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ABSTRACT The detection of defects is indispensable in industrial production. Surface defects have different
scales. Both minimal flaws and significant scratches may appear on the same product. The standard method
uses a multi-scale feature fusion network, introducing many parameters that may reduce the inference
speed. In actual industrial production scenarios, inference speed and accuracy play an equally important
role. Therefore we propose an algorithm to effectively improve the detection speed while improving the
detection accuracy. The model proposed in this paper called ‘‘YOLOwith lightweight feature fusion network
(LFF-YOLO).’’ First, we use ShuffleNetv2 as a feature extraction network to reduce the number of
parameters. Then, to improve the efficiency of multi-scale feature fusion, we propose the lightweight
feature pyramid network (LFPN). Considering that the fixed receptive field is difficult to adapt to the
defects of different scales, it may lead to the difficulty of model convergence and seriously affect the
detection performance. Therefore, we propose the adaptive receptive field feature extraction (ARFFE)
module, which weights the multi-receptive field channels to generate multi-receptive field information.
In addition, focal loss is used to solve the problem of imbalance between positive and negative samples.
Finally, we conducted experiments on NEU-DET (79.23% mAP), Peking University printed circuit board
defect dataset (93.31% mAP),and GC10-DET (59.78% mAP), respectively. Extensive experiments show
that our proposed method achieves optimal detection speed compared with the prevailing methods, and
the detection accuracy of our method is also highly competitive. We open-soure our code in the following
URL:https://github.com/syyang2022/LFF-YOLO

INDEX TERMS Convolutional neural network, defect detection, feature fusion, lightweight network.

I. INTRODUCTION
The detection of defects is indispensable in industrial
production, and the detection of blemishes is a vital part of
production. The use of manual methods for defect detection
can lead to inefficient detection and subjective factors affect-
ing detection accuracy. Recently, defect detection methods
based on computer vision technology have gradually replaced
manual defect detection. Traditional computer vision surface
defect detection methods are mainly feature-based. This
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approach relies on manually designed algorithms to extract
defect features, resulting in poor robustness and generaliza-
tion of the model. Deep learning methods compensate for
this shortcoming. Convolutional neural networks can capture
high-level semantic features, and models have stronger
robustness and generalization capabilities than traditional
methods. Convolutional neural networks have become a very
important method in industry [1], [2], [3].

With the rapid development of deep learning techniques,
many excellent target detection algorithms have emerged,
and they have been applied in the field of defect detection.
Second-stage target detection algorithms such as R-CNN [4],
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FIGURE 1. Six types of defects in NEU-DET dataset (a) Cr; (b) In; (c) Pa;
(d) Ps; (e) Rs; (f) Sc.

Fast R-CNN [5], and Faster R-CNN [6], are based on
area suggestion frames allowing for improved detection
accuracy at the expense of detection speed. One-stage target
detection algorithms such as YOLO [7], [8], [9], [10],
SSD [11], RetinaNet [12], simplify the network design by
using only one network to classify and localize the target, thus
significantly improving the detection speed. The one-stage
detection algorithm is more suitable to meet the demand for
the real-time detection task. YOLOv3 [9], as a classical one-
stage network, is the most widely used in industrial scenarios
due to its stability. Therefore, we propose an inspection
method based on YOLOv3 and improve it to make it easier
to deploy on terminal devices.

Metal surface defects, such as steel surface defects
(Figure 1), are more difficult to detect because of the large
scale. In the feature extraction network, features extracted
by the shallow layer have richer fine-grained information,
such as color, texture, and other details, which can help the
model identify the type of defects. Moreover, features in
deeper layers mainly contain semantic information, which
is the critical information for locating the defect. YOLOv3
uses the FPN [13] network to fuse multi-scale information,
utilizing three feature layers for detecting small targets but
not fusing the upper layer feature information for detecting
large targets. PANet [14] uses a bidirectional link structure so
that each detection head utilizes information from multiple
feature layers, which improves the detection accuracy of
large targets. However, neither FPN nor PANet is a network
designed for industrial inspection, so the inference speed
factor is not considered. Due to many parameters, most of
the existing detection models have high deployment costs.
We hope to design a model with fewer parameters and better
performance based on a mature framework that has been
widely used. In this paper, we propose amore efficient feature
fusion network LFPN for defect detection tasks requiring
real-time performance, which improves detection accuracy
by introducing fewer parameters.

