converted into θ ∈ RG×3, which symbolize 3D rotation of G
body joints in Rodrigues representation. When transferring
the corresponding joint angle parameters from the hands and
body, the wrist joints that connect the two parts need to be
treated independently. The 3D rotation parameters for the
whole joints are denoted as θwhole : {θbody ∪ θwrist ∪ θhand },
where θwhole is respectively composed of body, both wrists
and both hands.

Sign mesh regression can be expressed as a differentiable
mesh functionM andmesh vertex position function T in (11):

M (βfix , θwhole) = W (T (βfix , θ), J (βfix), θwhole, ω)

T (βfix , θwhole) = T + BS (βfix)+ Bp(θwhole) (11)

whereW is a mixed skinning linear function,ω is the blended
weight of each joint. Note that our purpose is to animate
the generated sign language sequences, the sign language
meaning is not related to the change of body shape. Hence
we choose a set of fixed shape parameters βfix , inputting it
into the corresponding joint location function J and mesh
vertex position function T . T is a uniform template, which
represents the whole body mesh at rest. The shape mixing
function BS gets the blended shape of the whole body. Bp is
posture mixing function, which inputs θwhole and outputs the
mesh deformation caused by posture change.

IV. EXPERIMENTS
A. IMPLEMENTATION DETAILS
1) DATASET AND PREPROCESSING
The training dataset of the proposed approach is RWTH-
PHOENIX-Weather-2014T [22], which records the daily
news and weather forecast airings of the German public
tv-station PHOENIX featuring sign language interpretation.
It contains 8257 video samples, and a total of 2887 words
are combined into 5356 continuous sentences related to the
weather forecast. In order to eliminate redundant information
and reduce the amount of calculation, sign language videos
are extract the 2D skeletons by Openpose [23] which con-
tains 8 joints of the upper body and 21 joints of each hand.
By observing imbalance data distribution of the skeleton
sequences, we discard the abnormal joints and process the
missing joints through weighted linear interpolation.

2) EVALUATION METRICS AND BASELINES
We evaluate STGT and benchmark sign language produc-
tion methods through back-translation by continuous sign
language translation (SLT) model [24]. Baselines include
progressive transformer (PT) [1] and skeletal graph self-
attention (Skeletal-GSA) [6]. According to the baselinemeth-
ods, the input of SLT is changed from sign video frames
to skeleton sequences. The score is presented with standard
metrics including BLEU-1/4 and ROUGE. BLEU measures
howmuch the frames in the machine generated sign language
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video appeared in the Ground Truth. ROUGE measures how
much the frames in the Ground Truth appeared in themachine
generated sign language video.

3) EXPERIMENTAL SETTINGS
The proposed model is built by PyTorch deep learning frame-
work, and a NVIDIA geforce RTX 3060 GPU is used for
model training and inference. During the training phase, both
our model and compared methods almost follow the batch
size 32 and Adam [25] as the optimizer. We set the number
of heads for multi-head attention to 8, the spatial-temporal
graph transformer layers to 4, the embedding dimensions
dmodel to 512 and the feed forward dimensions in each layer to
4×dmodel . The cosine decaywith warmup learning rate [26] is
employed in the first 100 steps with the maximum 1e−3 and
the minimum 1e− 4.

B. ABLATION STUDIES
In this section, wewill experimentally analyze STGT in detail
from the following aspects.

TABLE 1. Comparison of precision and edge number in different graph
relationships on RWTH-PHOENIX-Weather-2014T.

1) THE EFFECTIVENESS OF COMBINING CONNECTIVITY AND
MOTION RELATIONSHIP
Wefirst vary the graph embedding of connectivity andmotion
relationship in the skeleton sequence. The results provide a
fair comparison in the decoder configuration of S-GSA and
GCN. Table 1 summarises BLEU-1 and ROUGE scores in
different graph relationships. The basic connectivity relation-
ship of sign language skeletons has 55 edges to represent
bones that link joints, while our method incorporates addi-
tional 18 motion edges on this basis. According to the results,
combining the connectivity and motion relationship will lift
0.83 BLEU score and 0.85 ROUGE score than the single
connectivity relationship. The main reason is that adding
motion relationships can make the model pay attention to the
coordinate changes of joints with sign language actions on
the basis of skeleton structure.

2) THE EFFECTIVENESS OF SPATIAL-TEMPORAL GRAPH
SELF-ATTENTION
To verify the effectiveness of our proposedmodules, we grad-
ually embed S-GSA, T-GSA and both the two modules
(ST-GSA) into the decoder configuration. The results are
listed in Table 2. Note that all spatial graph representations
consider connectivity and motion relationships.
• The effectiveness of S-GSA can be clearly seen in
the cases of Transformer and S-GSA&GCN. When the

TABLE 2. Comparison of precision in different decoder configurations on
RWTH-PHOENIX-Weather-2014T.

decoder uses S-GSA to establish correlations in spatial
dimension and GCN to capture temporal features, the
BLEU-1 and ROUGE scores are improved by 2.10 and
3.15 respectively. It verifies the availability for the spa-
tial graph self-attention on combined joints and bones
information.

