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ABSTRACT In this research study, we propose an Explainable Artificial Intelligence (XAI) model that
provides the earliest possible global and local interpretation of students’ performance at various stages of
course length. Global and local interpretation is provided in such a way that the prediction accuracy of a single
local observation is close to the model’s overall prediction accuracy. For the earliest possible understanding
of student performance, local and global interpretation is provided at 20%, 40%, 60%, 80%, and 100% of
course length. Machine Learning (ML) and Deep Learning (DL) which are subfields of Artificial Intelligence
(AI) have recently emerged to assist all educational institution’s in predicting the performance, engagement,
and dropout rate of online students. Unfortunately, traditional ML and DL techniques lack in providing data
analysis results in an understandable human way. Explainable AI (XAI), a new branch of Al, can be used
in educational settings, specifically in VLESs, to provide the instructor with the study performance results
of thousands or even millions of online students in a human-understandable way. Thus, unlike black box
approaches such as traditional ML and DL techniques, XAl can help instructors to interpret the strengths
and weaknesses of an individual student, providing them with timely personalized feedback and guidance.
Various traditional and various ensemble ML algorithms were trained on demographic, clickstream, and
assessment features to determine which algorithm gives the best performance result. The best-performing
ML algorithm was ultimately selected and provided to the XAI model as an input for local and global
interpretation of students’ study behavior at various percentages of course length. We have used various
XAl tools to give students’ performance reports to instructors, in an explicable human way, at different
stages of course length. The intermediate data analysis and performance reports will help instructors and all
key stakeholders in decision-making and optimally facilitate online students.

INDEX TERMS Global explainability, local explainability, explainable Al, course length, decision making,
artificial intelligence, personalized feedback, earliest possible intervention, earliest possible interpretation.

I. INTRODUCTION platforms (distance learning, e-learning, Virtual Learning
In the last three decades, the emergence of the Internet Environments (VLEs), mobile learning (M-learning)) [1].
has played a crucial role in the use of online learning In VLEs, there are no temporal or unique constraints;

therefore, they encourage and favor those students to enroll
The associate editor coordinating the review of this manuscript and who Cann.Ot afford to take physical classes. With the advent
approving it for publication was Tony Thomas. of Learning Management Systems (LMS), students are
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provided with easy-to-use asynchronous and synchronous
support tools such as course material in the form of videos,
animations, audio, and text; messaging tools such as emails,
chats, messaging systems, and reference tools such as wikis,
forums, dictionaries, and problems solutions [2]. By mining
the LMS logs, students’ study behavior and performance
in the enrolled course can be elicited and their interactions
with the LMS can be analyzed.

In VLEs, students interaction includes the number of times
the student logged into the system, learning time, learning
duration, the number of times a particular course material
has been accessed, online forum participation, interaction
with the instructor in the form of messages, repetition rate,
problem-solving rate, and the number of times a quiz was
taken. Analyzing students’ learning behavior is essential
as it helps instructors provide tailored learning content,
personalized feedback, and assistance at the optimal time,
thus, keeping students on the right track. Providing timely
feedback and personalized learning materials can also help
reduce the number of students at risk of dropout or failure.
Therefore, Educational Data Mining (EDM) can help all the
stakeholders involved in online learning, such as students,
administrators, instructors, and coordinators, make the right
decisions at the right time.

Educational Data Mining (EDM) usually uses Al tech-
niques and algorithms to train computers to understand
the learning behavior of different students [3], [4], [5].
Online learning platforms can track every interaction of
students with the registered course, thus providing abundant
data for Al techniques to process and report on students’
study behavior and ultimately improve their performance.
Al techniques with the availability of historical interaction
data can help instructors know students’ learning behavior at
various stages of course length, even at the beginning of the
course, provided that student background and demographic
information are available [6], [7]. Previous studies have
proved that ML and DL, subfields of AI, can be used
to analyze students’ historical data and provide valuable
insight [8], [9]. In general, these studies use ML and DL
techniques to predict students’ dropouts, success, failure,
engagement intensity, answer correctness prediction, and
performance [10], [11], [12], [13], [14]. In these studies,
primarily, the prediction is performed at the end of the
course length. The prediction results are then used to motivate
and encourage students to improve their performance in the
upcoming semester. The drawback of predicting the students’
performance at the end of the semester is that students are
not motivated in their current semester, which can result in
students’ early dropout. Few studies have been conducted
that try to predict students’ performance right from the start
of the course length [15], [16]. Subsequently, the earliest
possible intervention is possible, which can encourage
students to stay on the right path. In addition to predicting
students’ performance, visualization techniques are now
commonly used to observe students’ learning behavior [17].
Numerical methods assist instructors in knowing about minor
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learning habits and can be used to unveil unknown hidden
learning strengths and weaknesses [18]. Moreover, students
can be classified into various groups according to their
performance to provide adaptive and personalized learning
content [19], [20].

Developing an XAl predictive model that can interpret and
predict students’ learning behavior as early as possible in the
registered course is challenging. Creating an XAl predictive
model that can identify students’ at-risk of failure and
explaining to the instructors the main causes of failure in an
easy and human-understandable way can lead to developing
a system that provides intelligent feedback and suitable
action recommendations to support students in self-regulated
studies. Creating an explainable AI model is supported
by USA Defense Advanced Research Projects Agency
(DARPA). XAI scientific challenge launched in 2016 stated
that current Al systems; however, they have many benefits in
different fields, but most lack in explaining their decisions to
humans in a simple way [21]. When adequately developed
and implemented, XAl systems promise to benefit people
through explainability, interpretability, and transparency [22],
[23]. Apart from education, other domains such as defense,
health, finance, and law need XAI systems because it is
crucial to understand the decisions and build trust in XAI
systems [24], [25].

Currently, ML and DL techniques are used by researchers
to make data-driven decision-making systems. But most
ML/DL algorithms that are used today to extract information
from the data mostly follow the black box approach [26].
Researchers and practitioners who know the hidden working
mechanism of ML and DL techniques understand how they
work and make decisions. However, ordinary people using
these automated systems struggle to know how a particular
decision is made and therefore are reluctant to trust Al-based
automated systems [27]. Whether in education or any
other sector, ordinary people need to explain how Al-based
system develops, works, and makes decisions. Therefore,
XAI models try to explain or justify how Al models make
predictions. Moreover, once the internal working of the model
is known, then the working methodologies of the model can
be improved in the future for its performance improvement.
Apart from the field of academia and online learning, the use,
and applications of XAl are ubiquitous such as in the area of
machine vision [28], machine hearing [29], natural language
processing [30], robotics process automation [31], natural
language generation [32], machine translation [33], speech
synthesis [34], optical character recognition [35], handwrit-
ing recognition [36], image processing and recognition [37],
facial recognition [38], health [39], self-driving cars [40],
pattern recognition [41], and online fraud detection [42], etc.

Traditional ML models act like a black box where input
is given in the form of features, and the models try to
inspect or understand the steps taken while making decisions.
For example, features associated with an online learner are
provided and processed by an ML algorithm. Most of the
time, these ML/DL algorithms work like a black box, and
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a decision or prediction is made on the success or failure
of an online learner in the future. The decision, in this
case, is binary, and the algorithm just outputs whether
the student will be successful or unsuccessful. On the
other hand, XAI models also provide reasons or explana-
tions in a human-understandable way on why a specific
student will be successful or unsuccessful. The reasoning
or explanation power gives XAl several advantages over
traditional ML approaches. XAl models encourage VLEs
stakeholders to make crucial decisions without hesitation as
the automated process is transparent and interpretive. In the
future, instructors can tell students about the reasons based
on which recommendations and feedback were provided
to them. XAI models can also encourage instructors to
provide targeted recommendations based on students’ VLE
interaction information and performance.

While deploying and implementing ML models, there is
often a tradeoff between model accuracy and interpretabil-
ity [43]. It has been noticed that complex models such as
neural networks (Feed-Forward Neural Networks (FENN),
Long Short-Term Memory (LSTM), Convolutional Neural
Networks (CNNs), Recurrent Neural Networks (RNN), and
transformers) have high performance on large datasets and
low interpretations [44]. On the other hand, simple models
such as linear models, Decision Trees (DTs), and Support
Vector Machines (SVMs) provide high interpretations about
their predictions and face lower performance [45]. Therefore,
the designers should know which ML and DL model to
choose that is interpretive and has high performance. Gener-
ally, ensemble models such as Random Forest (RF), adaptive
boosting, gradient boosting, and Extreme Gradient Boosting
(XGB) show acceptable performance and interpretation [46].

There are numerous XAI toolsets and libraries with
pros and cons, but researchers can use them according
to their needs and depending on which ML/DL algorithm
they use. Currently, popular XAI toolsets include Local
Interpretable Model-agnostic Explanations (LIME) [47],
Layer-Wise Relevance Propagation (LWRP) [48], and XEMP
Prediction Explanations [49], DeepLIFT [50], and Shapley
Additive exPlanations (SHAP) [51]. LIME targets DL and
supervised ML models in their current state. It can provide an
acceptable explanation for any given supervised ML model
by separately treating it as a black box. LWRP is one of
the most protuberant and prominent frameworks used in
XAI. LWRP targets layered neural networks such as CNN,
RNN, Artificial Neural Networks (ANNs), and LSTMs. For
example, if a neural network envisages cancer identification
from a mammogram, then the description given by LWRP
would be a map of which picture element in the original image
contribute to the judgment and what magnitude.

XEMP-based XAl toolsets differ from others in their abil-
ity to generate prediction explanations for multi-class classi-
fication problems. The disadvantage of using XEMP-based
toolsets is that computing prediction explanations classi-
fication task is resource intensive. The main components
of XEMP-based toolsets include computation inputs,
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prediction threshold values, prediction explanations preview,
and calculators to compute explanations for fully designated
predictions. Deep Learning Important FeaTures (DeepLIFT)
mainly uses reference activation and compares the activation
of each neuron to it. Furthermore, a contribution score is
assigned to each neuron according to how much there is
a difference between each neuron’s activation value and
reference activation value. DeepLIFT methods can also
divulge necessary dependencies and features that other XAl
methods could not provide. As the name suggests, DeepLIFT
mainly targets interpreting deep neural network models such
as ANN, CNN, RNN, LSTM, and transformers. SHAP open
source library, developed by Microsoft, is implemented to
explain the working of the ML/DL models using shapely
values. SHAP can primarily explain ensemble models such
as tree ensembles using an API called TreeSHAP.

