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ABSTRACT The uncertainties arising from the imperfection of the shared understanding during
human-robot collaboration (HRC) are critical challenges in the development of real-world robots, which
has attracted attention in various fields, especially in the manufacturing sector. Many research efforts have
explored several key components and elements of HRC to reduce uncertainties. However, these efforts are
mostly isolated from each other, and few attempts have beenmade to develop generic frameworks to combine
them for better HRC frameworks. This article contributes to this issue by reviewing the components of HRC
research and developing a generic framework of purposeful communication to solve HRC uncertainties
holistically. The aspects of HRC components that can affect the shared understanding of humans and
robots include the type of collaborative task, communication modalities, and decision-making of robots.
After examining these aspects, we repositioned the central problem to the cause of these uncertainties and
proposed a new categorization of the available HRC scenarios considering communication channels, because
communication strategies should be the main focus for reducing these uncertainties. This categorization
will help to design better HRC frameworks that will lead to improving shared understanding and task
performance, reducing uncertainties, and establishing trust, transparency, and safety. This article proposes a
comprehensive literature review and a new categorization of the currently used communication approaches
by analyzing forty-nine selected articles from a wide range of articles in various databases.

INDEX TERMS Human–robot collaboration, communication, safety, robot learning, robot decision-making,
manufacturing.

I. INTRODUCTION
Human-in-the-loop (HITL) systems are hybridization strate-
gies that anticipate, evolvewith, andmaintain a current under-
standing of the elements with which they interact, be they
human, mechanical, environmental, or otherwise [1]. One
of the possible scenarios for HITL systems is human-robot
collaboration (HRC), which could be applied to various
sectors such as healthcare, education, and manufacturing.
In the manufacturing sector, with advances in collaborative
robotics, humans are now working side-by-side with robotic
peers, each offering complementary skills to the productivity
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of manufacturing. The benefits of this approach are well
recognized and include flexibility, since non-experts quickly
train collaborative robots, and efficiency, as humans can work
directly with the robot rather than through a series of fixtures,
cages, and conveyance mechanisms [2]. Although manufac-
turing productivity is improved by these updated practices,
collaborative robots are based on human interaction and need
to be more intelligent. The collaborative robot does not have
all the capabilities required to perform many tasks indepen-
dently, so a human collaborator is needed in the process.

In HITL systems with a focus on human-robot collabo-
ration (HRC), the goal of research is to equip robots with
intelligent human capabilities; however, robot automation to
emulate human intelligence and flexibility is one of the most
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difficult unsolved robotics problems [3]. Therefore, consider-
ing the difficulty of emulating human intelligence in robots,
providing flexibility and efficiency in HRC requires careful
implementation of the physical embodiment of sensory and
motor capabilities in robots, safety concepts, communica-
tion, collaborative task, and robot decision-making. In other
words, to guarantee flexibility, intelligence, and efficiency
in HRC, it is necessary to design appropriate HRC frame-
works by adding modern and intelligent components to the
framework and reducing the uncertainties in each of these
components, so humans and robots could collaborate effi-
ciently; as a result, physiological safety and well-being of the
human user will be developed [4], [5].

This article reviewed forty-nine selected articles from a
wide range of articles in various databases to identify themost
important components and proposed a new categorization for
HRC frameworks, whichwill lead to better design approaches
in HRC. Consequently, our study revealed three key critical
components: 1) type of collaborative task; 2) Communica-
tion modality and approach; and 3) robot decision-making.
Each of these components requires some basic considerations
in their implementation; however, developing and matur-
ing more advanced technologies for each of the compo-
nents/factors will result in the reduction of uncertainties and
cultivating human users’ safety, physically and physiologi-
cally. Furthermore, based on our analysis, we concluded that
communication strategies should mature and be the main
focus to reduce these uncertainties. In other words, this study
has highlighted the importance of human-robot communi-
cation in building a trustworthy relationship in automated
processes. As a result, a new categorization of the avail-
able HRC scenarios was proposed considering communica-
tion channels. The results of this study will have serious
implications for future researchers who are seeking to
develop human-robot prototypes in the new era of advanced
manufacturing.

The remainder of the paper is structured as follows:
research questions are provided in Section II; materials and
methods used to perform database research are described
in Section III; types of collaborative tasks are described in
Section IV; Section V discusses the communication modali-
ties exploited in selected articles; Section VI provides infor-
mation on the decision-making algorithms used for a robot
in HRC; a new categorization of articles is provided in
section VII; sections VIII and IX are the discussion and
conclusion sections, respectively.

II. RESEARCH QUESTIONS
This paper aims to recognize critical components in building
an effective HRC framework in terms of physiological safety
of human users in the manufacturing sector by reviewing
the available frameworks of HITL systems in the mentioned
sector, proposing a new categorization of the available frame-
works, and presenting an appropriate framework of HITL
systems in the context of HRC considering communica-
tion as the main factor. Therefore, the following research

questions were selected to motivate this article and address
these goals.

1) What are the available frameworks for HITL systems
in the context of HRC in manufacturing scenarios?

2) What are the key components in building efficient HRC
frameworks?

3) What is the most critical component of uncertainty
resources inHRC to convey the feeling of physiological
safety to human users?

To answer these research questions, we conducted a sys-
tematic review focusing on HITL systems in manufacturing
scenarios, particularly with the goal of identifying sources
of uncertainties during HRC. For Question 2, the knowl-
edge resulting from our systematic review revealed three
critical components to build an efficient HRC framework:
type of collaborative task, communication modalities, and
robot learning algorithms. The type of collaborative task will
help the HRC designer determine the scope of parameter
spaces and the limits of the exploration of uncertainties.
Communicationmodalities will not only resolve the represen-
tations of information exchange, but will also introduce con-
straints and tension to the communication channels. Finally,
to answer Question 3, we also reviewed existing research
efforts on robot learning that aim to reduce the uncertainties
mentioned above to facilitate safe and trustworthy HRC.
These algorithms significantly expand the robots’ ability
to estimate human-related uncertainties, such as changes
in intentions, preferences, and goals, to ensure both par-
ties share the same mental model during the collaboration
processes. Ultimately, we summarized these critical com-
ponents and the knowledge resulting from our review and
developed a novel categorization of HITL systems to answer
Question 1.

III. MATERIALS AND METHOD
This section describes the selection criteria for the article and
the search strategy.

A. ARTICLE SELECTION CRITERIA
The particular focus of this systematic review was to find
articles whose main contribution lies in the development
of HRC frameworks that could be used in manufacturing
scenarios. Frameworks that focus on improving HRC effi-
ciency by optimizing different components, such as robot
embodiment, physical safety, physiological safety, implicit
communication, explicit communication, and robot decision
making, to name but a few. Therefore, to revisit some of these
aspects and propose a new categorization of the available
framework, some criteria for the selection of articles were
defined. The selected articles should focus on the following.