Lightweight networks such as ShuffleNet [15], [16],
MobileNet [17], [18], andGhostNet [19] have enabled feature

extraction networks to reduce the amount of parameters
without reducing accuracy. ShuffleNetv2 is an improvement
of ShuffleNetv1, which considers both model parameters
and the impact of memory access on inference speed.
Therefore, compared with other lightweight networks, it has
faster inference speed in practical applications. In this
paper, ShuffleNetv2 is chosen as the feature extraction
network of the model, and an adaptive receptive field
feature extraction module is designed to improve the feature
extraction capability.

We propose a more lightweight multi-scale feature fusion
network. An adaptive receptive field feature extraction
module is used to increase the feature extraction capability
of the network while using the k-means algorithm to cluster
the anchor frame to obtain a more reasonable anchor frame
design. In addition, focal loss is used to address the problem
of unbalanced positive and negative sample categories. The
main contributions of this article are as follows.

1) We propose a new model to solve the problem in
industries where metal surface defects span extremely
and defect detection’s low efficiency. The baseline
model is the most widely used object detection model,
YOLOv3.

2) In order to make the model easier to deploy to
the detection terminal, a more lightweight network
ShuffleNetv2 was used to extract defect features, but
this introduced a problem that the network receptive
field was fixed. Therefore, we propose the ARFFE
module to increase the receptive field of the feature
extraction network so that the model can extract defect
information more effectively under the appropriate
receptive field.

3) Considering the importance of detection speed
in practical application scenarios, we propose a
novel lightweight feature fusion network LFPN for
multi-scale defects on metal surfaces, which can
effectively fuse multi-scale features under the premise
of introducing a few parameters, thus improving
detection accuracy.

4) Experiments on the open defect detection dataset
NEU-DET [20] show that the proposed method can
detect defects quickly and effectively, which proves
that the proposed method is superior to other methods
in defect detection scenarios, The generalization ability
of the proposedmethod is verified on the printed circuit
board defect dataset [21] and steel plate surface defect
dataset GC10-DET [22].

The rest of the article is structured as follows: related
work presented in Section 2 and our proposed approach,
including the lightweight feature fusion network and the
adaptive perceptual field feature extractionmodule, presented
in Section 3, experiments on NEU-DET printed circuit board
open dataset and steel plate surface defect dataset GC10-DET
are done in Section 4 to verify the method’s validity. Finally,
conclusions are given in Section 5.
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II. RELATEDWORK
The primary defect detection methods currently used in the
industry include traditional methods and deep learning-based
methods.

A. TRADITIONAL METHODS
Traditional defect detection methods mainly extract image
features by image preprocessing, such as histogram equaliza-
tion, grayscale binarization, filtering and denoising. Subse-
quently, classification detection of defects was accomplished
usingmorphology, Fourier transforms, Gabor transforms, and
machine learning methods. For example, Prasitmeeboon [23]
used color histogram and SVM to detect particle board
defects and used thresholding and smoothing techniques to
localize the faults. Chang et al. [24] implemented defect
detection on the camera lens surface based on polar coor-
dinate transform, Hough circle transform, weighted Sobel
filter, and SVM. Wang and Zuo [25] used Fourier transform
and Hough transforms to reconstruct the magnet surface
image and obtained the defect information by comparing the
grayscale difference between the reconstructed image and the
original image to detect defects. These traditional methods
require manual feature extraction and have poor robustness.

B. DEEP LEARNING METHODS
In recent years, the rapid development of deep learning
has led to its increasingly widespread application in defect
detection. Compared with traditional methods, deep learning
methods do not need to extract features manually but directly
through learning data update parameters to automatically
extract features and feed them into subsequent networks
for classification and localization prediction. It avoids the
complex process of manually designing algorithms and has
a very high level of robustness and accuracy.