A DL models explanations can also be provided using an
API called deepSHAP. In a scenario where it is unknown
what form of the algorithm a model is using, especially for
a model-agnostic explanation, a toolset called KernelSHAP
can be used. Therefore, the SHAP library can target linear,
tree, DL, and multi-stage combinations of models such
as transformers and LSTM. The concepts used by SHAP
for model explanations are inherited by the game theory,
mainly composed of two components, i.e., a game and
some players. The players act like features provided to the
model, and the game is responsible for producing the model’s
outcomes. While using SHAP, the importance of each player
is determined by shapely values, which are based on the idea
that the outcome of each possible coalition of players should
be considered to assess the impact of each player on the
output values.

Some other objectives of this research work include:

« To predict the students’ performance at various percent-

ages of course length.

o To determine the features the ML model thinks are

important and impact the overall decision.

o Local explainability: How is a particular prediction by

the model affected by each feature?

« Global explainability: How is each feature’s prediction

affected by a generalized ML model?

o What is the effect of each feature when a larger number

of predictions are considered?

Moreover, the study will facilitate research and data
scientists to perform debugging tasks quickly, build trust,
oversee future data collection, and help instructors make the
right decision.

The rest of the paper is organized into various sections.
Section II discusses previous studies related to the application
of machine learning in predicting students’ performance
i.e., predicting at-risk students, engagement predictions,
predicting performance at the end of the course, and earliest
possible performance prediction. Section III describes the
dataset used in this research study. Section IV is about
the various experiments carried out for the earliest possible
prediction and interpretation of online students’ study
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behavior. Section V concludes this research study along with
its limitations and future work.

Il. BACKGROUND AND RELATED STUDIES

This section analyzes the previous studies that were carried
out in the area of Artificial Intelligence in Education
(AIE), EDM, XAI in education, and Learning Analytics
(LA). The objective is to study how AI, ML/DL, and
XAI techniques were used in determining the learning
behavior of online students and what measures were taken
to improve their performance. This section is further
divided into different sections according to various studies
carried out in determining students’ online engagement,
students’ dropout, students’ performance prediction, and next
answer correctness prediction while using XAl and ML/DL
techniques.

A. STUDENTS’ ONLINE ENGAGEMENT PREDICTION

Using online logging data and clickstreams to gain insight
into the learning engagements of online students is a vital
and challenging task. Knowing about the earlier learning
engagements leads to designing a compelling and actionable
predictive model that could be used for timely intervention.
In [52], the authors extracted important learning features
from students’ interaction data to determine their engagement
intensity. Based on these features, the TrAdaBoost-based
transfer learning model was proposed. The model was
trained on previous course interaction features and was
used in the current study semester to determine the model’s
generalization ability and predict new students’ engagement
behavior. The experimental results revealed that the model
achieved high precision and accuracy even when the recent
data was insufficient to train the model. Moreover, the model
effectively assisted instructors in helping students at risk of
dropout and failure.

In VLE, it is essential to distinguish between course
completers and non-completers for tailored and relevant rec-
ommendations and feedback [5]. The difference between the
two groups can be revealed by examining their engagement
features in their logins, logouts, clicks, time duration, study
time, preferences, etc. A learning analytics method was
used in [53] to examine four online courses with identical
pedagogical models. In all 13 considered features, the study
results revealed a significant difference between the online
engagements of students who completed the course and those
who did not. Successful students’ engagement intensity was
twice as high as unsuccessful students except for posting
problems on online forums. The study proves that success in
the final examination is directly related to students’ online
engagement in various activities of the online registered
course.

A significant problem that online learning environments
(such as Coursera, udemy, udacity, Edx, etc.,) face is
the retention of students once they have registered for a
particular course. Research studies reveal that the reason
behind discontinuing an online course is that students
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primarily take courses for skills improvement and not for
getting completion certificates. Therefore, students leave that
course when a problem is solved, or a skill is mastered.
It has been observed that dropout is the most concerning
factor in the continuity of an online course. Educators
and researchers have studied the significant reasons behind
students’ dropout by analyzing their academic information
and online learning behavior. Subsequently, various learning
models and strategies have been proposed to reduce students’
dropouts and improve their study behavior. A study carried
out by [10] noticed that dropout prediction is a time-series
problem, which needs students’ continuous modeling daily,
hourly, or even every minute. The proposed model integrated
the regularization term into a logistic regression model.
The other proposed model was the Input-Output Hidden
Markov Model IOHMM), which achieved an accuracy of
84% in predicting students at risk of dropout compared to the
baseline ML/DL models.

In another interesting work, A. Kaur et al. [54] carried out a
study in which students’ online engagement was extrapolated
from their facial expressions, such as body movements,
gaze patterns, and facial expressions. The variations in
students’ engagement were recorded, and various features
were extracted to reveal students’ behavior while they
were watching educational videos. Subsequently, students’
engagement level was associated with subject behavior
features, and different output labels annotated the features.
A deep multiple-instance learning framework was proposed
to detect online students’ engagement intensity at various
stages of video length. The framework can then be used by
VLEs and Massive Open Online Courses (MOOCs) to design
course video material.

B. STUDENTS’ PERFORMANCE PREDICTION

Various studies have been carried out that predict students’
online performance in two ways, i.e., predicting students’
performance at the end of the course and the earliest possible
prediction of students’ performance in the registered class.
The following section discusses studies related to both
practices.

1) STUDENTS’ PERFORMANCE PREDICTION AT THE END OF
THE COURSE

Most studies that leverage ML/DL techniques predict stu-
dents’ performance at the end of the course length [20],
[55]. There are advantages and disadvantages to predicting
students’ performance at the end of the course. One main
advantage of using ML/DL techniques to predict students’
performance at the end of the course length is that ML/DL
algorithms are provided with enough data to train them
and to make them more generalizable. At the end of the
course length, there is enough data about online students’
interactions which ML/DL algorithms can use to determine
the strength and weaknesses of students during their study.
A trained and generalizable model is then ready to be tested
on the same students in the next course or on new students
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in the same course. The disadvantage of predicting students’
performance at the end of the course length is that instructors
are unable to perform the earliest possible performance
prediction in the current course for needed support and
feedback. Due to a lack of proper feedback, students may
drop out earlier in the course.

Ghorbani and Ghousi [19] compared various resampling
techniques such as Random Over Sampler, SMOTE-Tomek,
SVM-SMOTE, SMOTE-ENN, and Borderline SMOTE to
predict students’ performance using two different datasets
while also handling imbalanced data problems. Additionally,
various ML/DL algorithms such as Naive Bayes, Logistic
Regression, Decision Trees, SVMs, XG Boost, and ANNs
were used to check which resampling technique shows better
performance. The results revealed that the model trained
using nominal features and fewer classes for classification
will generate better results. Moreover, the model delivers
better results when trained on a balanced dataset than a
model trained on an imbalanced dataset. When conducted,
the Friedman test confirmed that SVM-SMOTE is an efficient
resampling method, and the Random Forest (RF) model
achieved the best results compared to other models.

Most research studies used supervised ML/DL tech-
niques to create learning models and to study students’
characteristics inducing their performance and preferences.
The reason for using supervised ML/DL techniques in
eliciting students’ performance is due to the nature of
their learning features. Independent variables include study
time, duration, preferences, number of logins/logouts, online
participation, and preferred learning material. In contrast,
students’ final performance is a dependent variable that
supervised ML/DL algorithms try to predict. Due to the
interrelation between independent and dependent features,
supervised types of ML/DL techniques are used in EDM.
Besides the supervised ML/DL techniques, numerous studies
have been carried out that use unsupervised and semi-
supervised ML/DL methods to predict students’ performance
at the end of their final examinations. A research study
carried out by [56] examined and evaluated two wrapper
methods in conjunction with semi-supervised methods for
predicting students’ performance at the end of the course
length. The study showed that semi-supervised ML/DL
techniques could be utilized to create a trustworthy predictive
model. Moreover, classification accuracy and precision can
significantly be improved by using fewer label features and
many unlabeled features. Finally, more accurate supervised
models can be trained on the already clustered data by
semi-supervised or unsupervised ML/DL methods.

X. Xu et al., [57] highlighted some key factors that can be
considered to know how students’ academic performance can
be predicted and differentiated from Internet usage behavior.
Moreover, some new metrics were proposed that can be
utilized to evaluate and assess students’ academic perfor-
mance. The study showed that behavior discipline plays a
pivotal role in students’ academic success, and the prediction
accuracy of the ML model can be increased by adding
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more features. Internet-connection frequency variables are
positively associated with academic performance, whereas
Internet traffic intensity variables are adversely related to
academic achievement.

During the COVID-19 pandemic, remote learning was
widely adopted at all education levels, especially at the
university level. The sudden adaptation to the new learning
environment initiated many hidden and unseen problems
for online students. In a short time, it was difficult for the
VLEs stakeholders to understand the factors that impact
student performance. Ho IM et. al. investigated important
features that influence the performance and satisfaction of
undergraduate students who have adopted emergency remote
learning while using Microsoft Team and Moodle as key
learning means [58]. Using the RF recursive features elimina-
tion process, a comparison between various ML models and
multiple regression models was made, considering predictive
accuracy as a key metric. The results showed improved
accuracy in all ML and all multiple regression models, with
the elastic net regression model being the most accurate one
with 65.2% explained variance.

2) EARLIEST POSSIBLE PERFORMANCE PREDICTION IN THE

CURRENT SEMESTER

Although there are numerous advantages of VLEs plat-
forms, they also face critical challenges such as develop-
ing self-regulated learning behavior, low engagement, low
motivation, high dropouts, and forcing students to set their
own goals. A study conducted in [6] aimed to predict the
earliest possible performance of online students’ by dividing
the course length into six parts. The student’s performance
was predicted at 0%, 20%, 40%, 60%, 80%, and 100% of
course completion, thus facilitating instructors to perform a
timely intervention to avoid student early dropouts. The study
showed that time-dependent features, engagement intensity
in the form of click stream data, and assessment scores were
significant factors in determining students’ online behavior.
When trained using the RF algorithm, the predictive model
gave the best score regarding accuracy, recall, precision,
and F-score.

Another research study carried out by [59] utilized various
ML techniques to predict and identify possible failing
students early in the course, i.e., at week 4 of the semester.
ML models achieved an accuracy of 97.2% for pass-fail
students and 88.0% for failure mode matches. The results
showed that the earliest identification of struggling students
is possible, and ML techniques can be used in an applicable
pedagogical context to support their use in a complete student
support system.