• Human-robot collaboration or human-robot cooperation
• Experimental or simulated setups in industrial settings
• Direct collaboration between human and robot
• Model and knowledge-based robot-learning techniques
• Online decision-making for the robot (in-the-loop
decision-making)
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FIGURE 1. Process of paper selection performed in this review paper
(PRISMA).

Based on the criteria for selecting the articles, the human
and robot should be involved in a scenario to collabora-
tively or cooperatively complete a task. Both experimental
and simulated research works could be included in the final
list of selected articles. The collaborative task should be an
example of a task that could be implemented in a manufac-
turing environment or a task that could be generalized to a
manufacturing workspace. HRC frameworks that have a task
allocator for both humans and robots (i.e., indirect collabora-
tion) were not our focus, so articles that study direct collab-
oration between humans and robots (i.e., robot and human
make their own decisions) were selected to be analyzed.
In addition, collaborative robots could be controlled through
different methods, including the implementation of classic
control algorithms or the integration of physiological signals
such as electroencephalogram (EEG) and electromyography
(EMG) with robot control. However, the focus of this article
was on reviewing articles with model- and knowledge-based
robot learning techniques. Also, robot decision-making
should be done in the loop (i.e., pre-programmed robots
with no in-loop decision-making did not fit the defined
criteria).

B. SEARCH STRATEGY
The preferred reporting items for the systematic review and
meta-analysis framework (PRISMA) were followed to per-
form the literature review [6]. The literature review was
performed by searching databases, including IEEE Xplore,
ISI Web of Knowledge, Scopus, and the journal of commu-
nication studies. Keywords used were the combination of:
’human-robot collaboration,’ OR ’robot task planning,’ OR
’decision making in human-robot collaboration,’ OR ’robot
learning in collaborative tasks,’ AND ’communication.’ The
title, abstract, and keywords of the journal articles and confer-
ence proceedings were searched. The ones written in English
from 2010 to 2021 were selected according to the paper selec-
tion criteria mentioned above. The paper selection process in
this systematic review is shown in Figure 1. According to

Figure 1, a total number of 176 articles from ISI Web
of Knowledge, 382 from IEEE Xplore, 289 from Scopus,
and 13 articles from the journal of communication stud-
ies were identified. The elimination of duplicates was the
next step in the identification phase (53 articles); then the
title and abstract of the remaining articles were screened to
remove unrelated ones (screening). The remaining articles
were evaluated for eligibility according to the eligibility cri-
teria defined in the next phase. One hundred articles were
thoroughly reviewed and, in the end, forty-nine articles were
included in the quantitative analysis.

IV. COLLABORATIVE TASKS
The level of human-robot interaction (HRI) has been
categorized as fully programmed, co-existence, assistance,
cooperation, collaboration, and fully autonomous. The fully
programmed level refers to traditional work cells where
robots are located inside cages; there are no shared tasks
and shared workspace defined, and physical contact is not
allowed. At the co-existence level, still shared tasks and work
spaces are not defined, and physical contact is not allowed.
However, compared to the fully programmed level, robots
are not fenced and some technologies, such as laser scans,
are used to separate the robot workspace from the human
workspace. For the level of HRI assistance, there is no shared
task between the human and the robot, as the robot does not
have any independent task to perform, while the workspace is
shared and physical contact is allowed based on the nature of
the assisting task. Both the cooperation and the collaboration
levels have shared tasks and shared workspaces. However,
physical contact is not allowed at the cooperation level,
since humans and robots have the decoupled task (sequen-
tial); however, at the collaboration level, physical contact
is allowed since the task is supposed to be accomplished
simultaneously by the human and the robot. Finally, the
fully autonomous level is operator-independent and there is
a shared workspace for the human and the robot [7]. For the
sake of this article, among the aforementioned levels of HRI,
articles with a focus on collaboration, cooperation, and assis-
tance levels depending on the nature of the task have been
reviewed.

The type of collaborative task is a determinant factor in
designing the HRC framework, and depending on the type
of task, the robot and the human need to have access to
different kinds of information related to the workspace. As a
result, the lack of any appropriate technique for the defined
task and workspace will cause uncertainty in the framework.
Therefore, the selected articles were reviewed considering the
type of collaborative task performed on them [8]. According
to the selected articles, collaborative tasks between humans
and robots could be classified as a shared workspace, shared
manipulation, handover task, sequential task (e.g., assem-
bly and the objective of the task are known), or leader-
assistant, which will be discussed in this section (as shown
in Tables 1 and 2).
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A. SEQUENTIAL COLLABORATIVE TASK/ASSEMBLY TASK
Sequential collaborative tasks/ assembly tasks were the focus
of most of the selected articles since these types of task
have applications in many other fields such as healthcare and
education, in addition to manufacturing. Normally, sequen-
tial collaborative tasks get completed by completing various
sub-tasks in that either a human user or robot takes a role
depending on the task design. The completion of sequential
tasks is guaranteed through the design of appropriate frame-
works where the robot could communicate with human users
and anticipate their behavior/latent states [8]; the robot could
have access to the observable status of both the human user
and the environment to leverage them for decision-making;
robot’s status could be visualized for the human user using
different methods such as an interactive GUI in that the
human user could select a suitable action for the next step
according to the set of possible next steps that are proactively
proposed in the system [9]. Furthermore, it should be noted
that, depending on the nature of sequential/assembly tasks,
human users may have different preferences in the assembly
process, so the HRC framework should equip the robot with
the ability to predict the preferences of human users to assist
in assembly tasks accordingly [10], [11]. Assembly tasks
are collaborative tasks; however, other types of collaborative
tasks could be used in manufacturing settings, such as a maze
game, which is a collaborative motor task in that humans
and robots collaboratively navigate a ball to a goal [12].
In addition, joint construction could be considered as another
example of assembly tasks [13], [14].

B. JOINT REACHING TASK
In Joint reaching collaborative tasks, human users and robots
are jointly supposed to perform the task [15]. For example,
table clearing is a joint-reaching task that could be done by
a robot and a human to clear a table from objects. It would
be possible to define a supervisory role for a human user in
this type of task and involve human intentions such as trust
in the process; If the human trusts the robot, it will let the
robot do its task; otherwise, the human will do the task jointly
with the robot [16], [17]. Joint reaching tasks could also be
implemented in inventory scenarios [18].

C. OBJECT HANDING TASK
Object handling is another form of the human-robot collab-
orative task in that the human and the robot move a jointly
grabbed object from one location to a different location.
In this type of task, it would be important for the robot to be
able to predict the intention of the human user or inform the
human about its intention through different communication
modalities (e.g., implicit or explicit communication) depend-
ing on the design of the HRC framework [19], [20].

D. OBJECT HAND-OVER TASK
Finally, object hand-over is the last category in which a
robot and a human exchange an item in the collaborative

framework [21]. Object hand-over is considered a simple
task in HRC but requires some cognitive abilities in a robot,
since it needs to predict the intention of the human user
while performing the task. Human intent could change dur-
ing the task and the robot must adjust its behavior based
on [22]. Object handover tasks could also be part of an
assembly task that is required to be completed in several steps
(e.g., it includes several object handover steps). In this type
of scenario, the robot may need to select the correct object at
each step to hand over according to the human user’s desire,
so the capability of human intent estimation should be added
to the framework [23].