The currently available target detection algorithms can
be divided into one-stage and two-stage networks. Two-
stage networks, such as Faster-RCNN, were proposed in
2016 to improve R-CNN and Fast-RCNN. He uses the
RPN network instead of the previous selective search to
train the input feature map to output a series of candidate
regions with initial object classification probabilities for
more accurate localization of objects, resulting in improved
network speed and accuracy. Zhao et al. [26] improved
the traditional Faster-RCNN by reconstructing the network
structure using multi-scale feature fusion and replacing part
of the convolution with deformable convolution. The network
was used for steel surface defect detection and reached
75.2%mAP on the NEU-DET public dataset. Cha et al. [27]
applied Faster-RCNN for concrete crack and steel corrosion
defect detection. Su et al. [28] designed a complementary
attention network to exploit the advantages of spatial location
features and channel features while suppressing background
noise features and embedding them into Faster-RCNN to
detect solar cell electroluminescence images. The two-stage
network has satisfactory results in terms of detection

accuracy. It is challenging to meet the requirements in
real-time scenarios such as industrial defect detection due to
the detection efficiency problem, so the single-stage target
detection network has received more attention.

Single-stage target detection networks such as YOLOv3,
SSD, and RetinaNet are more advantageous in inference
speed due to their more straightforward structure than two-
stage networks. With the development of single-stage net-
works in recent years, the gap in detection accuracy compared
to two-stage networks no longer exists. Yin et al. [29]
used YOLOv3 to detect sewer pipe defects and achieved
85.37%map. Zhang et al. [30] improved the original YOLOv3
by introducing a newmigration learning method for detecting
concrete bridge defects, and its performance was improved
by 13% compared to the original YOLOv3. Yu et al. [31]
improved YOLOv4-CSP based on the problem of small
targets for industrial defect detection. They proposed an
efficient stepped pyramidal network for fusing multi-scale
features, thus improving the detection accuracy of small
objects. Wang and Cheung [32] improved the model based
on center-net by adding count loss for detecting defects
generated in the Additive manufacturing process. Since the
comprehensive performance of the single-stage detector is
higher than that of the two-stage sensor, it is more widely
used in industrial defect detection. In this paper, we choose
YOLOv3 as the benchmark model and improve it to make it
more suitable for industrial defect detection scenarios.

III. METHOD
In this section, we describe the method we used in detail, and
the network structure is shown in Figure 2. ShuffleNetv2 is
used as the backbone feature extraction network. An adaptive
receptive field feature extraction module is inserted into the
backbone network to obtain different receptive fields for
defects of various sizes. Then a lightweight feature pyramid
network is constructed to fuse defect features of different
scales more efficiently. In addition, we use the K-means
algorithm to cluster the size of anchor frames and focal loss to
solve the problem of positive and negative sample imbalance.

A. LIGHTWEIGHT FEATURE PYRAMID NETWORK
DarkNet-53, as the feature extraction network of the original
YOLOv3, improves the detection accuracy due to the
stacking of a large number of residual blocks, but at the
same time, increases the number of parameters resulting
in a slower inference speed. In this paper, ShuffleNetv2 is
used as the backbone feature extraction network to obtain
faster inference speed and accuracy. For lightweight feature
extraction networks, most network designs rely on depthwise
separable convolution to reduce the number of parameters,
which makes the total computation much smaller. However,
it also deepens the number of layers of convolution, which
may slow down the inference instead of saving the inference
time for a massively parallel data processing platform like
GPU.
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FIGURE 2. Model structure diagram, Ci denotes the feature layer of the backbone network, Pi denotes the feature layer stacked with
up-sampling, and Ti represents the feature layer fused with multi-scale features. The input image is fed into the backbone feature
extraction network after the ARFFE module, and the deepest feature layer is stacked with the upper layer after the channel
compression. P0 is the feature layer stacked with C0-C3. Then the feature fusion and weighting are performed by the downsampling
and channel attention modules and finally output to the detection head for detection.

TABLE 1. Speed comparison of backbone.

We have verified the inference speed with different
lightweight networks on the NEU-DET dataset, and the
experimental results are shown in Table 1. The experiments
show that the actual inference speed on GPU decreases
using GhostNet as the feature extraction network, although
the parameters are reduced. ShuffleNetv2 is designed with
practical inference speed, replacing part of the grouped
convolution with ordinary convolution and using concat
instead of adding to reduce element-wise operations. Shuf-
fleNetv2 significantly reduces parameters and can obtain
faster inference speed during the actual operation. Hence,
it is most suitable to be used as a feature extraction
network for industrial defect detection models with high
requirements for real-time, and its structure is shown in
Table 2.

TABLE 2. ShuffleNetv2 structure.