The earliest possible performance prediction and students’
classification are helpful in online learning environments.
It enables university administrators and instructors to man-
age resources and properly help students achieve good
results [43]. The most prominent problem researchers faced
in determining the earliest possible performance prediction
of online students is the lack of big data associated with
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VLE:s in students’ interactions with the online system [60].
But recently, several online learning platforms have made
their data public and anonymous for researchers to help them
identify key learning factors that significantly impact stu-
dents’ learning behavior [61]. With the growing availability
of large datasets associated with online learning platforms,
early students’ performance prediction has become popular
and necessary in recent years.

Moreover, Learning Management Systems LMS can be
used for logging students’ activity data in most academic
institutions. A research study conducted by [62] leveraged
deep learning neural networks called LSTM networks to
analyze students’ online temporal study behavior. Temporal
study behavior relates to analyzing how students perform
every second or every minute. Such problems are also called
time-series problems. The study results indicated that LSTM
networks are very good at identifying students’ time-series
behavior compared to conventional ML models. Time series
data such as students’ clickstreams successfully facilitated
LSTM networks for the earliest possible detection of students
at risk of failure or dropout. Additionally, DL models have
stronger generalizability and higher performance scores in
time-series-related problems than traditional ML algorithms.

In other related work, D. Baneres et al. [63] proposed
an early warning system. It displayed the students’ states
through dashboard visualization for students and teachers.
Subsequently, an early feedback prediction system was
developed to help instructors to perform personalized inter-
ventions, thus reducing the risk of students’ early dropouts.
When evaluated, the early warning system successfully
identified students at risk of failure with acceptable accuracy
and spotted the most common features that trigger dropouts.

Continuous research and advances in ILS, LMS, VLE,
and MOOCs promise to develop and produce autonomous
learning systems that will learn, think, decide, act, and inter-
fere independently. However, one significant inability of the
studies mentioned above is that current ML/DL techniques
are limited by their inherent implementation and methodolo-
gies to explain their working, decision-making, and action to
humans in a simple and understandable way. Explainable Al
(XAI) techniques, technologies, and associated tools promise
to make ML/DL techniques understandable, trustworthy,
and manageable for ordinary humans. A study related to
developing an interpretable model by utilizing explainable
Al was carried out by Kostopoulos et. al. [64]. In the study,
an interpretable model was created for the earliest possible
prediction of MOOCs certificate completion. The results
revealed that Light Gradient Boosted Machine, Logistic
Regression, and Gradient Boosting models showed the best
results in terms of accuracy, AUC curve, recall, precision,
F1-score, and Kappa and Matthews correlation coefficient.
Another study was carried out by Alwarthan et al. [65]
in which an explainable Al model was developed for the
identification of students who are at risk of failure in higher
education. The SMOTE-Tomek Link technique was utilized
for balancing the three imbalanced datasets. Finally, LIME
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and SHAP explainable Al techniques were used to interpret
and explain the proposed ML models.

A study related to explainable Al was conducted by
Stamatis K. et al. which utilized a semi-regression algorithm
for predicting and interpreting the grades of undergraduate
students in their final examination in one year course [66].
By utilizing various explainable AI methods, the features that
contributed the most to improving the final performance were
interpreted and analyzed. The experimental results showed
that semi-supervised techniques as compared to supervised
ML techniques can do a better job in the earliest possible
identification of students who are at risk of failure.

In this research study, our main objective is to create an
explainable and predictable ML model (EPMLM) Al (XAI)
model that can describe how students learning behavior is
modeled and how the ML model makes various decisions.
XAI model will help instructors to make timely interventions
and provide feedback to students in a responsible way.
To build instructors’ confidence in VLEs, the instructors
need to retrace and comprehend how the VLE has predicted
the performance of a particular student. The online learning
platforms integrated with AI methods perform the whole
process using a black-box approach that is almost impossible
to interpret. XAI model will assist administrators and
instructors in answering important questions like why a
particular student is at-risk of failure from the start of the
semester, why a student has a low level of engagement, what
essential features play a significant role in student learning,
why a student was intervened and persuaded for improving
their performance, and more importantly XAI model will
build the trust of instructors in how it has made a particular
decision.

Ill. DATASET DESCRIPTION

For determining the earliest possible interpretation of stu-
dents’ study behavior and performance, a freely accessible
dataset available at https://analyse.kmi.open.
ac.uk/open_dataset, provided by Open University,
UK, and certified by Open Data Institute http://
theodi.org/, was utilized. The dataset consists of
students centered data such as students’ online interac-
tions, students’ assessments scores, registration information,
students’ demographics, course information, and students’
clickstreams. The data is spread across 7 tables representing
various entities and are connected through key identifiers.
Students’ interactions with the VLE are stored in the form
of clickstream data in the student VLE table, whereas
information about students’ assessments scores is stored
student assessment table. The dataset contains information
about 7 courses and 22 modules with 32,593 registered online
students. The students’ demographics include students’ 1D,
gender, immigration band, highest education, age band,
number of previous attempts, credit hours already studied,
disability, region, and final score. Throughout the course,
students submit various assessments related to each course
module and are evaluated by assessment scores. Table 1
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TABLE 1. Features along with their descriptions used for training various ML models. The important features included assessment scores, clickstream

statistics, and demographic features.

Features Description
Assessment Score Student score in an assessment i.e., quiz, assignment, etc.
Weighted Cumulative Weighted Cumulative Score at 20%, 40%,
Score (CS) 60%, 80%, and 100% of course length.
Percentage Weighted Percentage Weighted Cumulative Score at 20%, 40%,

Cumulative Score (PCS)

60%, 80%, and 100% of course length.

Late

Assessment submission (LA)

Late Assessment submission (LA) Score at 20%,
40%, 60%, 80%, and 100% of course length.

Average of the assessment

the raw score (RS)

Average of the assessment raw score (RS) at 20%,
40%, 60%, 80%, and 100% of course length.

The sum of clicks
per course module (SC),

The sum of clicks per course module (SC) at
20%, 40%, 60%, 80%, and 100% of course length.

Average clicks
per course module (AC)

Average clicks per course module (AC) at 20%,
40%, 60%, 80%, and 100% of course length.

Mean Clicks per Mean Clicks per course module (MC) at 20%,
course module 40%, 60%, 80%, and 100% of course length.
Student Id For student unique identification.

Gender Whether a student is male or female

Immigration Band

Indicates the depravity band of the area where the student

stayed for the duration of the module presentation

Highest Education

The highest education the student has before
registering for a course.

Age Band

Indicates the student’s age

Number of Previous attempts

The number of times the student has taken this course

Studied credits

The total number of credits the student has taken before
taking the current module representation.

Region To which area student belongs
Disability Indicates whether the student has a disability or not.
Final Score The final score in the registered course.

hlpresents the features along with their descriptions used for
modeling various ML algorithms.

A. DATA PREPROCESSING

For the earliest possible interpretation of students’ study
behavior and the creation of efficient ML models, all missing
values, outliers, and noise data were either removed or
replaced by their average value. As students’ performance
was evaluated at various stages of course length, it was
ensured that essential features such as assessments date had
no invalid information, and the mean values replaced the
missing dates.

B. FEATURE ENGINEERING

We extracted some more features from the existing features
to show students’ interaction activities to instructors in a
simple and human-understandable way. These features were
extracted at 20%, 40%, 60%, 80%, and 100% of course
length. The features included Weighted Cumulative Score
(CS), Percentage Weighted Cumulative Score (PCS), Late
Assessment submission (LA), the average of the assessment
Raw Score (RS), the sum of clicks per course module (SC),
Average clicks per course module (AC). We also predicted the
students’ performance by using only demographic features.
To summarize, students’ performance was determined and
predicted using only demographic features, 20%, 40%, 60%,
80%, and 100% course completion data. This way, it would
be easier for instructors to investigate the insight of students’
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study behavior right from the start of the course and at various
lengths. The new extracted features included Weighted
Cumulative Scores (CS20, CS40, CS60, CS80, CS100),
Percentage Weighted Cumulative Score (PCS20, PCS40,
PCS60, PCS80, PCS100), Late Assessment submission
(LA20,LA40,LA60,LLA80,LA100), Assessment Raw Score
(RS20, RS40, RS60, RS80,RS100), Sum of Clicks per course
module (SC20, SC40, SC60, SC80, SC100), and Mean Clicks
per course module (MC20, MC40, MC60, MC80, MC100).
More information about these features is presented in table 1.

IV. METHODOLOGY

The workflow diagram in figure 1 shows the different
phases of the methodology. In phase 1, six traditional ML
models were utilized to predict students’ performance at
various stages of course lengths. The six traditional ML
models included logistic regression, Stochastic Gradient
Descent (SGD) classifier, gaussian Naive Bayes (NB),
K-Nearest Neighbor (KNN), Decision Tree (DT) classifier,
and linear Support Vector Classifier (SVC). Training various
traditional ML models determined which model gives the
best results for predicting students’ performance at different
percentages of course lengths. The models were trained on all
independent features, including demographic, clickstream,
and assessment scores. The models were also trained after
performing features merge operations where the Distinction
and Pass classes were combined into the Pass class, and the
Fail and Withdrawn classes were combined into the Fail class.
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FIGURE 1. Earliest possible local and global interpretation of students’ performance by utilizing the RF and XAl models.

For training and testing the various traditional ML models,
the dataset was split into training and testing sets by an 80:20
percent ratio i.e., 80% data was used for training the models
whereas 20% data was used for testing the models. Moreover,
to avoid models suffering from the underfitting problem, the
k-fold cross-validation technique was used with the value of
k set to 10. Lastly, all the models were trained on 20%, 40%,
60%, 80%, and 100% course data.

In phase 2, we employed six ensemble ML models to
predict students’ performance and various percentages of
course lengths. The six ensemble ML models included Bag-
ging Classifier, Random Forest (RF) Classifier, Extra Tree
Classifier, Gradient Boosting, Adaptive Boosting Classifier,
and Voting Classifier. Similar to traditional ML models,
the purpose of training various ensemble models was to
determine which model gives the best results in terms of
accuracy, precision, recall, and f-score at various percentages
of course lengths. First, all six ensemble models were
trained on all 45 independent features (features related to
demographic, clickstream, and assessment). Secondly, the six
ensemble models were also trained after the feature merge
operation. Moreover, all ensemble models were trained on
only demographic features, and on 20%, 40%, 60%, 80%, and
100% of course data. Lastly, the best multiclass classification
algorithm is selected for local and global interpretation where
the XAI model explains how a particular decision was made
or how a specific prediction was performed.

In phase 3, we used explainable Al to perform the
earliest possible interpretation of students’ study behavior.
Various explainable Al (XAI) tools and methods were used
to interpret students’ study behavior at different phases of
course length. In phase 4, an XAI model was created using
demographic and clickstream data. In phase 5, the XAI
model was improved by incorporating students’ assessment
scores. Phase 6 discusses global explainability, where various
confusion matrices were generated to explain the overall
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performance of the RF model. Phase 7 discusses local
explainability, where the XAI model was created to delineate
the performance of the RF model on a single observation at
20%, 40%, 60%, 80%, and 100% course length.