V. COMMUNICATION MODALITIES
The robot’s ability to build and maintain mental models of
other team members (human and robot) facilitates collabo-
rative manufacturing processes. In HRC, human and robot
must establish a shared mental model (SMM) to improve
positive outcomes, such as team performance and safety in
manufacturing processes [24]. Therefore, to build an effective
human-robot teaming, just like human-human teaming and
establish an SMM, communication is one of the essential
steps that should occur between the human and the robot
along with coordination and collaboration. Communication
is essential in HRC, since purposeful communication helps
build a shared mental model, transparency, and trust in a
collaborative workspace [25].

In general, explicit and implicit communications are the
two common approaches used in HRC. In explicit communi-
cation, which is obtained through verbal communication or
gesture, the intent is obtained directly via communication.
However, the intent is estimated through observed and pre-
dicted human behavior in implicit communication, a non-
verbal communication method. In addition, a combination of
explicit and implicit communication modalities (multi-modal
communication) is used in the HRC field. The communica-
tion modality or modalities for human-to-robot (HTR) and
robot-to-human (RTH) communication are usually chosen
based on their reliability, robustness, cognitive load, and
delay. Furthermore, some task-related factors, such as the
type of task; extent of use, flexibility, duration, and additional
classification, are other critical factors in the choice of com-
munication technology in HRC [26].

Our analyzes revealed that communication, both HTR and
RTH communication, in HRC frameworks is another key
component of HRC, and advancements in communication
modalities and techniques could lead to efficient collabora-
tion with a greater sense of safety for the human user. How-
ever, once the necessity of having communication channels
is approved, three important questions must be addressed to
promote the HRC framework [27]:

1) How to communicate (communication modality)?
2) If communication is needed, when should we commu-

nicate (communication time)?
3) If communication is needed, what should we commu-

nicate (communication type)?

VOLUME 10, 2022 129347



R. Salehzadeh et al.: Purposeful Communication in HRC: A Review of Modern Approaches in Manufacturing

In this section, the communication modalities used in the
selected articles will be examined and described in two cate-
gories of human-to-robot (HTR) and robot-to-human (RTH)
communication. The methods used to address the problem
of communication time and communication type will be
addressed in Section VII.

A. HUMAN-TO-ROBOT COMMUNICATION
Communication between humans and robots (HTR) is an
important factor in making HRI possible. The artificial agent,
the robot, must access the information required to complete
tasks in collaborative spaces that could be provided by the
human user. Therefore, various techniques are used to estab-
lish communication channels between humans and robots,
which will be discussed in the next subsection.

1) VERBAL COMMUNICATION
Verbal communication is the most straightforward method
of explicit communication in HRC. Human and robot could
communicate through speech/verbal commands, so that
humans give commands to the robot, or the robot replies back
to the human user. It is also possible to have bidirectional or
two-way communication through speech in HRC; however,
there are some challenges in using verbal communication in
HRC. For example, it is difficult to establish a foundation
only through verbal communication [19]; foundation refers
to the fact that speakers understand the messages of others as
intended [28]. Moreover, when it comes to time and cogni-
tive resources, verbal communication is considered a costly
approach [29].

Verbal communication could be used for HTR communica-
tion to establish bidirectional communication so that human
users could also ask robots to act at any time [18].

2) NON-VERBAL COMMUNICATION
The vision system is the commonly used non-verbal com-
munication channel through which humans and robots could
have both explicit (e.g., gesture, text) and implicit communi-
cation (e.g., gaze). In the final list of articles, most research
studies have chosen vision as a channel of communication
and information exchange [30]. The vision system is used
primarily for object detection, human body tracking, or infor-
mation display. A vision system could be a set of RGBD
sensors and an interactive GUI used to perform an assembly
task. 3D RGB sensors are used for action recognition and
help the robot understand the status of the environment, while
the interactive GUI is used to interact with the user [9].
The vision system could monitor the workspace and rec-
ognize objects to reach them and move them to a different
location [16], [17]. Furthermore, different types of infor-
mation related to the environment and workspace could be
obtained using the vision system, including the position of
the assembly part, the position of the user in the environment,
the physical characteristics of the environment, and the posi-
tion and orientation of the robot end effector [11]. Human
user behavior could also be sensed through a vision system

(e.g., webcam and Kinect RGB-D sensor) in addition
to tracking the positions / orientations of the various
objects [31].

Although direct communication (for example, speech or
gestures) provides reliable methods to establish a joint inten-
tion [23], it can require a human to stop performing another
task to communicate with the robot, reducing the efficiency
of the team. On the other hand, the estimation of intent
allows the human to focus on task completion, resulting in
a more intuitive and efficient relationship. Still, it requires
the robot to interpret intent from information obtained via
measurements (e.g., physiological states). This interpreted
information can be used to answer binary yes/no questions
about human intent, select between discrete modes of intent,
or establish intent along with a set of continuous variables
such as future limb trajectories and an approximate level of
intent (e.g., based on speed or physical force exertion).

Additional research on task environments and interac-
tions has shown that intent estimation may be improved by
leveraging the context of spoken commands or interpret-
ing human/object interactions based on object affordances.
Although video-based sensing is often sufficient to recognize
the gestures, objects, and approximate motions required to
estimate intent, shared control over objects in HRC typically
requires more accurate coordination than video processing
permits. To this end, HRC systems often estimate intent
using inertial measurement units (IMUs), force sensors, and
physiological monitoring equipment such as EEG andmuscle
activation measurement devices (i.e., myography). Physio-
logical signals, such as EMG signals that have information
on body movements and record muscle activities, or EEG
signals that record brain activities, have recently been used
to give a command to a robot, control robot actions and
movements, and create a shared control architecture in the
context of HRC [32], [33]. However, such measurements can
be invasive or uncomfortable and often provide noisy signals
that may require significant processing and machine learning
(ML) efforts to extract useful information. On the contrary,
force sensors and IMUs provide more reliable but less instan-
taneous information (compared to neurological signals) [34].
In addition, haptic communication is another commonly used
approach to accomplish an HRC task.

3) MULTI-MODAL COMMUNICATION
Using multiple communication modalities (that is, explicit
and implicit) is another communicative approach in HRC that
improves HRC flexibility and robustness, quality of com-
munication, task performance, human safety, and production
efficiency [35], [36]. Furthermore, it has been shown that the
grounding issue related to the use of only verbal communi-
cation can be improved when verbal communication is used
with other types of communication modalities, such as haptic
communication [19].