B. LIGHTWEIGHT FEATURE PYRAMID NETWORK
As the network layers deepen, the feature map resolution
decreases, and the features of smaller targets disappear.
Moreover, more semantic information about the target in the
deep network is beneficial in locating the target’s position.
The original YOLOv3 uses an FPN network structure to fuse
multi-scale information to predict objects of different sizes
by three layers of feature maps with different resolutions.
It is worth noting that the original YOLOv3 does not fuse
the feature information of the upper layer when using the
feature map of the bottom layer for prediction. Similarly,
only the feature information of the bottom layer is fused
into the middle layer. PANet uses a top-down and bottom-
up bi-directional fusion network to connect all the features
of the prediction layer before prediction but at the same
time introduces more parameters, making the inference speed
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FIGURE 3. The feature layer is divided into k groups by channel in
grouped channel compression. Each group is down-sampled by averaging
pooling in the channel direction to obtain the feature maps of C

k
channels. Finally, these feature maps are stitched together.

slower. Therefore, this paper proposes a network structure
that fuses features more quickly. First, the bottom layer
feature map C3 is downsampled in the channel direction by
grouping channel compression (as shown in Figure 3) then
upsampled and stacked with C2 to obtain P2, whose number
of channels per layer can be calculated by the formula.

CPi = CCi +
CCi+1
k

where k is the number of sub-groups, which is set to 4 in this
paper, and i denotes the feature layer of the feature extraction
network, i ∈ {0, 1, 2}. Similarly, the C1 and C0 feature layers
are stacked to finally obtain P0. The process can be expressed
as

P2 = Concat(C2,Concat(CAP(Gp1 ), . . .CAP(Gpn )))

P1 = Concat(C1,Concat(CAP(Gp1 ), . . .CAP(Gpn )))

P0 = Concat(C0,Concat(CAP(Gp1 ), . . .CAP(Gpn )))

where CAP denotes the channel average pooling, and Gpn
denotes the grouped feature map, the n =

CPi+1
k , k = 4,and

i ∈ {0, 1, 2}. It is worth noting that no parameters were
introduced during this period. Although the operation of
finding the mean value is used in the channel compression,
the computation time consumed is much lower than the
convolutional computation. A few convolutional layers are
used after P0 to learn how to fuse the stacked feature
layers. At the same time, a channel attention mechanism is
added for targets at different scales with different sensitivities
to individual channel information. Only a small number
of parameters are introduced for downsampling, which
improves the inference speed of the whole model, and the
detection accuracy is also improved because each prediction
layer uses a feature map that fuses all the feature layers.

C. ADAPTIVE RECEPTIVE FIELD FEATURE EXTRACTION
The receptive field is the region’s size where each location of
the output feature map of each layer of the convolutional net-
workmaps to the featuremap of the previous layer. A sizeable
perceptual field improves the network’s performance for the
classification task. However, for the target detection task, the

TABLE 3. Initialization parameters of our method.

receptive field size should correspond to the anchor set to get
better performance. A too-large field of perception will cause
the detected area to be too small and ignored as background,
resulting in poor detection of small objects. And the too-small
field of perception, due to the acquisition of too much local
information and causing the loss of global communication,
affects the recognition of objects. In the defect detection
task, the size setting of the anchor has a large gap due to
the multi-scale nature of the defect. This paper proposes an
adaptive receptive field feature extraction module (shown in
Figure 4), which can be easily inserted into any position of
the feature extraction network. The specific process can be
expressed as follows.

P1 = Concat(Conv3×3,DilateConv3×3,DilateConv3×3)

P2 = Conv1×1(P1)

P3 = P0 + P2 × sigmoid(RELU (GAP(P2)))

where GAP denotes global average pooling, the input P0 is
stacked together after extracting features by 3×3 convolution
of different receptive fields. Then the number of channels is
reduced to the same as the input by 1×1 convolution. The
convolution of three different receptive fields corresponds
to the subsequent prediction on the feature layers of three
resolutions. P2 contains the feature information of different
receptive fields. Since the targets of different scales are
not equally sensitive to the feature information of different
receptive fields contained in the channels, channel attention
is used to weigh the feature information. Finally, shortcuts
are used to save the information of the original feature map
to prevent information loss. The final output P3 contains the
original information and the weighted multi-receptive field
information.