A. PHASE 1, BLACK BOX APPROACH: USING
TRADITIONAL ML ALGORITHMS FOR PREDICTING
STUDENTS’ PERFORMANCE AT VARIOUS STAGES OF
COURSE LENGTH
Before providing features to ML algorithms, some nec-
essary preprocessing steps were performed. The students’
demographic table was merged with the assessment table.
The demographic table contained features such as code
module, code presentation, student id, gender, region, highest
education, immigration band, age band, number of previous
attempts, studied credits, disability, and final result score. The
assessment table contained features such as code_module’,
code_presentation, id_student, CS20, CS40, CS60, CS80,
CS100, PCS20, PCS40, PCS60, PCS80, PCS100, LS20,
LS40, LS60, LS80, LS100, RS20, RS40, RS60, RS80,
RS100, date of registration. Furthermore, students’ click
stream information stored in the VLE table was also merged
with the student demographic table using the left join
operation. The VLE table consisted of the code module,
code presentation, student id, sum clicksO, sum clicks20,
sum clicks40, sum clicks60, sum clicks80, sum clicks100,
mean clicksO, mean clicks20, mean clicks40, mean clicks60,
mean clicks80, and mean clicks100. As mentioned earlier, the
numbers 0, 20, 40, 60, 80, and 100 represent course length at
0%, 20%, 40%, 60%, 80%, and 100% of the course module.
The merging operation resulted in the formation of the final
table called student_info, which consisted of 45 columns,
of which 44 were independent, and one feature called final
score was dependent.

Whether they are traditional ML multiclass classification
algorithms, ensemble multiclass classification algorithms,
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TABLE 2. Performance scores of six traditional ML algorithms when trained on all 45 features.

Precision LogisticRegression =~ SGDClassifier =~ GaussianNB ~ KNearestNeighbor  DecisionTreeClassifier =~ LinearSVC
Distinction ~ 0.013522 0.221473 0.326298 0.281521 0.436544 0.171850
Fail 0.149760 0.272962 0.252544 0.452503 0.418797 0.191031
Pass 0.933838 0.565594 0.818399 0.749672 0.710565 0.355915
Withdrawn  0.837500 0.713396 0.841990 0.623348 0.692182 0.777463
Averaged 0.834450 0.806309 0.722552 0.605935 0.613550 0.750563
Recall LogisticRegression = SGDClassifier = GaussianNB  KNearestNeighbor  DecisionTreeClassifier =~ LinearSVC
Distinction ~ 0.399506 0.170071 0.472019 0.311897 0.423352 0.058632
Fail 0.416987 0.487659 0.421564 0.408864 0.404329 0.475432
Pass 0.647697 0.619832 0.723662 0.690237 0.726229 0.650492
Withdrawn ~ 0.700156 0.696924 0.695402 0.733440 0.697638 0.521749
Averaged 0.648728 0.514441 0.657657 0.602522 0.616329 0.432943
F-score LogisticRegression =~ SGDClassifier =~ GaussianNB ~ KNearestNeighbor  DecisionTreeClassifier =~ LinearSVC
Distinction  0.026070 0.075876 0.384997 0.295688 0.429463 0.081371
Fail 0.220034 0.239087 0.315690 0.429422 0.411345 0.202777
Pass 0.764848 0.486444 0.768051 0.718683 0.718255 0.387223
Withdrawn ~ 0.762657 0.674241 0.761682 0.673848 0.694865 0.548618
Averaged 0.719691 0.575717 0.682546 0.602110 0.614775 0.496987
Accuracy LogisticRegression = SGDClassifier = GaussianNB  KNearestNeighbor  DecisionTreeClassifier  LinearSVC
Distinction  0.394231 0.178669 0.470897 0.311607 0.423484 0.154537
Fail 0.418319 0.325177 0.421875 0.408631 0.404325 0.368436
Pass 0.647719 0.595968 0.723689 0.690256 0.726251 0.616932
Withdrawn  0.700231 0.638215 0.695429 0.733573 0.697767 0.425159
Averaged 0.648728 0.514436 0.657657 0.602522 0.616329 0.432946
TABLE 3. Performance of traditional ML models after feature merging (Pass and Distinction to Pass, Withdrawn and Fail to Fail).
Precision  LogisticRegression = SGDClassifier  GaussianNB  KNearestNeighbor  DecisionTreeClassifier =~ LinearSVC
Fail 0.885594 0.851161 0.882454 0.897391 0.891028 0.879360
Pass 0.927540 0.891407 0.921391 0.874134 0.870709 0.798653
Averaged  0.906504 0.891603 0.901798 0.886545 0.881548 0.900551
Recall LogisticRegression =~ SGDClassifier = GaussianNB  KNearestNeighbor  DecisionTreeClassifier =~ LinearSVC
Fail 0.931751 0.915074 0.926158 0.888521 0.885128 0.872229
Pass 0.878735 0.851063 0.875084 0.883903 0.877196 0.868030
Averaged  0.905348 0.869696 0.900807 0.886387 0.881416 0.841041
F-score LogisticRegression ~ SGDClassifier GaussianNB  KNearestNeighbor  DecisionTreeClassifier =~ LinearSVC
Fail 0.908058 0.874950 0.903767 0.892915 0.888041 0.862554
Pass 0.902443 0.859432 0.897624 0.878968 0.873907 0.787617
Averaged  0.905271 0.871779 0.900727 0.886420 0.881441 0.855064
Accuracy LogisticRegression SGDClassifier GaussianNB  KNearestNeighbor  DecisionTreeClassifier ~ LinearSVC
Fail 0.931764 0.897309 0.926197 0.888544 0.885124 0.829886
Pass 0.878741 0.842034 0.875108 0.883923 0.877210 0.855194
Averaged ~ 0.905348 0.869696 0.900807 0.886387 0.881416 0.841039

or neural networks, all types of ML/DL algorithms require
the features to be encoded appropriately into numerical forms
for better model training and deployments. The label encoder
technique converted all the features with categorical data into
a numerical form. The dependent feature called final_result
was having four classes, i.e., Pass, Withdrawn, Fail, and
Distinction. The final_result was also encoded, and numerical
representations were assigned to each class (‘Pass’: 2,
‘Withdrawn’: 3, ‘Fail’: 1, ‘Distinction’: 0). After all the
independent and dependent features were encoded correctly,
we used six conventional ML algorithms for modeling
students’ online study behavior and for predicting their
performance at different stages of the course. Six tradi-
tional multiclass classification algorithms included logistic
regression, SGD classifier, Gaussian Naive Bayes (GNB),
K-Nearest Neighbor (KNN), DT classifier, and Linear SVC.
All 6 ML models were evaluated in terms of precision, recall,
f-score, and accuracy. The score for distinction, fail, pass,
and withdrawn classes were also averaged to determine the

VOLUME 10, 2022

models’ overall performance. Table 2 shows the performance
score of all six models when trained on all 45 features.
We noticed that the logistic regression classifier showed
the best results regarding precision and f-score, whereas
GNB showed the best results regarding recall and accuracy.
Overall, the pass class had the best results in terms of
precision, recall, f-score, and accuracy.

We noticed that the performance results of all predictive
models for the Fail class were low. Students belonging to
the Fail class are our foremost concern in this study as they
are at risk of dropping out and need timely intervention
and guidance. To further increase the predictive performance
of all six models, we merged the Distinction class with
the Pass class and the Fail class with the Withdrawn class,
as these classes are almost similar. In table 3, we can observe
a decent increase in the performance of all six predictive
models. The precision, recall, f-score, and accuracy scores
for all six models were greater than 84%, with the logistic
regression model showing the best results and linear SVC
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TABLE 4. Performance of the logistic regression model when trained on demographic data, 20%, 40%, 60%, 80% and 100% course data.

Precision = Demographic data 20% Course 40% Course 60% Course 80% Course 100% Course
Fail 0.671438 0.720716 0.778379 0.833089 0.872076 0.887199
Pass 0.533930 0.808116 0.851772 0.897184 0.912421 0.926526
Averaged  0.613067 0.767006 0.816563 0.865915 0.892205 0.906758
Recall Demographic data  20% Course 40% Course 60% Course 80% Course 100% Course
Fail 0.617029 0.807706 0.854465 0.900535 0.917579 0.930990
Pass 0.592373 0.721190 0.774641 0.827772 0.864392 0.880159
Averaged  0.606510 0.761942 0.813027 0.863314 0.891081 0.905747
F-score Demographic data  20% Course 40% Course 60% Course 80% Course 100% Course
Fail 0.643018 0.761686 0.814608 0.865467 0.894216 0.908550
Pass 0.561546 0.762129 0.811336 0.861043 0.887717 0.902727
Averaged  0.608408 0.761951 0.812952 0.863224 0.890993 0.905672
Accuracy Demographic data 20% Course 40% Course 60% Course 80% Course 100% Course
Fail 0.617036 0.807685 0.854491 0.900559 0917574 0.931028
Pass 0.592299 0.721197 0.774605 0.827756 0.864401 0.880148
Averaged  0.606511 0.761943 0.813027 0.863314 0.891081 0.905747

delivering the lowest performance. Based on best perfor-
mance results, the logistic regression predictive model was
used to predict students’ performance at different course
lengths.

Table 4 shows the performance of the logistic regression
model when trained on only demographic data, 20%,
40%, 60%, 80%, and 100% course data. The course at
various lengths contains data about assessment scores and
clickstream data in the form of students’ interactions with
the VLE. When trained only on demographic data, the
performance score for the logistic regression model was:
averaged precision = 0.613067, averaged recall = 0.606510,
averaged f-score = 0.608408, and averaged accuracy =
0.606511. When trained on 20% of course length, the
results were averaged precision = 0.767006, averaged recall
= 0.761942, averaged f-score = 0.761951, and averaged
accuracy = 0.761943. Training the logistics regression model
only on 20% of course length data gave satisfactory and
reasonable results, which indicated that the earliest possible
prediction of students’ performance is possible even when
only 20% of course data is available. Similarly, when
trained only on demographic data, the logistics regression
model gave more than a 60% performance result score,
which indicated that, to some extent, only demographic data
could also be used to predict students’ performance in the
future. As we provided more course data to the logistics
regression model, its performance improved, and overall we
observed that the averaged prediction accuracy improved
from 0.606511 to 0.905747.