Multi-modal HTR communication could be a combina-
tion of various communication channels such as speech-to-
text (STT), feedback channel, and error channel to create
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a collaborative environment and complete joint tasks [37].
Furthermore, the integration of force sensors with other
communication modalities, such as web interfaces, feedback
channels, STT systems, and emergency channels, could be
another representative of multi-modal communication [14].
In addition, image-based (e.g. depth cameras, RGB cameras,
body tracking cameras) and non-image-based (e.g., inertial
measurement units force sensors) modalities have been used
to provide smooth and efficient information sharing in HRC
frameworks [38].

The combination of vision and speech is another way
of information sharing in a multi-modal fashion in HRC.
In these types of setup, the robot camera could provide
information regarding objects in the environment to initiate
activity and appropriate action selection in the workspace.
The verbal commands are then used to transfer additional
information, such as the result of the selection of actions by
a robot or a human; if the selection of actions is correct in a
way that follows the task procedure [15], [21].

Another way to establish multi-modal communication in
HRC frameworks is by combining the human gaze, the human
hand / body gesture, and the vision system [39]. Hand ges-
tures (hand gestures can be divided into manipulative and
communicative gestures and instruct robots) are an effec-
tive way of communication, as there is a close relationship
between hand gestures and the semantic content of the verbal
language, as well as because they provide spatial information
of the user’s hand [23]. Furthermore, human physiological
signals, such as muscle activity obtained from force sen-
sors, could be used with other sensing and communication
modalities, such as speech and vision systems, to complete a
collaborative task [40].

B. ROBOT-TO-HUMAN COMMUNICATION
In HRI, the human user’s understanding of the robot’s inten-
tions is important because it can improve trust in the robot.
However, compared to HTR communicationmodalities, RTH
communication methods are not widely studied, and recent
research efforts have been made to add new communication
technologies, such as extended reality (XR), to the HRC
context to fill the gap [26].

1) VERBAL COMMUNICATION
In some of the selected articles, verbal commands were used
to establish RTH communication and provide different types
of information for the human user, such as how the human
needs to do a task or why the human user should follow a
specific method to do a task to allow human decision-making
based on the information provided [19]. Additionally, RTH
verbal communication could be a method to inform the
human user about the state of the environment, the goal, the
plan or action, and asking the human partner to act [18], [41].
Furthermore, the use of verbal commands for HTR and RTH
communication could facilitate the creation of bidirectional
and two-way communication channels in HRC [8].

2) NON-VERBAL COMMUNICATION
A display installed on the robot, an interactive GUI, robot
gaze, robot hand gesture, and robot body gesture are other
ways of building RTH communication [9], [23]. The hand
gesture is not limited to being used by the human user; robots
could use this approach as a way of communication alongside
other techniques such as gaze. The gaze of the robot could be
an indicator of its readiness to execute a task [42] or to signal
planned actions followed by an action [43]. The robot’s gaze
could help to accomplish two primary purposes, establishing
mutual belief (that is, the user is indicated about the action
to be taken) and indicating readiness for the next instruction.
In this specific case, whenever a robot decides to close or
open its hand or reach out to an object, it could look at its
hand or look at the object in the task [23]. Robot gestures
are an appropriate and informative communication medium
in HRC, so more innovative methods, such as zoomorphic
gestures, are introduced in the field [44].

3) MULTI-MODAL COMMUNICATION
RTH communication through multiple communication
modalities could also bring more robustness and clarity to the
HRC context. The text-to-speech (TTS) channel combined
with a web interface [14] or TTS combined with a vision sys-
tem to display information to human users [37], [45], [46] is
used in the execution of collaborative tasks. Communication
modalities such as speech, gaze, and gesture are also used to
establish a common understanding of the environment for the
human user and robot [39]. Robots could be equipped with
human-like features to represent different emotions (such as
animated eyes) and express more natural and user-friendly
interactions. [46].

4) COMMUNICATION VIA EXTENDED REALITY TECHNIQUES
Extended reality (XR) techniques (i.e. virtual reality (VR),
augmented reality (AR), and mixed reality (MR)) bridge the
virtual environment to the physical and real environment,
and there are many attempts to integrate these techniques
with HRC. XR techniques provide four types of solutions for
HRC: 1) operator support, 2) simulation, 3) instruction, and
4) manipulation [47]. In this categorization, operator support
is provided by enabling communication between the human
and the robot through XR techniques. Simulation solutions
give users the opportunity to understand the collaborative task
and environment. Virtual instructions could provide a chance
for the exploitation of virtual and augmented environments,
which help the human user follow the hierarchy of tasks.
Finally, the manipulation solution examines existing solu-
tions on how these techniques enable the operator to operate
and manipulate the robot remotely.

According to these solutions provided by XR techniques,
communication between the robot and the human could be
established using the XR technique to provide support to the
human users. It has been argued that these technologies solve
some communication problems, including poor information
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exchange and difficulty understanding intent [48]. XR tech-
nologies provide alternative communication paradigms and
could be used to project dynamic visual cues into the environ-
ment [49] and display task information in the workspace [50].
In addition to using XR technologies as a communication
method, they are used as a platform to compare and evaluate
other communication methods [51], improve communication
in HRC [52], improve trust [53], evaluate the robot decision-
making algorithm, or even assess whether a robot equipped
with a communication panel could be a good partner for
humans [54].

MR has been introduced as a new communication
paradigm that could be combined with a vision-based object
tracking algorithm (OT) with a context-sensitive projection
mapping technique (PM), throughwhich robots communicate
with humans and instruct them in collaborative tasks [55].
Additionally, AR visualizations through HoloLens are used
to perform collaborative tasks. The human partner receives
information about robot states and plans related to human
safety and trust, such as the intended movement of the robotic
arm or the mobile platform navigation plan. AR visualiza-
tions are used to plan the navigation path of the robot as
a sequence of green 3D spheres; plan manipulation move-
ment for grasping as a sequence of 3D spheres and robot
workspace as a semi-transparent red sphere; display warning
message to the user in case of detected potential collision
with the robot workspace and view of detected potential
collision [56].

VI. ROBOT DECISION-MAKING
HRC frameworks are becoming more intelligent with the
introduction of intelligent robots that could make decisions
on their own and adapt to the environment that facilitates
the human-robot partnership and promote human safety.
However, the choice of decision-making algorithm added
to the HRC framework depends on multiple factors, such
as collaborative task and available communication channel,
which all affect the robot learning algorithm, the decision-
making model, and interaction planning [57], [58]. It is
necessary to know the characteristics of the task because
it would determine the defined or undefined parameters
in the environment. For example, in assembly tasks, toler-
ance or completion time may be well defined, while other
details, such as the preferences of the individuals, may
change in different individuals. However, the robot must
learn the preferences of each operator and adapt to the
situation.

This section will describe the different robot decision-
making algorithms used in the selected articles as one of the
key components of HRC frameworks.

A. MACHINE LEARNING
Conventional machine learning (ML) techniques are mostly
used to create mapping functions to link human physical
capacities with HRC design, such as mapping human actions
as robot input using support vector machines (SCM) [59].