IV. EXPERIMENT
A. EXPERIMENTAL ENVIRONMENT
The experimental hardware platform is i5-10400F CPU,
NVIDIA GeForce RTX3060ti GPU, and we use PyTorch
to build our model, PyTorch version 1.11, Cuda version
11.6, experiments are conducted on windows 10 using
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TABLE 4. Setting of compared model parameter.

FIGURE 4. Schematic structure of the adaptive perceptual field feature
extraction module, P0 represents the input feature layer, which is stitched
together along the channel direction after the convolution of voids with
different rates. The channel is compressed by 1×1 convolution, and
finally, the output P3 is obtained by adding the channel weighting with
the original input through the channel attention module. Output P3 and
input P0 have the same dimensionality.

pycharm. We use mAP as the evaluation index for model
accuracy. Model parameters, FLOPs, and FPS are model
speed evaluation indexes. See Table 3 for setting model
parameters, and Table 4 for comparing model parameters.

B. DATASETS
We use three kinds of data sets, and the data sets are divided
by the same ratio. The ratio of the training set and validation
set is 9:1. The ratio of the training set plus the validation set

and test set is 8:2, as shown in table 5 for details. The images
are randomly enhanced before being input into the network.
The data enhancement methods include random flipping and
gamut transformation.

1) NEU-DET: A steel surface defect detection dataset
from Northeastern University, containing six types of
defects: rolled-in scale (Rs), patches (Pa), crazing (Cr),
pitted surface (Ps), inclusion (In) and scratches (Sc).
There are 300 images in each category.

2) PCB Defect Dataset: This is a publicly synthesized
PCB board defect detection dataset from Peking Uni-
versity, containing six types of defects: Missing hole,
Mouse bite, Open circuit, Short Spur, and Spurious
coppe.

3) GC10-DET: GC10-DET is a dataset of surface defects
collected in real industrial scenarios, containing ten
types of defects: punch (Pu), weld (Wl), crescent gap
(Cg), water spot (Ws), oil spot (Os), silk spot (Ss),
inclusions (In), roll pits (Rp), crease (Cr), and waist
folding (Wf).

C. EXPERIMENTS AND ANALYSIS OF RESULTS
1) MODEL PERFORMANCE COMPARISON
To validate the effectiveness of the model, we first compared
our model with conventional target detection networks on
the NEU-DET dataset, including the one-stage detection
networks YOLOv4, EfficientDet [33], RetinaNet, SSD, and
the two-stage network Faster-RCNN, and also with other
steel surface defect detection models were compared, such
as ES-Net, DCC-CenterNet [34], DEA_RetinaNet [35],
Improved Faster-Rcnn [26], and then to verify the general-
ization performance of the model, we conducted experiments
on PCB defect dataset and GC10-DET, all experiments
were performed on the same hardware platform, and the
experimental results are shown in Table 6-8.

As can be seen from Table 9, our model has the fastest
inference speed and the lowest computational complexity.
The mAP is not optimal, but compared with the best
DCC-CenterNet, the gap is only 0.18%, which is almost
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TABLE 5. Introduction to three kinds of data set partitioning.

TABLE 6. Detection results of NEU-DET dataset.

TABLE 7. Detection results of PCB defect dataset.

negligible in practical application scenarios. At the same
time, our parameter amount is only 60.51M, less than half of
DCC-CenterNet, Our model inference speed also reaches the
fastest 63.24 FPS, it indicate that our model is more valuable
for practical applications.

YOLOv3, YOLOv4, and Efficientdet use FPN, PANet, and
BiFPN as feature fusion networks, respectively. YOLOv4
improves its performance by 3.9% compared with YOLOv3
using a bidirectional fusion network PANet, which indicates
that fusing feature layers with multi-scale features before
prediction can improve detection accuracy. However, the
number of parameters increases, and the inference speed
decreases. Our model uses the proposed LFPN as a feature
fusion network and improves by 9.29% compared to the
benchmark model YOLOv3 and 5.39% and 9.13% compared
to YOLOv4 and Efficientdet, respectively. It confirms that
our model structure is superior to the above three models in
terms of reference quantity and detection performance.