B. PHASE 2, BLACK BOX APPROACH: USING ENSEMBLE
ML ALGORITHMS FOR PREDICTING STUDENTS’
PERFORMANCE AT VARIOUS STAGES OF COURSE LENGTH
Six ensemble ML multiclass classification models selected
for predicting students’ performance at various percentages
of course length included Bagging Classifier, RF, Extra
Tree Classifier, Gradient Boosting, AdaBoost Classifier,
and Voting Classifier. Like traditional ML models, the six
ensemble models were evaluated using precision, recall,
f-score, and accuracy metrics. Table 5 shows the performance
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scores of six ensemble models when trained on all 45 features.
Similar to traditional ML models, initially, the students
were classified into four classes, i.e., Distinction, Fail, Pass,
and Withdrawn. Table 5 shows that overall the gradient
boosting showed superior performance compared to the other
ensemble models, whereas the AdaBoost classifier showed
inferior performance.

To further improve the performance results, a feature
engineering process was carried out where Distinction-Pass
classes were combined into the Pass class, and
Fail-Withdrawn classes were merged into the Fail class.
Table 6 displays the results of six ensemble multiclass
classification models after performing the feature merging
process. We noticed that the performance of all six models
improved significantly. Interestingly all six ensemble models
showed similar performance results when considering
precision, recall, f-score, and accuracy metrics.

For brevity, we selected the RF model to further predict
students’ performance at various stages of course length.
Table 7 illustrates the performance score of the RF model
when trained only on demographic data, 20%, 40%, 60%,
80%, and 100% course data. Overall, the average accuracy
score improved from 0.594146 to 0.919615. We noted that
the RF model’s performance results are very similar to the
traditional logistic regression model.

C. PHASE 3. EARLIEST POSSIBLE INTERPRETATION OF

STUDENTS’ STUDY BEHAVIOR USING EXPLAINABLE Al

The primary objective of XAl systems is to make the deci-
sions taken by ML models transparent and understandable
to Al experts and non-Al experts to become trustworthy and
reliable. That is, an ordinary person should know how and
why an Al system makes a particular decision. We selected
the RF ensemble classifier to build XAI models to show the
effectiveness of various XAl methods and tools in assisting
instructors in understanding model prediction results. Dif-
ferent XAI models were created using only demographic
data, clickstreams + demographic data, and assessments +
clickstreams 4 demographic data. An XAI model was also
created after combining the final four performance classes,
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TABLE 5. Students’ performance classification into Distinction, Fail, Pass, and Withdrawn categories using ensemble models by using all 45 features.

Precision BaggingClassifier =~ RandomForest ExtraTreeClassifier = GradientBoosting AdaBoostClassifier ~ VotingClassifier
Distinction ~ 0.498434 0.449708 0.485215 0.509112 0.451298 0.030130
Fail 0.389022 0.366775 0.383562 0.369181 0.351721 0.226109
Pass 0.881080 0.903020 0.894277 0.896714 0.843484 0.959436
Withdrawn  0.807744 0.830788 0.817817 0.840972 0.717170 0.853178
Averaged 0.753523 0.775948 0.765940 0.778854 0.701279 0.848886
Recall BaggingClassifier =~ RandomForest ExtraTreeClassifier = GradientBoosting AdaBoostClassifier  VotingClassifier
Distinction ~ 0.624846 0.655595 0.654716 0.666897 0.535540 0.483140
Fail 0.554160 0.580294 0.569537 0.593800 0.457549 0.546345
Pass 0.762992 0.756147 0.761434 0.765135 0.745608 0.684307
Withdrawn ~ 0.748883 0.746810 0.749455 0.748316 0.698050 0.712705
Averaged 0.716258 0.722364 0.721996 0.729267 0.662074 0.681404
F-score BaggingClassifier =~ RandomForest ExtraTreeClassifier = GradientBoosting AdaBoostClassifier ~ VotingClassifier
Distinction ~ 0.554431 0.532722 0.556844 0.577207 0.489398 0.056508
Fail 0.456762 0.449277 0.458180 0.455183 0.385507 0.319412
Pass 0.817772 0.823015 0.822458 0.825661 0.791497 0.798808
Withdrawn  0.777095 0.786447 0.782036 0.791895 0.701563 0.776572
Averaged 0.729862 0.740824 0.737476 0.746474 0.676053 0.743439
Accuracy BaggingClassifier = RandomForest ExtraTreeClassifier GradientBoosting AdaBoostClassifier  VotingClassifier
Distinction  0.625207 0.654791 0.654343 0.667532 0.536374 0.489362
Fail 0.553561 0.579915 0.569234 0.593572 0.442506 0.545704
Pass 0.763049 0.756182 0.761452 0.765153 0.745566 0.684344
Withdrawn ~ 0.748973 0.746857 0.749526 0.748379 0.698985 0.712793
Averaged 0.716258 0.722364 0.721996 0.729267 0.662075 0.681404
TABLE 6. Performance result of six ensemble ML models after feature merging process.
Precision  BaggingClassifier =~ RandomForest ExtraTreeClassifier = GradientBoosting AdaBoostClassifier  VotingClassifier
Fail 0.900634 0.900055 0.899094 0.895553 0.894547 0.887466
Pass 0.952498 0.953348 0.953927 0.956230 0.942826 0.949764
Averaged 0.926695 0.926862 0.926726 0.926274 0.918729 0.919114
Recall BaggingClassifier = RandomForest ExtraTreeClassifier = GradientBoosting AdaBoostClassifier  VotingClassifier
Fail 0.954952 0.955685 0.956194 0.958069 0.945839 0.951814
Pass 0.895490 0.895020 0.894142 0.891057 0.888789 0.882937
Averaged  0.925107 0.925199 0.924953 0.924156 0.917283 0.916853
Recall BaggingClassifier =~ RandomForest ExtraTreeClassifier =~ GradientBoosting AdaBoostClassifier  VotingClassifier
Fail 0.954952 0.955685 0.956194 0.958069 0.945839 0.951814
Pass 0.895490 0.895020 0.894142 0.891057 0.888789 0.882937
Averaged 0.925107 0.925199 0.924953 0.924156 0.917283 0.916853
Accuracy BaggingClassifier = RandomForest ExtraTreeClassifier GradientBoosting AdaBoostClassifier  VotingClassifier
Fail 0.954957 0.955695 0.956180 0.958095 0.945865 0.951820
Pass 0.895502 0.895039 0.894169 0.891090 0.888780 0.882954
Averaged ~ 0.925107 0.925199 0.924953 0.924155 0.917283 0.916853

TABLE 7. Performance result of the RF model on demographic data, 20%, 40%, 80%, and 100% course data.

Precision

No Clickstream, Assessment

20% Course

40% Course

60% Course

80% Course

100% Course

Fail

Pass
Averaged
Recall
Fail

Pass
Averaged
F-score
Fail

Pass
Averaged
Accuracy
Fail

Pass
Averaged

0.649044
0.532977
0.598543
No Clickstream, Assessment
0.608533
0.575881
0.594146
No Clickstream, Assessment
0.628008
0.553432
0.595471
No Clickstream, Assessment
0.608423
0.575743
0.594146

0.743902
0.836032
0.792753
20% Course
0.835358
0.744766
0.787378
20% Course
0.786954
0.787732
0.787394
20% Course
0.835356
0.744803
0.787378

0.794922
0.887926
0.844071
40% Course
0.888128
0.794693
0.838830
40% Course
0.838900
0.838685
0.838827
40% Course
0.888074
0.794706
0.838830

0.851673
0.912219
0.882506
60% Course
0.915596
0.846061
0.880220
60% Course
0.882451
0.877862
0.880132
60% Course
0.915594
0.846084
0.880220

0.881372
0.930432
0.906009
80% Course
0.934011
0.875207
0.904519
80% Course
0.906914
0.901957
0.904444
80% Course
0.934044
0.875206
0.904519

0.899130
0.942568
0.920763
100% Course
0.945926
0.893048
0.919615
100% Course
0.921927
0.917129
0.919550
100% Course
0.945953
0.893084
0.919615

i.e., Distinction, Pass, Fail, and Withdrawn, into two classes,
i.e., Pass and Fail. Moreover, different XAI models were
created at various course lengths (20%, 40%, 60%, 80%,

VOLUME 10, 2022

100%) to assist instructors in knowing how the study behavior
of students varies from the start of the semester to the end of
the semester.
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TABLE 8. RF model evaluation metrics to be generated by the XAl model.

Methods Explanations

SHapley Additive exPlanations (SHAP)
Prediction probabilities

Provide individual feature importance in making the final result. Based on cooperative game theory.
Model prediction probabilities vs. observed occurrence
Accuracy, Precision, Recall, f-score, ROC-AUC-Score, Pr-AUC-Score, Log_loss

The receiver operating characteristic curve shows the RF model’s performance at all classification thresholds.

Metrics

Confusion matrices To determine the performance of the RF model

ROC Curve

AUC Curve The area under the curve shows the area underneath the whole ROC curve.

Permutation importance

Increase or decrease in the RF model performance when a single feature value is arbitrarily reordered.

Average impact on predicted Target

mean absolute SHAP value
1. highest_education

2. num_of_prev_attempts
3. imd_band

4, studied_credits

5. code_presentation

6. code_module

7. age_band

8. gender

9. disability

10. region

=

0.002 0,004 0.006 0.008

0.01 0.012 0.014 0.016 0.018

FIGURE 2. Features average SHAP values contribution in predicting Distinction class.

1) CREATING AN XAl MODEL BY UTILIZING ONLY
DEMOGRAPHIC FEATURES

We first trained the RF model only on demographic data
to determine how the final performance is affected by
demographic features. Then the trained RF model is passed
to a classifier explainer (an XAl library) to construct the XAl
model. The XAI model provided information presented in
table 8 for understanding how the prediction was made for
Distinction, Pass, Fail and Withdrawn by the RF model when
only demographic features were used.

2) DETERMINING FEATURE IMPORTANCE BY MEAN
ABSOLUTE SHapley ADDITIVE exPlanations (SHAP) VALUE
SHAP values determine how much an individual feature
relatively contributes to predicting a class or what is the
impact of a particular feature on the final result. Figure 2
presents each feature’s average SHAP contribution in predict-
ing students’ performance in the Distinction class. We can
observe that when only demographic characteristics are
considered, a student’s previous highest education impacts
their grades most.

When setting the cutoff prediction probability to 0.46 and
the cutoff percentile of samples t0.9, we obtained a list of
XAI model performance metrics for the Pass class shown in
table 9.