In order to build the connections between humans and robots,
existing HRC research has proposed many ideas that link
human physical capabilities (e.g., vision, voice, motion, and
haptic) to the computational paradigm of robot design. Most
of these links are represented by machine learning algo-
rithms, which take human physical behavior data as input and
robot computational commands as output. In addition, these
algorithms explore the potential to mimic human cognitive
advances, such as human brain architecture, as the most
recent variants of these techniques, dynamic neural systems
(DNS). DNS is a time-variant system that tries to mimic
the firing dynamics of actual neurons [60]. The cognitive
functionalities of robots could be provided through the imple-
mentation of a DNS that applies brain-like computations to
learn the sequential order of object transfer to complete a
collaborative task. A neuro-inspired model based on DNS -
for action selection in a human-robot join action scenario
could be implemented where several DNS layers consisting
of different pools of neurons are used to obtain information
in the form of self-sustained activation patterns regarding the
object location, action goals, and context. Connected popu-
lations provide input to trigger these patterns, which evolve
continuously over time under the influence of recurrent
interactions [46].

B. DEEP LEARNING
Besides creating mapping functions between human physical
capacities and robot computation, another challenge in HRC
design is the computational representation of human-related
factors that are embedded inmulti-modal andmulti-scale sen-
sor data. Therefore, there have been attempts to develop new
ML methods that could act as a feature extractor that ‘‘trans-
form the raw data of human capacities into a suitable internal
representation or a feature vector from which the learning
subsystem can be derived’’ [61]. As a result, deep learn-
ing (DL) algorithms were developed, which are: representa-
tion learning methods with multiple levels of representation,
obtained by composing simple but nonlinear modules that
each transform the representation at one level (starting with
the raw input) into a representation at a higher, slightly more
abstract level [61]. Convolutional neural networks (CNN)
and recurrent neural networks (RNNs) are commonly used
DL methods. CNN is designed to process data that come in
multiple arrays, such as a color image composed of three 2D
arrays containing pixel intensities in the three color channels,
and has application in image processing. Numerous research
studies have shown that CNN is a promising method for
learning representation from human visual perception in the
HRC context [62]. On the other hand, RNNs are trained using
the backpropagation technique and are suitable for tasks with
sequential input, such as speech and language. DL methods
are also combined with other neural networks [61] or rein-
forcement learning (RL)methods to create DRL architectures
in real-world HITL settings to study collaborative learning
between humans and robots [12].
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C. PROBABILISTIC GRAPHICAL MODELS
Another challenge of representation learning in HRC is
the mental models that are supposed to be shared between
humans and robots. In particular, the states and actions of
both parties should be learned and represented as a theoretical
uniform to achieve shared mental models. Furthermore, the
representation of these mental models should be capable of
integrating uncertainties to show robustness and tolerance
to environmental changes, such as human preferences or
task changes. Probabilistic graphical models (PGMs) are
currently considered one of the promising methods to solve
this problem. PGMs are defined as: ‘‘Probabilistic graphical
models (PGM) comprise any model that uses the language
of graphs to facilitate the representation and resolution of
complex problems that use probability as a representation
of uncertainty [63].’’ A graph structure consists of sev-
eral nodes, and the edges represent the probabilistic rela-
tionships or conditional dependency/independence among
a set of variables in a system. The nodes represent vari-
ables, and an edge between two nodes indicates a condi-
tional dependency between the two variables (the absence of
edges means conditional independence). PGMs are used for
different purposes in HRC, including supervised classifica-
tion, clustering, abductive reasoning, decision-making, and
optimization [63].

Bayesian network models (BNM) are the crucial case of
graphical models in that the joint probability distribution of
variables is represented through a directed acyclic graph.
Future states and robot actions are predicted using a multi-
time-slice dynamic Bayesian network (DBN) [21]. ‘‘DBNs
are multi-time-slice Bayesian networks where variables are
connected over adjacent time steps as well as within the
same time step. They are a computationally efficient gen-
eralization of hidden Markov models and have been used
to model multi-modal robot behavior in uncertain’’ [21].
Bayesian sequential optimal decision-making models were
used to allocate autonomy between humans and robots
while performing a collaborative assembly task and inte-
grating unobservant human states, such as human regret
in decision-making into Bayesian strategy [64]. In addi-
tion, the hidden Markov model (HMM) is another recur-
rent type of graphical model in which the nodes represent
timestamps of a sequence of the same variable. The pri-
mary assumption is a dependence on timestamps from the
previous one only. Furthermore, these variables could only
be observed through indirect observations that correspond
to a node connected only to the time stamp being con-
sidered. Variations of the Baum-Welch algorithm are also
applied to an HMM, and patterns of human actions could
be recognized by an HMM in two steps. First, a training
set consisting of observed human workers performing the
task considered in the simulation was used to complete the
model learning step. Then, this model was used to predict
the type of supportive behavior that a robot should choose
while working with a human partner [65]. Both DBNs and
HMMs are among the popular computational methods in

HRC scenarios to represent mental models of humans and
robots.

Another category of PGMs is timed Petri nets (TPNs),
an extension of Petri nets with additional modeling of tim-
ing. ‘‘A basic Petri net, or place/transition net, is a bipartite
multi-graph comprising two finite disjoint sets of nodes,
places, and transitions. A multi-set of directed arcs connects
the node types in an alternating fashion. The places contain a
natural number of tokens; control is transferred through token
movement throughout the graph ‘‘ [39]. TPNs are not widely
used in the field of robotics, but some researchers believe that
a natural representation for multi-modal interactions could
be obtained using TPNs in HRC [39]. For example, in [39],
the real-time turn-taking TPN framework was selected as
a computational representation that monitors resources and
generates multi-modal reciprocal behavior for a robot to
engage in cooperative activity with a human.

D. LEARNING FROM DEMONSTRATION
Learning from demonstration (LFD) that could be imple-
mented through kinesthetic teaching, teleoperation, and pas-
sive observation is a robot learning method in that the robot
learns to do a task by imitating a demonstrator. This method
could be considered a supervised learning method, since an
expert and a robot provide the information that the tries
to follow. In this robot-learning method, even non-experts
could interact with the robot, learning could be done using a
small number of demonstrations (i.e., data efficiency), robot
learning is done in a safe condition, it is a reliable method,
and the learned task could be implemented in a different
platform (i.e., platform independence). However, there are
some limitations, including that it is difficult to demonstrate
complex behaviors, labeled data are needed, and learning
from sub-optimal and inappropriate demonstrators would not
be accurate [66], [67].