Compared with other one-stage detection models such as
ESNet, RetinaNet, DEA-RetinaNet, and SSD, our model’s
mAP improves by 0.13%, 19.02%, 0.98%, and 12.16%,
respectively. Compared with the two-stage networks Faster
R-CNN and Improved Faster-Rcnn, our model has a massive
advantage in inference speed, with 4.39 times higher FPS
than Faster-Rcnn. In comparison, the detection accuracy is
improved by 15.81% and 4.03%, respectively. Our model
performs satisfactorily compared to the two-stage network,
which is known for its detection accuracy.

To investigate the detection capability of our model for
different kinds of defects, we compared each class of defects
with other models on the NEU-DET dataset, and the results

are shown in Table 10. It can be seen that the detection of
each type of defect is improved comparedwith the benchmark
model. Crazing has relatively fuzzy boundaries causing the
detection model challenging to locate the defect location. The
original YOLOv3 has an AP of only 28.14% for Crazing,
which is almost undetectable. Due to the addition of the
ARFFE module, the feature extraction capability of the
backbone network is enhanced, the detection capability of
such defects as Crazing is improved more significantly, and
16.97% increases the AP. Compared with DEA_RetinaNet,
there is a gap of 15.82%, which is because it adds a difference
extraction block between the backbone network and the
feature fusion network to reduce the loss of information, and
our approach does not have an advantage for defects where
the scale varies little. It is not easy to distinguish between
boundaries. However, our model has amore flexible receptive
field and efficient information fusion capability for defects
such as scratches due to the characteristic of excellent scale
variation, which makes the detection capability significantly
higher than DEA_RetinaNet. AP improves by 22.08% and is
also the best value among all models. The model can easily
classify defects such as Patches because of their apparent
characteristics. The LFPN network incorporates more feature
map layers, allowing the model to better utilize global and
local information for defect localization. We also achieve
the best detection results for Patches. However, the 8.99%
difference between such defects as Rolled-in_scale and the
best-performing DCC-CenterNet leads to a slightly lower
final model mAP than DCC-Centernet.

Finally, we did experiments on the PCB defect dataset and
GC10-DET to verify the model’s generalization ability. The
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TABLE 8. Detection results of GC10-DET dataset.

TABLE 9. Compare of the detection results and speed with other methods on the NEU-DET datasets.

TABLE 10. Comparison of the detection results of other methods and the proposed method for each category on the NEU-DET dataset.

defects in the PCB defect dataset have the characteristic of
small scale. Our model obtained 93.31% mAP, which is only
4.19% lower than the best-performing ES-Net and still has
better results than other models. Even though our model is
not designed explicitly for small target detection, our model
can still make accurate detections for such small defective
targets. This is due to the excellent feature fusion capability
of LFPN, which makes it possible to effectively fuse global
and local information to identify and locate defects when
detecting small defect targets accurately. Our model achieves
59.78%mAP on the GC10-DET dataset, which is only 2.15%
away from the best-performing DCC-internet, and still has a
significant advantage over other mainstream models. In com-
paring different datasets, our model has a solid competitive
detection performance while maintaining the optimal infer-
ence speed, which indicates that our model has a powerful
generalization capability. At the same time, it achieves the
best balance between inference speed and model detection
performance.

FIGURE 5. Comparison of the detection results of other methods and the
proposed method on the PCB defect dataset.

2) ABLATION EXPERIMENT
To evaluate the contribution of each module to the model,
we set up ablation experiments to assess and analyze the
backbone network ShuffleNetv2, the proposed lightweight
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TABLE 11. Effect of each module on model accuracy and inference speed.

FIGURE 6. Comparison of detection results of other methods and the
proposed method on GC10-DET dataset.

feature fusion network LFPN, the adaptive perceptual field
feature extraction module ARFFE, and the channel attention
module, respectively.

1) ShuffleNetv2: replacing the original YOLOv3 back-
bone feature extraction network Darknet53 with
ShuffleNetv2 for comparison experiments, the model
parameters decreased from 236.32M to 95.63M, and
the FPS increased from the original 49.46 to 66.52 with
little change in mAP. This indicates that ShuffleNetv2,
as the backbone feature extraction network, can
improve the detection speed of the model without
sacrificing accuracy.

2) LFPN: From the comparison between row 1 and row
3 of the Table 11, we can see that the FPN network
in the original YOLOv3 is replaced by the LFPN pro-
posed in this paper, the mAP is increased from 69.94%
to 74.63%, and the number of parameters is reduced
at the same time. Thus the FPS rose from 49.46 to
52.67. The performance improvement is primarily
attributed to the structural design of LFPN, which
fuses multi-scale features before down-sampling, and
empowers the model to improve detection accuracy
while inference is faster. Combined with ShuffleNetV2
as the backbone network, the number of parameters of
the model is only 58.58M, while the inference speed
reaches the fastest 67.79 FPS.