Figure 3 shows the trade-off between false positives and
false negatives in the form of the ROC-AUC curve. Similarly,
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TABLE 9. XAl model performance metrics for the Pass class when
considering all independent features.

| metric | Score |

accuracy 0.619
precision 0.542
recall 0.09

f1 0.154
roc_auc_score 0.608
pr_auc_score 0.478
log_loss 0.651

the trade-off between precision and recall is presented in
figure 4 when predicting the Pass class.

In addition, an interaction-dependent plot was gener-
ated by the XAI model as shown in figure 5. The
interaction dependence plots show the relation between
features and Shap interaction values. Figure 5 shows how
the number_of_previous_attempts feature interacted with
highest_education, keeping number_of_previous_attempts
independent. The values above 0 indicated that the features
positively impact predicting Pass grade (Pass grade is
selected as an example). In contrast, the values below
0 showed that the features negatively impacted predicting the
Pass grade, which implies that these negative values were
used to predict other grades. For conciseness, only these two
features are demonstrated. Similar plots can also be generated
for other demographic features.
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FIGURE 3. Trade-off between false positives and false negatives in the
form of the ROC-AUC curve when predicting Pass class.
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FIGURE 4. Trade-off between precision and recall for the RF model when
predicting the Pass class.

D. PHASE 4. CREATING AN XAl MODEL BY UTILIZING
DEMOGRAPHIC AND CLICKSTREAM FEATURES

To know how much clickstream data impacted students’
performance, we added clickstream features (sum clicks and
mean clicks) to the demographic data. Once again, the RF
model was built by keeping the training set size to 80%
and the testing set size to 20%. For generating the XAl
model, the RF model was passed to the explainer classifier
(Python library) for feature interpretation and contribution to
predicting the final scores.

The figures 6a and 6b show the features for Distinction and
Pass classes. In contrast, figures 6¢ and 6d show the features
for Fail and Withdrawn classes, sorted from most important
to least important by mean absolute shap values for the final
four classes.

We can observe that the top three critical features for
predicting the Distinction class are sum_clicks, highest
education, and mean_clicks. For the Pass category, the top
three essential features are sum_clicks, mean_clicks, and
code_module. For the Fail class, sum_clicks, mean_clicks,
and highest education had a significant effect. Lastly, the
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TABLE 10. Features contributions to predicting the Distinction and Pass

class on a random observation.

Distinction Class  Pass Class

Reason Effect Effect
Average of population 9.28% 37.74%
sum_clicks100 = 1294.0 +5.35%  +14.25%
mean_clicks100 = 3.24526448128143  +1.16%  +3.19%
highest_education = 0.0 +1.4% +0.77%
studied_credits = 60.0 -0.06% +1.08%
code_presentation = 3.0 +0.26%  -0.39%
num_of_prev_attempts = 0.0 +0.24%  +0.23%
code_module = 1.0 +0.09% +1.71%
imd_band = 8.0 +0.62%  +0.29%
gender = 1.0 -0.11%  -0.33%
disability = 0.0 +0.05%  +0.15%
age_band = 0.0 -0.03% +0.02%
region = 8.0 +0.0% +0.0%
Other features combined +0.0% +0.0%
Final prediction 18.24%  58.71%

TABLE 11. Features contributions to predicting the Fail and Withdrawn

class on a random observation.

Fail Class  Withdrawn Class

Reason Effect Effect
Average of population 21.5% 31.48%
sum_clicks100 = 1294.0 -6.32% -13.28%
mean_clicks100 = 3.24526448128143  -0.2% -4.14%
highest_education = 0.0 -1.38% -0.79%
studied_credits = 60.0 +031% -1.34%
code_presentation = 3.0 -0.58% +0.7%
num_of_prev_attempts = 0.0 -0.42% -0.05%
code_module = 1.0 -0.74% -1.06%
imd_band = 8.0 -0.54% -0.37%
gender = 1.0 +0.08%  +0.36%
disability = 0.0 -0.04% -0.16%
age_band = 0.0 +0.02%  -0.01%
region = 8.0 +0.0% -0.01%
Other features combined +0.0% +0.0%
Final prediction 11.7% 11.35%

top three critical features for the Withdrawn class include
sum_clicks, mean_clicks, and studied credit hours. It can be
concluded that clickstream data in the form of sum_clicks and
mean_clicks features significantly impact the students’ final
performance.

Tables 10 and 11 show each feature’s contribution to
the prediction of a particular observation when considering
the Distinction, Pass, Fail, and Withdrawn classes. These
findings can help both AI and non-Al experts in describing
precisely how each prediction has been made from all the
distinctive features in the model. Positive shap values for the
four classes positively impact the final predictions, which will
lead the model to predict the final performance as Distinction
and Pass. The negative shap values for the four classes have
a negative impact on the final prediction, which will lead the
model to predict the final performance as Fail or Withdrawn.

E. PHASE 5. CREATING AN XAl MODEL BY ADDING
ASSESSMENT SCORE

Figures 7a, 7b, 7c, and 7d show features sorted from most
important to least important in predicting the Distinction,
Pass, Fail, and Withdrawn classes. We noticed that features
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FIGURE 5. Interaction dependence plots generated the XAl model showing
the relationship between features and Shap interaction values.

(a) Feature importance/weights sorted from most important
to least important for predicting Distinction class

Average impact
mean absol

on predicted Target
bsolute SHAP value

(c) Feature importance/weights sorted from most
important to least important for predicting Fail class

(b) Feature importance/weights sorted from most
important to least important for predicting Pass class

Average impact on predicted Target
mean absolute SHAP value!

(d) Feature importance/weights sorted from most important
to least important for predicting Withdrawn class

FIGURE 6. Features sorted from most important to least important by mean absolute shap values.

other than demographic features such as RS100, CS100,
PCS100, sum_clicks100, LS100, and studied_credits signif-
icantly impact the final grade when considering all four
classes. This concludes that students’ performance improves
by adding assessment features to the XAl model.

Table 12 shows each feature’s contribution to predicting
the Distinction and Pass classes when an observation is
selected randomly. Similarly, table 13 shows each feature’s
contribution to predicting the Fail and Withdrawn class
when an observation is chosen randomly. From the results,
we concluded that assessments score has the highest impact
in predicting students’ final performance.

1) CREATING AND INTERPRETING XAl MODELS AT
DIFFERENT PERCENTAGES OF COURSE LENGTH

Various XAI models were created at different percentages of
course length to interpret in a human-readable way which
features influence students’ study behavior most. Once again,
to improve the accuracy of the RF model, the Pass class was
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merged into the Distinction class, whereas the Withdrawn
class was combined into the Fail class. The Pass class was
encoded with 0, and the Fail class was given 1. The goal of
creating XAl models at various course lengths is to determine
the overall performance of models and to investigate how
prediction is made for individual observation. Confusion
matrices determine the overall performance of different XAl
models (global explainability), and the prediction for each
observation is determined by the weight or importance of
each feature (local explainability).

Table 14 displays the RF model metrics scores extracted
by the XAI model when trained on 20%, 40%, 60%, 80% and
100% course data. We can observe that adding more course
data increases the scores for accuracy, precision, recall, f1,
roc_auc_score, and pr_auc_score, whereas the log_loss value
decreases. The results imply that when provided more course
data, the RF model train and generalizes well, thus becoming
more reliable. ROC_AUC_Score is the Area Under the Curve
(AUC) of the Receiver Characteristics Operator (ROC).
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(a) Feature importance/weights sorted from most
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(b) Feature importance/weights sorted from most
important to least important for predicting Pass
class when assessment scores are also considered
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(c) Feature importance/weights sorted from most
important to least important for predicting Fail
class when assessment scores are also considered

(d) Feature importance/weights sorted from most
important to least important for predicting Withdrawn
class when assessment scores are also considered

FIGURE 7. Features sorted from most important to least important by shap values when assessment scores features are added to demographics and

clickstream features.

TABLE 12. Features’ contribution to predicting the Distinction and Pass classes on a randomly selected observation.

Distinction Class Pass Class

Reason Effect Reason Effect
Average of population 9.34% Average of population 9.34%
RS100=90.5 +15.38%  RS100=94.0 +16.63%
CS100=91.5 +14.85% CS100 =93.76 +15.79%
PCS100=91.5 +10.13%  PCS100=93.76 +12.28%
sum_clicks100 = 6746.0 +3.41% sum_clicks100 = 766.0 +0.96%
mean_clicks100 = 4.661417806  +0.61% LS100=0.0 -0.51%
code_presentation = 2.0 +0.57% code_presentation = 3.0 +0.42%
imd_band = 1.0 -0.28% age_band = 0.0 -0.27%
LS100=0.0 -0.28% studied_credits = 60.0 -0.21%
studied_credits = 60.0 -0.26% mean_clicks100 = 2.7404776  +0.21%
num_of_prev_attempts = 0.0 +0.24% num_of_prev_attempts = 0.0 +0.17%
highest_education = 0.0 +0.22% highest_education = 0.0 +0.07%
code_module = 5.0 +0.15% date_registration =-31.0 +0.04%
age_band = 0.0 -0.06% region = 10.0 -0.02%
date_registration = -99.0 -0.05% imd_band = 6.0 +0.02%
region = 5.0 +0.02% code_module = 4.0 -0.01%
gender = 1.0 +0.0% gender = 1.0 +0.0%
disability = 0.0 -0.0% disability = 0.0 -0.0%
Other features combined +0.0% Other features combined +0.0%
Final prediction 53.99% Final prediction 54.91%

A higher roc_auc score helps us visualize how well the RF
model is performing. PR_AUC_Score is the precision-recall
area under the curve. Similar to roc_auc_score, the higher
the pr_auc_score, the better the RF model performs for
accurately predicting the Pass class. We also observe that
the log_loss value decreases for the RF model when trained
on more data which implies that the difference between the
observed and predicted value is minimized, thus increasing
the RF model’s accuracy.
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F. PHASE 6. GENERATING CONFUSION MATRICES FOR
GLOBAL EXPLAINABILITY

Figure 8 shows confusion matrices showing the number
of true positives, true negatives, false negatives, and false
positives generated by the XAI model for the RF model
when trained only on 20%, 40%, 60%, 80% and 100%
course data. The number of false negatives and false positives
adversely affects the RF model, especially in the deployment
phase. Therefore, the number of false negatives and false
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(b) Confusion matrix generated
for the RF model when 40%
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(d) Confusion matrix generated
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for the RF model when 100%
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FIGURE 8. Features sorted from most important to least important by shap values when assessment scores features are added

to demographics and clickstream features.

positives should be kept low. We observed an increase in the
number of true positives coupled with true negatives and a
decrease in the number of false positives along with false
negatives for the RF model when trained on 40%, 60%, 80%,
and 100% of course data. Confusion matrices and feature
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importance values can help Al experts explain to non-Al
experts what features are important for decision-making,
to provide global explainability and how the complexity

of the model can be reduced while keeping the needed
accuracy.
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TABLE 13. Features’ contribution to predicting the Fail and Withdrawn classes on a randomly selected observation.