In HRC frameworks, LFD is used to learn and infer
the preferences of human users based on the sequence of
sub-tasks and actions in collaborative tasks. Learning and
inferring could be done through a two-stage approach: for
the training phase, a set of user demonstrations of the entire
task is obtained as input, and the human user’s preference
is learned and gets clustered based on the demonstrations.
The execution phase is implemented online, where the prob-
ability of a new user’s preference is classified as one of
the pre-learned clusters based on the observed actions, and
the robot’s following action gets predicted [10]. LFD is a
data-driven learning system in that robot behavior and inter-
action model are learned during training from the demonstra-
tions of the various sub-tasks. The motion of the robot (both
spatially and temporally) continuously could be coordinated
with the human partner at run-time [68]. LFD is also used
as direct policy learning (LFD) in combination with other
formulations, such as the formulation of relational activity
processes (RAP), which is a semi-Markov decision process
(semi-MDP) to formalize relational concurrent activity pro-
cesses in relational cooperation scenarios [69].
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E. REINFORCEMENT LEARNING
Reinforcement learning (RL) is one of the commonly used
learning methods in HRC, in that the robot is considered
an agent that has some observations from the environment.
These observations are used to infer the current state of the
environment. The relationship between states and observa-
tion could be modeled through the Markov decision process
(MDP). There are three alternatives to this modeling algo-
rithm: Markov decision process (MDP), in which all states
are observable for the agent; partially observable Markov
decision process (POMDP), in which the states of the system
are not observable for the agent and it has to maintain a
belief over states; and mixed observability Markov decision
process (MOMDP) in which some components of the state
may be observable, even the state itself is not fully observ-
able [70], [71]. RL algorithms are divided into two categories
of model-based RL and model-free RL, since obtaining a
model for a system with various states is difficult, model-free
RL is the most commonly used.

Q-learning is one of the RL algorithms widely used in
HRC in the robot learning phase [9]. This learning method
is used in combination with other ML techniques and in
the deep reinforcement learning (DRL) architecture. DRL is
implemented to train robot policy so that multiple layers of
graph convolutional networks (GCN), long-short-term mem-
ory blocks (LSTM), and a variational autoencoder (VAE)
are considered as another type of neural network (NN) that
is supposed to use input data to find different represen-
tations of it [60]) were combined to extract a representa-
tion of short-term human action data and a recurrent deep
Q-function [72]. In other words, VAE provides the input of
LSTM blocks, and all ML steps resulted in the production of
Q values for the framework.

In addition to Q-learning, inverse RL (IRL) is another
popular model-free RL-based algorithm. In this method,
an agent’s behavior is observed to obtain the reward function,
which is opposite to the Q-learning approach. IRL is kind of
an unsupervised/semi-supervised approach in that all kinds of
data are valuable. This method is used in HRC, as sometimes
problems are so difficult and complex to train with a reward
function [60]. The preferences of the human user in a col-
laborative task could be trained through an IRL framework
in a MOMDP, in a way that the hidden state of a MOMDP
is used to model the user’s preferences, which in real time
are adjusted depending on the particular type of user [73].
Learning through IRL could be integrated with LFD (for the
teaching phase) in a way that teaching is done through human
demonstration and natural language, while robot learning
is done through IRL algorithms to calculate the reward to
develop a collaboration algorithm [40]. IRL method is also
used to optimize the reward function for non-parametric
motion flowmodels trained from human demonstrations [22];
IRL is used as one of the learning methods in RAP formaliza-
tion in relational concurrent cooperation domains [69]. The
relational action processes (RAP) framework, which relies
on relational MDPs, is used to model the concurrent task.

Concurrent execution of multiple actions with the possibility
of asynchronous initiation or termination of actions is allowed
in RAP that uses relational representations for both state and
action space in the decision-making process [11]. RL meth-
ods are considered interactive robot learning systems so that
the training and execution phases could be combined.

In HRC, the collaborative framework must be properly
designed to have a transparent architecture to instill trust.
As discussed previously, transparent and purposeful com-
munication is one way to convey trust and a feeling of
safety, while researchers try to enrich robot decision-making
through RL methods. Human mental states such as trust are
integrated into robot decision-making by proposing trust-
POMDP tomodel human trust evolution in the process of per-
forming different collaborative / cooperative tasks [16], [17].
Furthermore, some studies focus on integrating RL-based
decision-making for action and communication in the
RL framework. CommPlan is a new framework proposed to
integrate decision-making for action and communication in
sequential decision-making under uncertainty. The proposed
computational framework, which consists of a model speci-
fication process and a POMDP execution time planner, was
designed to address the question of if, when, andwhat to com-
municate during human-robot collaboration. In this study, the
multi-agent MDP (MMDP) was used to represent the sequen-
tial taskmodel; a parametric model to specify communication
costs, and the agent Markov model (AMM) to represent the
sequential decision-making behavior of humans [8].

F. OTHER TECHNIQUES
There are other techniques that are used to handle
decision-making and learning in HRC scenarios to improve
communication between humans and robots. These methods
could not be strictly considered ML techniques but use dif-
ferent methods to narrow the scope of uncertainties during
information exchange.

One type of these methods focuses on developing feedback
to instruct humans. One of these techniques is visual signaling
frameworks that provide visual instructions to human users
by providing 3D real-time object recognition and tracking.
Model-based object recognition and tracking (OBT) algo-
rithms in a framework combined with a projection mapping
system and mixed-reality cues are used to instruct human
partners in collaborative assembly tasks [55], [88].

Another direction of these methods emphasizes on solving
uncertainties through task planning. For example, high-level
task planning using the hierarchical task network (HTN) is
a learning and decision-making approach to accomplish a
task in a shared workspace in the HRC framework. In this
method, tasks are divided into two categories of primitive
and compound tasks; these tasks are represented using an
initial task network based on the hierarchy of their execution.
The goal would be to decompose all compound tasks in the
initial task network, and the solution is a ‘‘plan which equals
a set of primitive tasks applicable to the initial world state.’’
In addition to having an initial task network as an objective to

129352 VOLUME 10, 2022



R. Salehzadeh et al.: Purposeful Communication in HRC: A Review of Modern Approaches in Manufacturing

TABLE 1. Extracted features from the articles: task type, communication modality, robot decision-making, categorization, and paper focus.

be achieved, it is necessary to have an initial state description
and domain knowledge consisting of networks of primitive

and compound tasks [89]. These task planners could be used
in architectures consisting of modules such as a situation
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TABLE 2. Extracted features from the articles: task type, communication modality, robot decision-making, categorization, and paper focus.

assessment module, a theory of mind (ToM) manager, a high-
level task planner, a geometric action and motion planner,
a dialogue manager, and a supervisor. In such architectures,
the robot will have the ability to estimate the other agents’
mental states about the environment; about the state of goals,
plans, and actions while interacting with humans [18]. Fur-
thermore, in HRC an extension of HTN planning is imple-
mented, a task planner based on a hierarchical agent-based
task planner (HATP), integrated with reference expression
generation (REG) to include communication actions in the
process [41].