3) Channel Attention module: The channel attention
module is introduced in the LFPN downsampling
process, and its purpose is to target different scales

FIGURE 7. Visualization of the detection results of NEU-DET dataset,
belonging to the categories: (a) Crazing; (b) Inclusion; (c) Patches;
(d) Pitted_surface; (e) Rolled-in_scales; (f) Scratches.

of targets with varying sensitivities to each feature
channel. Comparing the data in rows 4 and 5 of
the table, the results show that adding the channel
attention module during downsampling can improve
the model performance by introducing a small number
of parameters.

4) ARFFE module: ARFFE module is added to the shal-
low layer of the feature extraction network, as shown
in Figure 2. Comparing the last two rows of data
in the table, after adding the ARFFE module, the
model parameters only increased from 60.46M to
60.51M. In contrast, the mAP rose from 76.73%
to 79.23%, which verifies the effectiveness of the
ARFFE module. Since the ARFFE module can be
inserted into any network position, we put the ARFFE
module into the deeper layer of the feature extraction
network. Although the model’s accuracy is improved,
the inference speed of the model is significantly
reduced due to the introduction of more parameters in
the deeper network with more channels, so the ARFFE
module is finally put into the shallow layer of the
feature extraction network in this paper.

3) VISUALIZATION OF PREDICTION RESULTS
Figure 7 to Figure 9 represent the actual detection result
visualization of our model on the NEU-DET dataset, PCB
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FIGURE 8. Visualization of PCB defect dataset detection results, due to
the high resolution of the image and the small prediction frame, only part
of the image is captured for display. Categories: (a) Missing_hole;
(b) Open_circuit; (c) Short; (d) Spur; (e) Spurious_copper; (f) Mouse_bite.

FIGURE 9. GC10-DET dataset detection visualization, belonging to the
categories: (a) Waist_folding; (b) Punching_hole; (c) Welding_line;
(d) Crescent_gap; (e) Water_spot; (f) Oil_spot; (g) Silk_spot; (h) Inclusion;
(i) Rolled_pit; (j) Crease.

defect dataset, and GC10-DET dataset, respectively. Due to
the high resolution of PCB defect images, only a portion
with defects is captured in the figure as a display. We set
a threshold value of 0.5, and the prediction frame is drawn
only when the prediction frame score exceeds 0.5. It can
be seen that our model can accurately make predictions
for various scales of defects in the NEU-DET dataset and
GC10-DET dataset, where the GC10-DET dataset has a large
image resolution. The scale of defects spans a great deal,
from tiny targets such as punching-hole with only a few
tens of pixels to those like welding-line that span the entire
picture. For these scales span many defects, our model has
better detection capability, and LFPN incorporates features
of different scales before prediction. The addition of the
ARFFE module makes the feature map increase the feature
information of multiple sensory fields. In addition, the defect
target scale of the PCB defect dataset is microscopic, and our
model still has a good detection effect for such small-scale
targets.

V. CONCLUSION
In this paper, we want to solve the industrial defect
detection problem and improve the detection accuracy
while guaranteeing the inference speed. For this purpose,
we designed our model based on YOLOv3. First, we used
a faster feature extraction network, ShuffleNetv2, to replace
the original DarkNet53. To accommodate defects at different
scales, we designed the ARFFE module to obtain features
for adaptive sensory fields. Then, to improve the fusion
efficiency of multi-scale features, we proposed the LFPN net-
work, which enhances the detection accuracy of the network
by introducing fewer parameters. The experimental results
show that our model reaches 79.23% mAP on the NEU-
DET dataset, which is 9.29% higher than the benchmark
model.Moreover, we validate the generalization ability of our
model on the PCB defect dataset and GC10-DET dataset and
reached 93.31% and 59.78% mAP, respectively. Meanwhile,
our model has the fastest inference speed, reaching 63.24 FPS
on the NEU-DET dataset, which suggests that our model
will be beneficial in real industrial application scenarios. Our
future work will target model size compression, e.g., using
model distillation pruning methods.
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