Fail Class Withdrawn Class

Reason Effect Reason Effect
Average of population 21.62%  Average of population 31.14%
RS100 = 68.08333333333333 -3.67% RS100 = 68.08333333333333 -7.83%
CS100=71.5 -4.76% CS100=71.5 -10.55%
PCS100="71.5 -1.13% PCS100="71.5 -6.69%
sum_clicks100 = 1759.0 -1.54% sum_clicks100 = 1759.0 -2.36%
mean_clicks100 = 1.94092457  -0.06% mean_clicks100 = 1.940924572  -0.44%
studied_credits = 120.0 -0.16% studied_credits = 120.0 +0.65%
code_module = 5.0 +0.75%  code_module = 5.0 +0.36%
code_presentation = 3.0 -0.19% code_presentation = 3.0 +0.12%
LS100=4.0 +0.16%  LS100=4.0 -2.36%
date_registration = -9.0 +0.14%  date_registration = -9.0 -0.18%
highest_education = 0.0 -0.11% highest_education = 0.0 -0.07%
imd_band =4.0 -0.03% imd_band =4.0 -0.0%
gender = 1.0 +0.3% gender = 1.0 +0.02%
num_of_prev_attempts = 0.0 -0.03% num_of_prev_attempts = 0.0 +0.0%
age_band = 0.0 +0.03%  age_band = 0.0 -0.01%
region = 2.0 -0.04% region = 2.0 +0.04%
disability = 0.0 +0.0% disability = 0.0 -0.0%
Other features combined +0.0% Other features combined +0.0%
Final prediction 11.29%  Final prediction 1.83%

TABLE 14. RF model metrics scores extracted by the XAl model when
trained on 20%, 40%, 60%, 80% and 100% course data for predicting the
Pass class.

Course length  20% 40% 60% 80% 100%
metric Score  Score  Score  Score  Score
accuracy 0.774 0.836 0.876 0.898 0.916
precision 0.716  0.791  0.83 0.864 0.872
recall 0.867 0.892 0.924 0932 0.961
f1 0.784 0.838 0.875 0.896 0914
roc_auc_score 0.855 0091 0.944 0958 0.967
pr_auc_score 0.803 0.873 0919 094 0.945
log_loss 0465 0384 0.32 0.28 0.242

TABLE 15. RF model metrics scores extracted by the XAl model when
trained on 20%, 40%, 60%, 80% and 100% course data for predicting the
Fail class.

Course length  20% 40 % 60 % 80% 100 %
metric Score  Score  Score  Score  Score
accuracy 0.774 0.836 0.876 0.898 0.916
precision 0.852 0.889 0.926 0934 0.963
recall 0.69 0.785 0.834 0.867 0.878
f1 0.763 0.834 0.878 0.899 0918
roc_auc_score 0.855 0091 0944 0958 0.967
pr_auc_score 0.891 0934 0958 0.969 0978
log_loss 0465 0384 0.32 0.28 0.242

The number of false negatives and false positives adversely
affects the RF model, especially in the deployment phase.
Therefore, the number of false negatives and false positives
should be kept low. We will observe whether the false
negatives and positives increase or decrease when more
course data is used for the RF model training.

Table 15 shows the metrics score of the RF model
predicting the Fail class when trained on 20%, 40%, 60%,
80%, and 100% course data. Similar to the performance of the
RF model for the Pass class, we noticed that the performance
of the RF model increases for the Fail class for various metrics
when it is trained on more and more course data. We observed
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that the score for accuracy, precision, recall, f1, roc_auc, and
pr_auc has increased upon training the RF model on more
course data. It is noticeable that even at 20% and 40% of the
course data, the RF model shows acceptable performance and
can be used by the instructors to intervene with the students
as early as possible in the course for needed guidance and
feedback. The log_loss values gradually decrease for the RF
model when trained on more course data, indicating that
the model becomes more mature and reliable at the end of
the course. We also observe that the difference between the
performance scores of the RF model for the Pass and Fail
class is negligible, indicating that the model performance for
predicting both classes is almost the same.

G. PHASE 7. LOCAL EXPLAINABILITY AT DIFFERENT
PERCENTAGES OF THE COURSE LENGTH

In the last stage of this research study, we tried to explain the
decision-making process of the RF model by considering a
single observation for the Pass and Fail class at 20%, 40%,
60%, 80%, and 100% of course data. The XAI model will
be understandable and transparent to instructors and students
as the model explains the prediction of a single observation.
With local explainability, instructors can measure how a
single feature of the dataset influences the final output and
why a particular student was classified into the Pass or Fail
class. We selected five random observations for 20%, 40%,
60%, 80%, and 100% course length for the Pass class to
observe features’ weights and importance in predicting the
Pass class.

1) LOCAL EXPLAINABILITY OF THE PASS CLASS AFTER 20%,
40%, 60%, 80% AND 100% COURSE COMPLETION

Table 16 shows the feature weights of the RF model for
predicting the Pass class when a single observation is
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TABLE 16. RF model performance for predicting the Pass class on randomly selected observations when trained on 20%, 40%, 60%, 80% and 100%

course data.

Local explainability for the Pass class: RF model performance on randomly selected observations

RF model performance

on 20% course

RF model performance

on 40% course

RF model performance
on 60% course data

RF model performance
on 80% course data

RF model performance
on 100% course data

data data
Reason Effect Reason Effect Reason Effect Reason Effect Reason Effect
Average of population 46.96%  Average of population 47.29% Average of population 47.14% Average of population 47.24% Average of population 47.19%
RS20 =67.5 +4.99%  RS40=85.33 +16.91%  RS60 =89.42 +24.48%  RS80 =82.6 +27.02%  RS100=91.11 +27.35%
sum_clicks20 = 257.0 +3.29%  sum_clicks40 = 4837.0 +11.83%  sum_clicks60 = 2719.0 +7.46% sum_clicks80 = 2845.0 +11.42%  sum_clicks100 = 1670.0  +9.22%
sum_clicks0 = 92.0 +1.88%  sum_clicks0O = 496.0 +3.31% LS60=3.0 +4.26% mean_clicks80 = 3.472 +2.14% mean_clicks100 = 2.94 +2.28%
highest_education = 0.0 +1.77%  mean_clicks0 = 4.437 +1.52% sum_clicks0 = 159.0 +2.01% mean_clicksO = 2.386 +1.48% highest_education = 0.0 +1.27%
code_module = 3.0 -1.21% imd_band = 10.0 +1.38% mean_clicksO = 6.160 +1.78% sum_clicks0 = 214.0 +1.17% code_module = 6.0 +1.05%
LS20=0.0 +0.79%  mean_clicks40 = 4.241 +0.99% highest_education = 2.0 -1.66% highest_education = 2.0 -0.53% sum_clicksO = 73.0 +1.01%
gender = 1.0 -0.75% highest_education = 0.0 +0.94% mean_clicks60 = 5.268 +1.29% code_module = 5.0 -0.49% mean_clicks0 = 2.776 +0.7%
:“5"6“*"’3"*&"“}’“ +0.61% LS40=0.0 +0.73%  code_presentation=0.0  -0.67%  imd_band = 10.0 +0.43%  studied_credits =30.0  +0.65%
mean_clicks20=1.928  +0.61% :“m(;"f*p'evfmemp‘s +023%  imd_band =5.0 40549 Mum-oLprevAUmpls 6 570, imd band = 6.0 +0.56%
imd_band = 5.0 +0.5% studied_credits = 60.0 +0.21% code_module = 1.0 +0.41% LS80 =0.0 -0.27% LS100=0.0 +0.33%
. num_of_prev_attempts . . .
mean_clicks0 = 1.81712  +0.48%  code_module = 5.0 -0.2% —00 +0.19% studied_credits = 60.0 +0.22% region = 9.0 +0.11%
studied_credits = 120.0 -0.4% code_presentation = 0.0 -0.15% gender = 0.0 +0.09% gender = 1.0 -0.16% disability = 0.0 +0.11%
. . . . num_of_prev_attempts

code_presentation = 3.0 +0.27%  gender = 1.0 -0.07% studied_credits = 60.0 -0.03% code_presentation = 1.0 +0.13% —00 +0.09%
disability = 0.0 +0.18%  region = 4.0 -0.05% age_band = 1.0 +0.03% date_registration = -24.0  +0.08% gender = 0.0 +0.09%
age_band = 0.0 -0.11%  date_registration = -289.0  -0.04% date_registration =-22.0  +0.02% region = 2.0 -0.02% code_presentation = 2.0 +0.09%
region = 3.0 -0.04%  disability = 0.0 +0.02% disability = 0.0 +0.02% disability = 0.0 +0.01% date_registration = -54.0  +0.02%
date_registration =-30.0  -0.02%  age_band = 1.0 +0.0% region = 7.0 +0.01% age_band = 1.0 +0.0% age_band = 1.0 -0.01%
Other features combined ~ +0.0% Other features combined +0.0% Other features combined ~ +0.0% Other features combined ~ +0.0% Other features combined ~ +0.0%
Final prediction 59.82%  Final prediction 84.86% Final prediction 87.37% Final prediction 90.22% Final prediction 92.1%

label probability label probability

0* 59.8 % o* 849%

1 40.2 % 1 15.1 %

. 59.8%

* indicates observed label

(a) Prediction probability of the
Pass class at 20% course length

label probability
0* 874 %
1 12.6 %

* indicates observed label

87.4%

(c) Prediction probability of the
Pass class at 60% course length

label probability
o* 921 %
1 79 %

* indicates observed label

* indi |
indicates observed labe| £4.9%

(b) Prediction probability of the
Pass class at 40% course length

label probability
o* 90.2 %
1 9.8 %

* indicates observed label

(d) Prediction probability of the
Pass class at 80% course length

(e) Prediction probability of the
Pass class at 100% course length

FIGURE 9. Prediction probabilities of the RF model at 20%, 40%, 60%, 80% and 100% course length on a single randomly selected observation.

Pass class is encoded as 0 and Fail as 1.

selected, whereas figure 9 shows the prediction probability
of each observed target class at 20%, 40%, 60%, 80% and

129860

100% course length. The single observation prediction results
revealed that even at 20% of course completion, the top three
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TABLE 17. RF model performance for predicting the Fail class on randomly selected observations when trained on 20%, 40%, 60%, 80% and 100% course
data.