• We further validate that the proposed T-GSA is efficient
to capture long-range temporal dependencies for each
joint in temproal dimension. In comparison Transformer
with our T-GSA, the BLEU-1 and ROUGE scores are
slightly improved by 0.67 and 0.38.

• After simultaneously using both our S-GSA and
T-GSA, ST-GSA shows that the BLEU score lifts 2.84
and ROUGE score lifts 3.92, confirming the effec-
tiveness of the spatial-temporal graph self-attention on
skeleton sequences.

3) THE EFFECTIVENESS OF ADDITIONAL GRAPH
CONVOLUTION NETWORK
We further employ GCN and ST-GSA to capture both the
global and local structure of skeleton sequences across
spatial-temporal dimension. The patterns hidden in the graphs
are compatible through gated fusion module. Compared with
ST-GSA and ST-GSA&GCN in Table 2, the combination
lifts 0.92 BLEU score and 0.61 ROUGE score. It proves that
although Transformer has the advantages of global attention,
it is not strong in extracting details and local features.

C. QUANTITATIVE EVALUATION
We compare our STGT with several other state-of-the-art
models, including PT [1] with gaussian noise and skeletal-
GSA(C) [6]. Table 3 summaries results of SLP on dataset
RWTH-PHOENIX-Weather-2014T. Note that the pre-trained
back-translation model in Saunders’ work [1], [6] is not pub-
licly available, we train the back-translation model based on
SLT [24] by ourselves. Although the results presented in their
papers are not comparable to ours, we reproduced their results
as much as possible and made a relatively fair comparison in
the same standard training settings.

To evaluate our method, we first reproduce the results of
PT [1] and skeletal-GSA(C) [6] in Table 3. The decoder of PT
is in classic Transformer structure. Although both our STGT
and skeletal-GSA combine the spatial-temporal graph topol-
ogy into self-attention, the performance results show that it is
effective to use spatial graph self attention and temporal graph
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TABLE 3. Comparison of the performance with state-of-the-art models on RWTH-PHOENIX-Weather-2014T. The results of PT [1] and Skeletal-GSA(C) [6]
are reproduced with gaussian noise and translated by our back-translation model in a fair comparison.

FIGURE 3. Qualitative results on DEV SET of RWTH-PHOENIX-Weather 2014 T dataset. The top row is the input glosses. The second row is the
produced frames by PT [1]. The third row is the produced frames by Sleketal-GSA [6]. The fourth row is our method in STGT(C&M) configuration,
we also render the generated skeleton sequence into skinned animation in the fifth row. The last row is the ground truth.

self attention on the skeleton sequence of different dimen-
sions in turn. Our STGT(C) improves 1.08 BLEU-1 score,
0.99 ROUGE score than Sleketal-GSA(C) on TEST SET,
and their graph representation only contains connectivity
relationships. After combining connectivity and motion rela-
tionships in the skeleton graph, our STGT(C&M) achieves
the best performance. Finally, compared with PT on TEST
SET, the STGT(C&M) improves 3.86 BLEU score and
4.06 ROUGE score. Compared with Sleketal-GSA(C), the
STGT(C&M) improves 1.58 BLEU score and 1.36 ROUGE
score.

D. QUALITATIVE EVALUATION
In order to show the performance of STGT(C&M), we com-
pare the generated skeleton sequences by different mod-
els both on DEV SET and TEST SET separately. To pre-
vent errors caused by different proportions of human bones,
we suggest normalization and alignment among skeletons
from different signers. Due to the skeleton information being
redundant, we refer to Saunders’ [1] extraction method for
RWTH-PHOENIX-Weather-2014T dataset. Each sign lan-
guage video is processed into the corresponding skeleton
sequence of 50 joints.
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FIGURE 4. Qualitative results on TEST SET of RWTH-PHOENIX-Weather 2014 T dataset. The top row is the input glosses. The second row is the
produced frames by PT [1]. The third row is the produced frames by Sleketal-GSA [6]. The fourth row is our method in STGT(C&M) configuration,
we also render the generated skeleton sequence into skinned animation in the fifth row. The last row is the ground truth.

Fig. 3 and Fig. 4 are the visualization results on DEV SET
and TEST SET respectively. From left to right, we sample
every 10 frames of the predicted sequences for a fair compar-
ison, where each column represents the frame generated by
different models at a certain time. In comparison, the results
in STGT(C&M) present more stable and accurate skeleton
sequences. We also present more realistic and expressive
skinned animations by the sign mesh regression module.

V. CONCLUSION
In this work, we propose a novel SLP method named
STGT(C&M), which aims at producing realistic skinned
sign language videos in the spatial-temporal dimensions.
This is the first skinned-based SLP method which translates
sign glosses into skinned animations. The spatial-temporal
graph self-attention utilizes graph topology to capture the
intra-frame and inter-frame correlations respectively, mean-
while, graph convolution is used to strengthen the short-term
features of skeletal structure. Another significant finding is
that motion relationships are important features and for the
first time we use them to induct bias in the self-attention
layer. The extensive experiments demonstrate the efficiency
and effectiveness of STGT, which achieve the superior per-
formance on the RWTH-PHOENIX-Weather-2014T dataset.

In the future, we plan to conduct multimodal learning com-
posed of sign poses, lip moving and head expressions in an
efficient way.
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