In contrast to task-planning methods, HRC is also cast
as a set of combinatorial search problems. The trajec-
tory from an initial state to a goal state is defined as an

optimal search problem to identify combinatorial rules and
actions to solve uncertainties during the search process [90].
Answer set programming (ASP) is one of these learning
approaches used in HRC. ‘‘ASP is a form of knowledge
representation and reasoning paradigm oriented toward solv-
ing combinatorial search problems, as well as knowledge-
intensive problems. The idea of an ASP is to represent a
problem as a program whose models (called answer sets)
correspond to the solutions. The set of answers for the
given program can be computed using specially imple-
mented systems called ASP solvers, such as Clingo’’ [91].
Hybrid conditional planning based on ASP (HCP-ASP)
is also used for planning in collaborative tasks [45].
Finally, graph search (GS) and trajectory optimization (TO)
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are proposed as a novel bilevel optimization formulation
in HRC [74].

VII. NOVEL CATEGORIZATION OF HITL SYSTEMS
The reviewed articles had some similarities and differences,
but two distinguishing factors were identified that were used
to categorize the available HITL systems: 1) level of com-
munication and 2) adaptability in communication and task
execution. The first factor focuses on the level of com-
munication in HRC where information related to the task
or any of the human and robot’s intent could be shared.
Information sharing should be done through the appropriate
communication modality in the framework that has been
discussed in Section V, information sharing could be done
through HTR and RTH communication in that humans and
robots need to be informed about each other’s intention
before the execution step. Moreover, communication time
and communication type affect the shared understanding
of the task and the user’s intent. Information sharing will
bring caution to humans in a collaborative workspace. The
second factor investigates adaptability in task execution as
another factor that affects human trust in robot and team
performance [20].

Consequently, using the factors mentioned, a new catego-
rization of the available HITL systems was proposed in the
context of HRC. Figure 2 shows a schematic of the DHITL
and PCHITL architectures.

• Delayed Human-in-the-loop (DHITL): The robot starts
doing an action based on the prediction of human intent;
the human observes the robot’s action and then provides
feedback to the system.

• Pre-cautious Human-in-the-loop (PCHITL): In addition
to estimating the intent in some steps, the human or
robot could inform each other before the execution of
the task in a purposeful way embedded in an intelligent
architecture.

According to Table 1 and Table2, of the 49 articles reviewed
in this article, 12 were classified as PCHITL, one as semi-
PCHITL, and the rest were considered DHITL. This section
will discuss details related to the frameworks identified as
PCHITL while considering communication as the deriving
factor. In the categorization, the mode of communication was
not considered a factor in itself, but the way the communica-
tion modalities were used to promote purposeful communica-
tion by addressing any of the issues of how to communicate;
when to communicate; and what to communicate was the
focus of this categorization.

1) Some HRC frameworks allow the robot to decide
if, when, and what to communicate while per-
forming collaborative tasks with humans. The robot
informs the human on what action it is going to
do (e.g., I am going to do an action at a land-
mark); asks the human counterpart about her inten-
tion for the next step (e.g., Where are you going?);
and also commands the human counterpart what to do
(e.g., please make the next sandwich at landmark).

In this type of framework, there is bidirectional
communication between humans and robots, which is
considered an indication for PCHITL [8]. In these types
of studies, generally, a decision-making algorithm is
provided for different types of collaborative tasks,
including sequential tasks that work across tasks and
communication modalities [8]. Decision-making for
communication inHRC has some challenges, including
modeling human teammates, estimating the benefit of
communication, the inherently decentralized nature of
multi-agent tasks, and the need for execution-time com-
munication decisions [92]. Additionally, it is crucial to
study the feasibility and cost of verbal communication
in the task planning step [41].

2) Verbal communication also is combined with actions
to provide information to the human user about how to
perform a task. In scenarios where there are multiple
ways to perform a task, the robot can choose one based
on its preferences, which could give the robot more
information about the environment for some reasons,
such as the location of the sensor. In this case, verbal
communication could be used in two ways: 1) the
robot provides verbal commands that explain to the
human how it wants to do a task, and 2) the robot
informs the human why it chose to act in a specific
way (state-conveying actions). Since the robot informs
the human how and why this framework is classified
as PCHITL [19].

3) Furthermore, defining different types of communica-
tion actions based on the nature of the collaborative
task improves the fluency of teamwork and the per-
formance of the task. For example, in a collaborative
table assembly task, communication actions such as
’Confirm Attach’, ’Ask Help’, ’After Help’, ’Request
To Unhold’, and ’Request To Attach’ allow the robot
to request a collaborative human teammate to perform
some action, initiate / end conversations, and provide
explanations. In this type of collaborative assembly
planning, the robot would be able to decide when and
how to communicate with a human teammate, and the
human teammate is fully aware of the robot’s deci-
sion/intention/desire [45].

4) It is also possible that human users have multiple
options to perform a task with different behaviors.
In these cases, equipping a robot with verbal commu-
nication could promote efficiency, fluency, and accept-
ability when needed. For example, in a block building
task, two types of behavior could be defined for the
human partner: 1) an adaptable human who is adapt-
able to robot verbal commands and 2) a non-adaptable
human who is not adaptable to the robot verbal com-
mand (there is no change in decision that has been
made). The robot can adapt its behavior based on
humans and their decision. Verbal communication is
done not only when needed, but also improves task
efficiency and team fluency [13].
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FIGURE 2. Left:PCHITL and right: DHITL.

5) There might be a collaborative task where the robot is
unaware of the final goal. The human user knows the
task’s goal, so the robot would need to communicate
with the human user to know its role and ask its part-
ner which sub-task to do. This communication could
be done using verbal communication by directly ask-
ing/informing humans or non-verbal communication
such as gestures to point out a specific object or area
and inform the human. In both cases, since the robot
informs the human user of its intention, it is framed as
PCHITL [41].

6) In general, most architectures try to create a PCHITL
by adding different communication modalities to the
HRC framework. For example, through a dialogue
manager module, the robot could verbalize information
to the human and recognize basic vocal commands.
Whenever verbal communication is done before task
execution, the entire architecture creates a pre-cautious
situation for the human partner [18]. In addition to
a dialogue manager module, multiple communication
channels (e.g., TTS, STT, and head display) are added
to the architecture of the HRC framework to provide
the ability to verbally / non-verbally interact with the
human to the robot and provide feedback to the robot
about the internal states and intents of the human user
to the robot [37]. The force sensor is another non-verbal
communication channel that could be added to TTS
to enable bidirectional communication in a joint con-
struction task and result in PCHITL [14]. Furthermore,
gaze and gesture are used to share intentions and task
information, while speech is an active communication
channel in the process [39]. Furthermore, physiological
signals, such as muscular activities, could be combined
with various communication channels in a teaching-
learning-collaboration (TLC) model in which robots
learn to complete a collaborative task, such as assem-
bly, using natural language instructions, and respond
using speech [40]. Vision systems are commonly used
with verbal commands / speech synthesizers that could
be used in the design of a cognitive control architecture

for joint action to share information about sub-tasks,
or the robot’s intent/decision for the next step of the
task [46].