Local explainability for the Fail class: RF model performance on randomly selected observations

RF model performance on 20% RF model performance on 40 % RF model performance on 60% RF model performance on 80% RF model performance on 100 %
course data course data course data course data course data

Reason Effect Reason Effect Reason Effect Reason Effect Reason Effect
Average of population 53.04%  Average of population 52.71%  Average of population 52.86% Average of population 52.76% Average of population 52.81%
RS20 =60.0 +2.77%  RS40=0.0 +233%  RS60=24.25 +27.87% RS80=14.5 +26.96% RS100=13.5 +30.88%
highest_education = 2.0 +2.33%  sum_clicks40 = 205.0 +5.72%  sum_clicks60 = 725.0 -8.62% sum_clicksO = 0.0 +2.61% sum_clicks100 = 519.0 -2.49%
imd_band = 2.0 +1.26%  sum_clicksO = 87.0 -2.9% sum_clicksO = 0.0 +3.14% mean_clicks80 = 3.40 -1.51% code_presentation = 0.0 +1.99%
LS20=1.0 +1.21%  code_module = 3.0 +1.53%  mean_clicks60 = 3.08 -2.7% LS80 =0.0 +1.23% imd_band = 0.0 +1.95%
code_module = 3.0 +1.19%  highest_education = 0.0 -1.29% LS60=0.0 +2.04% code_module = 4.0 +1.12% code_module = 5.0 +1.82%
sum_clicks20 = 242.0 -1.15% mean_clicksO = 1.83 -1.01% mean_clicks0 = 0.0 +1.96% mean_clicksO = 0.0 +0.84% sum_clicks0 = 1.0 +1.66%
gender = 0.0 -1.03% imd_band = 9.0 -0.91% code_module = 5.0 +1.18% imd_band = 5.0 -0.71% mean_clicks100 = 3.17 -1.57%
num_of_prev_attempts . . . . .
00 -0.75% mean_clicks40 = 1.74 -0.8% highest_education = 0.0 -1.04% highest_education = 2.0 +0.32% LS100=0.0 +1.51%
mean_clicks0 = 2.61 -0.47% studied_credits = 60.0 -0.55% gender = 1.0 +0.6% sum_clicks80 = 410.0 -0.17% mean_clicks0 = 1.0 +1.49%
mean_clicks20 = 2.06 -046%  LS40=0.0 +0.54%  studied_credits =60.0  +0.21% Z“a%"ffpwvfa“empts -0.14%  highest_education=2.0  +0.46%
code_presentation =2.0  +0.24% 2“(;"0—"f—1"e"—a“empts 0.23% Z“glo—"f-pre"—“"emp‘s 0.15%  studied_credits=90.0  +0.09%  gender = 1.0 +0.22%
sum_clicks0 = 17.0 +0.16%  region=7.0 -0.15% imd_band = 8.0 -0.09% gender = 1.0 +0.06% region = 10.0 -0.12%
disability = 0.0 -0.15% code_presentation = 2.0 +0.06%  code_presentation = 2.0 +0.04% code_presentation = 1.0 -0.02% Zu(;n 6 of_prev_attempts -0.11%
studied_credits = 60.0 +0.11%  date_registration =-22.0 ~ +0.05%  date_registration = -45.0 ~ +0.03% region = 0.0 -0.01% studied_credits = 60.0 -0.1%
region = 3.0 +0.03%  gender = 1.0 +0.04%  region = 6.0 -0.02% disability = 0.0 -0.01% disability = 0.0 -0.05%
age_band = 0.0 +0.03%  disability = 0.0 -0.02% age_band = 0.0 +0.01% date_registration =-63.0  +0.0% date_registration =-30.0  +0.01%
date_registration =-107.0 ~ +0.03%  age_band = 0.0 +0.0% disability = 0.0 -0.01% age_band = 0.0 -0.0% age_band = 0.0 +0.0%
Other features combined +0.0% Other features combined ~ +0.0% Other features combined ~ +0.0% Other features combined ~ +0.0% Other features combined ~ +0.0%
Final prediction 58.38%  Final prediction 76.07%  Final prediction 77.3% Final prediction 83.41% Final prediction 90.35%

label probability label probability

0 416 % 0 2399%

1 58.49% 41.6%
: 1™ 76.1 %

* indicates observed label * indicates observed label

(a) Prediction probability of the (b) Prediction probability of the

Fail class at 20% course length Fail class at 40% course length
label probability label probability
0 227% 0 16.6 % 16.6%
1% 773% 1 834 % .

-
* indicates observed label indicates observed label

(c) Prediction probability of the (d) Prediction probability of the
Fail class at 60% course length Fail class at 80% course length
label probability

o

9.6 %

1™ 904 % .

* indicates observed label

(e) Prediction probability of the
Fail class at 100% course length

FIGURE 10. Prediction probabilities of the RF model at 20%, 40%, 60%, 80% and 100% course length on a single randomly selected observation
with the Fail class as the observed label. Fail class is encoded as 1 and Pass as 0.

important features impacting the students’ performance were and highest education were the top three important features,
assessment score, number of clicks, and previous highest their overall effect on students’ performance was negligible
education. Although assessment score, number of clicks, (RS20 = +4+4.99%, sum_clicks20 = +3.29%, and
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highest_education = +1.77%) as the RF model was training
on only 20% of course data. At 20% of course completion, the
RF model will predict the Pass class with 59.8% probability
and the Fail class with 40.2% probability.

Figures 9a, 9b, 10c, 10d, 10e present the prediction
probabilities of the RF model when the Pass class (encoded
as 0) is selected as an observed class for 20%, 40%,
60%, 80% and 100% course length. Each observation is
selected randomly at 20%, 40%, 60%, 80%, and 100%
course length. At 20% course length, the RF model will
predict the Pass class with a 59.8% probability. At 40%
course length, the RF model will predict the Pass class with
84.9% probability. We noticed that at 40% course length,
the prediction probability of the RF model for randomly
selected observation is noticeable and considerable. Thus at
40% course length, the instructor can know how the student
will perform in the future with 84.9% accuracy. Similarly,
at 60%, 80%, and 100% of course length, the RF model
prediction probability has increased from 87.4% to 92.1%.

2) LOCAL EXPLAINABILITY OF FAIL CLASS AFTER 20%, 40%,
60%, 80% AND 100% COURSE COMPLETION

Table 17 shows each feature’s importance in predicting
the Fail class at different percentages of course length.
A random observation is selected at each percentage with
the Fail class as an observed label. Unlike the results of
the Pass class, the important features for predicting the Fail
class are different. At 20% course length, the top three
important features are assessment scores, highest education,
and immigration band. In contrast, the top three important
features for predicting the Pass class at 20% course length
were assessment score, sum_clicks, and highest education.
The results revealed that students classified into the Pass
class had more clicks at 20% course length. Referring to the
RF model performance at 40% course length, we noticed
that other than the average population feature, the top three
important features were assessment scores, sum_clicks40 and
sum_clicks0O. The values for the sum_clicksO and mean clicks
are negative, meaning these features increase the RF model
log loss. The features having negative values do not help the
RF model in its training process, and the model is not using
these features well. At 60%, 80%, and 100% course length,
the values for most clickstream features are negative, which
means that the students who are classified in the Fail class
have a low number of clicks, thus less interaction with the
online system.

Referring to figure 10, we noticed that the performance
of the RF model for predicting the Fail class is similar to
that of predicting the Pass class on random observations at
multiple course lengths. The performance accuracy increases
with the addition of more and more data at multiple course
lengths. At 40% course length, the performance accuracy
of the RF is 76.1% for predicting the Fail class (Fail class
encoded with 1 is the observed label). The results at 40%
course length are encouraging, which means that the earliest
possible identification of students at risk of failure is possible,
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therefore, can be intervened for needed help and guidance
to stay on the right track. At 60%, 80%, and 100%, the
prediction probability of the Fail class increase from 77.3%
to 83.4% and then to 90.4%.

V. CONCLUSION, LIMITATIONS, AND FUTURE WORK

In this study, we proposed the XAI model to facilitate
and help instructors in interpreting online students’ study
behavior. The main objective of this research was to make
ML models easy to understand in a human-readable way.
Therefore, instructors can know how a particular student
was classified into a specific class and how the ML model
made various decisions. Initially, six traditional ML models
and six ensemble ML models were trained on the OULA
dataset to know which model gives the best results in terms
of precision, recall, f-score, and accuracy. The ML models’
performance results revealed that among traditional ML
models, the logistic regression model gave the best results and
among ensemble ML models, overall, the RF model showed
the best results.

For brevity and due to time constraints, between the
logistic regression and the RF model, we selected the RF
model as a candidate model for the XAI model to explain
how students were classified into various groups and how
different decisions were made in a human interpretable
way. The purpose of the XAI model was to explain the
working of the RF model by using various graphs, charts, and
tables that are easy to understand. The XAI model provided
results in the form of feature importance, SHAP values,
prediction probabilities, metrics such as accuracy, precision,
recall, f-score, confusion matrices, ROC-AUC curves, and
permutation importance. By utilizing the OULA dataset,
initially, the RF model was trained only on demographic
features to determine whether, at the start of the semester,
students’ performance can be predicted with acceptable
accuracy. Gradually, clickstream and assessment features
were also added to determine how the RF model performance
increases after adding more features. The RF model was
provided to the XAl model as an input to generate and provide
the model explainability and internal working. Various XAl
models were also created at 20%, 40%, 60%, 80%, and 100%
of course length for the earliest possible interpretation and
understanding of students’ study behavior.

For understanding the overall performance of the RF model
and for global explainability, confusion matrices were created
at 20%, 40%, 60%, 80%, and 100% of course length. The
purpose of generating confusion matrices was to determine
to what extent each feature contributes to the model decision
by utilizing all the data. By performing global explainability,
the instructors will come to know about the most important
features to predict students’ performance. For understanding
the root cause of a particular decision made by the RF model,
we performed local explainability both for the Pass and the
Fail class at 20%, 40%, 60%, 80%, and 100% of course
length. Local explainability will help instructors to get to the
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bottom of which feature was most impactful in categorizing
a particular student into the Pass or the Fail class.

Due to time constraints, we were not able to leverage
the power of deep neural networks such as ANNs, LSTM,
and transformers in modeling the study behavior of online
students and predicting their performance. Moreover, we also
did not perform experiments regarding which deep neural
network is accurate as well as interpretable.

In the future, we will also introduce various motiva-
tional and persuasion strategies that will help instructors
in performing timely interventions and providing needed
feedback. Motivational and persuasion techniques will help
online students in improving their study behavior and reduce
students’ dropouts.
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