7) XR techniques are alternative approaches to creating
PCHITL frameworks. AR techniques are used to pro-
vide the robot’s status and intended movements for
the human partner as visual cues [56] or display task
information such as the pose and state of physical
objects on the shared workspace ahead of time and
in-time instructions for the human teammate to perform
a collaborative task [55].

In conclusion, a PCHITL framework in HRC is devel-
oped either by using one or some communication modal-
ities or by proposing computational algorithms to make
RTH and HTR communication a needed-based communi-
cation. Table 3 summarized the articles reviewed belonging
to the PCHITL category and divided them by whether they
have focused on the necessity of communication (that is,
if communication is needed), the time of communication
(that is, when to communicate), or the type of communi-
cation (what to communicate) that resulted in a PCHITL
framework. As shown in Table 3, PCHITL could be created
simply by choosing an appropriate communication modality
without adding complicated computational algorithms to the
framework to make communication more purposeful and
efficient [37], [39], [40], [46], [56], [56].

VIII. DISCUSSION AND FUTURE OF WORK IN HRC
Collaborative robots work side by side with human partners
in various fields; of course, applications of collaborative
robots vary from industry to industry and do not all require
the same type or extent of human interaction. Ensuring
the human user’s safety during interactions is essential and
requires trade-offs in performance. Typically, physical safety
in HRC is obtained by a combination of mechanical design
(e.g., low inertia links and soft structures), actuator selec-
tion (e.g., variable impedance actuators), sensor selection
(e.g., vision systems and tactile skins), and planning/control
strategies (e.g., collision avoidance, velocity scaling, and
impedance or passivity-based control) to reduce quantitative
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TABLE 3. Categorization of PCHITL articles considering communication
modality, necessity, time, and type.

risks of injuries [93], [94]. In addition to physical safety,
physiological safety in HRC is very important and should be
given [95].

To guarantee both physical and physiological safety of
the human user in HRC frameworks: 1) key components
and elements in HRC frameworks should be recognized;
2) and then uncertainty resources in each of these components
should be detected. This article identified the available HITL
frameworks in the context of HRC in manufacturing settings
with a new approach, recognized the key components of these
frameworks, and detected the most important factor that any
kind of limitation could cause a high level of uncertainty. The
HRC frameworks were classified into two classes, DHITL
and PCHITL, after reviewing some of the key components
such as the type of collaborative task, communication modal-
ities, and robot decision-making.

Among these factors, we posit that in an era where mis-
communication contributes to a widening distrust in humans,
there is a need for developing HRC frameworks that enhance
communication and promote bidirectional communication
between the robot and human user. In HRC frameworks,
bidirectional communication could be created to exchange
the human user and robot’s needed information about the task
or each other’s intent in a proper time with a proper method,
PCHITL. However, once there is not enough information
sharing between humans and robots, a feeling of distrust
and lack of physiological safety will be conveyed to the
human user, DHITL. Tables 1 and 2 showed that articles
in the PCHITL category have verbal / natural language /
speech commands as their primary or one of the commu-
nication modalities. Therefore, based on this result, verbal
communication is the standard or the most straightforward
approach to creating bidirectional communication in HRC.
According to a new research study, effective spoken language
interactionwith robots could benefit the research area in some
ways. The interaction of spoken language is considered one
of the fastest communication methods between humans and

robots; interactions through spoken language will be more
motivating, satisfying, and reassuring; people will expect a
robot to talk in the future; talking robots will be liked more; it
could be combinedwith other methods, such as robot gestures
and actions, to reinforce or clarify a message [96]. Emotional
expression is a factor that enhances human-robot commu-
nication and could be verbal or non-verbal forms. In non-
verbal communication, emotional expression has been shown
to have a positive impact on human-robot collaboration [97].
In addition to verbal communication, communication through
visual or haptic devices could also result in bidirectional
communication in HRC.

Regarding the other components, assembly tasks were the
focus of most of the articles, and, as mentioned before, the
type of task has an impact on how to communicate, what
to communicate, and when to communicate. However, bidi-
rectional communication capability in a PCHITL framework
improves the quality of task execution in any type of task
and feels of safety for human users. Furthermore, for tasks
with an unknown goal for the robot; bidirectional commu-
nication would convey a feeling of security to the human
user, since the robot’s decision regarding the following action
may be unclear to the human. Furthermore, the choice of
a robot decision-making and learning algorithm in an HRC
framework also depends on the characteristics of the task, the
environment, and the available information (i.e., observable
or non-observable states). Our results indicated that RL algo-
rithms are the most commonly used approach in HRC, espe-
cially when there is uncertainty in the working environment.
It is possible to integrate the human user’s latent states, such
as trust and stress, as well as communication states, with the
task executionmodel through RL algorithms. This integration
will facilitate bidirectional communication and, as a result,
create a PCHITL framework.

Some attempts have been made to integrate physiological
signals with HRC frameworks in different ways, such as
closed-loop robotic control [98], shared control of a robotic
platform [33], supervisory control tasks by combining EMG
and EEG [32], collaborative task performance with adaptable
robot physical behavior based on human motor fatigue [99].
Physiological signals are also used in HRC to create frame-
works for ‘‘physiologically aware human-robot collabora-
tion’’; robot actions are adjusted according to the mental
states of the human user [100]. We propose a PCHITL sys-
tem that integrates robot decision-making for communication
with robot decision-making for task execution in that human
brain signals would be the source of detecting the human
need for communication in collaboration with a robot. The
robot will be able to infer the human need for communication
through human brain signals, communicate on the basis of
that information, and leverage this to improve the efficiency
of communication and collaboration. This research tries to
leverage the real-time availability of data from the human
brain to control robot communication with a human in phys-
ically interacting scenarios to achieve cost-effective verbal
and bidirectional communication. In addition, the effect of
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adding some stressors, such as time, to the framework could
be investigated to further improve robot decision-making in
a PCHITL framework.

IX. CONCLUSION
The general objective of this document was to find current
trends in HRC on how human users are involved in the
collaborative task and how their role is defined in the loop
because we believe that it affects human physical and physio-
logical safety and team performance. Therefore, a systematic
review was performed and the total number of articles was
selected according to the defined criteria. This systematic
review studied different aspects of HRC scenarios, including
the type of collaborative task, communication modalities, and
robot decision-making algorithms. The selected articles were
classified into two categories, DHITL and PCHITL; Most of
the articles belonged to DHITL, as there was no communi-
cation before task execution and information sharing. The
assembly task was the focus of most of the selected articles
with vision systems, which is a commonly used method of
communication in HRC frameworks. ML and RL algorithms,
mostly RL, were implemented as robot decision-making in
the framework to grant human user both physical and phys-
iological safety and make collaboration possible. Commu-
nication was proposed as the most important factor in the
development of the PCHITL framework in HRC. Although
researchers are using various types of communication chan-
nels and methods; further research is warranted to improve
communication in HRC. Future work should examine how
various communication modalities and decision-making for
communication affect human safety in collaboration.
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