
Received 13 November 2022, accepted 27 November 2022, date of publication 6 December 2022, date of current version 14 December
2022.

Digital Object Identifier 10.1109/ACCESS.2022.3227210

Selfish Routing Game-Based Multi-Resource
Allocation and Fair Scheduling of Indivisible
Jobs in Edge Environments
HAJAR SIAR AND MOHAMMAD IZADI
Department of Computer Engineering, Sharif University of Technology, Tehran 11155-9517, Iran

Corresponding author: Mohammad Izadi (izadi@sharif.edu)

ABSTRACT Distributed and heterogeneous edge computing environments require efficient allocation and
scheduling of multiple users’ applications. This paper presents a game-theoretic solution to model the
competition between time-sensitive internet of things (IoT) applications with indivisible loads to be allocated
and scheduled to edge servers. We model the allocation problem as a selfish routing game such that no job is
unsatisfiedwith its allocation. Also, the allocated jobs are scheduled using aweighted time-sharing approach,
which assigns resources to jobs proportional to their demands and deadlines. We proved the existence of
pure Nash equilibrium in the introduced game and presented a greedy and polynomial time algorithm to
obtain the solution called SAFSA. Using an extended version of the CloudSim simulator, we assess our
approach in different situations by employing a real-world dataset of the Google cluster. Since the proposed
algorithm considers jobs’ deadlines beside resource requests in allocation and scheduling decisions, it can
simultaneously minimize average response time and maximize the number of jobs completed within their
deadlines.The simulation results confirm the ability of SAFSA to efficiently execute the jobs within their
deadlines, especially when there are many IoT devices and edge servers in the system, which is the main
characteristic of IoT environments.

INDEX TERMS Edge computing, job allocation, Nash equilibrium, selfish games, time-sharing scheduling.

I. INTRODUCTION
The heterogeneous environment of edge computing has the
potential to execute the distributed and real-time applica-
tions of IoT efficiently by offloading them to remote edge
servers [1], [2], [3]. There is heterogeneity in the environment
and applications, such as different processing and network-
ing resources and different resource requirements for the
applications.

Even though edge computing can handle the diverse
demands of IoT applications, receiving multiple applications
with varying demands that insist on a particular level of per-
formance may prevent efficient achievement for all of them.
In this case, meeting the requirements of one application may
stop others from benefiting [4]. It becomes more challenging
when QoS requirements, such as the deadline, are involved.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mehdi Sookhak .

Consequently, allocating resources to applications in propor-
tion to their demands is crucial to ensure that all of them are
satisfied with their performances and QoS requirements.

Depending on whether an application’s load can be arbi-
trarily divisible, applications are classified into two cate-
gories: divisible and indivisible loads. Typically, fair resource
allocation research focuses on jobs with divisible loads,
although fractional loads may not be acceptable in real-world
applications [5], [6], [7], [8]. Therefore, this paper focuses on
the fair allocation and scheduling of time-sensitive jobs with
indivisible loads. The limited resources of edge servers make
it impossible to execute all jobs within their deadlines. So, our
mechanism attempts to reduce the average response time and
the number of jobs that are not completed by the deadline.

In this paper, we address the following two main problems:

• Selecting the appropriate edge server for each job
(where): The allocation decisions of the jobs affect the
performance of each other. Therefore, we developed a

129042 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0001-7775-6904
https://orcid.org/0000-0003-3561-3942
https://orcid.org/0000-0001-5822-3432

H. Siar, M. Izadi: Selfish Routing Game-Based Multi-Resource Allocation

selfish allocation game. As part of this game model,
each job seeks to select an edge server that minimizes its
response time. To reduce the number of jobs violating
their deadlines, we considered jobs’ deadlines along
with resource requirements when estimating response
times.

• Scheduling the jobs allocated to each edge server
(when): Our scheduling approach addresses two issues.
The first issue is fair resource allocation proportional
to jobs’ demands and deadlines, and the second is the
lack of starvation for low-priority jobs. We addressed
the first issue by assigning weights corresponding to the
resource demands and the deadline of the job to specify
its share of each resource. On the other hand, in most
scheduling approaches, like the non-preemptive ones,
low-priority jobs wait until the execution of those with
higher priority in the scheduling queue is completed.
It can cause severe starvation for jobs with lower priority
and cause their deadlines to be missed, especially in
environments with many jobs, such as IoT. Time-sharing
scheduling allocates resources to jobs, in turn prevent-
ing starvation. Thus, we used weighted time-sharing
scheduling [9] to execute the jobs proportionally to their
resource demands and deadlines, keeping starvation of
low-priority jobs.

We are considering fairness in assigning resources to jobs in
proportion to their demands, such that all of them are satisfied
with their response times. Due to the egoistic behavior of jobs
in achieving better performance [10], [11], [12], we designed
a selfish job allocation game. In our gamemodel, edge servers
execute jobs according to a weighted time-sharing scheduling
algorithm, which allocates resources fairly between jobs.
We proved the existence of pure Nash equilibrium in the
introduced game and then designed an algorithm to reach it.
Following is a summary of the significant contributions of
this paper.
• We consider the selfish allocation of indivisible jobs
to multi-resource edge servers to minimize response
times and fairly allocate resources proportional to jobs’
resource demands and deadlines.Wemodel this problem
as a selfish game between users’ jobs in which players
attempt to minimize their response times. We believe
this is the first work to deal with the joint fair allocation
and scheduling of indivisible and time-sensitive jobs
using a game-theoretic approachwhen edge servers have
multiple resources.

• We prove the existence of pure Nash equilibrium in
the defined selfish allocation and fair scheduling game.
Then present a greedy and polynomial time algorithm to
obtain the solution called SAFSA.

• We analyze the performance of our proposed approach
using the real-world dataset of Google cluster traces and
a simulation toolkit based on CloudSim [13], [14]. The
evaluation results indicate that our joint allocation and
scheduling game significantly minimizes the average
response time and deadline miss rate of jobs.

This paper follows the following structure. Section II demon-
strates a real-world scenario as a motivation for this study.
Section III presents related works on fair allocation and
scheduling. The system model is explained in section IV.
We describe our weighted time-sharing scheduling and self-
ish allocation game in sections V and VI, respectively. Then
we present our algorithm in Section VII. Section VIII con-
tains the evaluation settings and the experimental analysis.
The paper is concluded in section IX.

II. MOTIVATION
In vehicular edge computing (VEC), many IoT devices in
different places, such as roads, vehicles, drivers, and pas-
sengers, continuously generate data. These data bring enor-
mous delay-sensitive and computation-sensitive applications,
including intelligent navigation, autonomous driving, intel-
ligent entertainment, accident warnings, augmented reality-
supported gaming, AI-based pedestrian detection, and fuel
scheduling [15], [16]. The data generated by these applica-
tionsmust be processed and stored on time, which is not in the
ability of resource-limited IoT devices. VEC uses roadside
units (RSUs) equipped with edge servers to offload and exe-
cute jobs sent from IoT devices, helping them to be executed
on time. The applications have a specific data size whichmust
be sent to RSUs through communication links. Also, they
need a specific amount of computation resources [15], [17].
All of these applications are time-sensitive, and a predefined
deadline can be considered for the maximum response time
of the jobs. However, their sensitivity to being completed
within their deadline is varied. Some applications’ response
time must not exceed their deadlines, and their deadline
violation has catastrophic consequences. These applications
have a hard deadline, like driver assistance in VEC to prevent
accidents. On the other hand, some applications’ deadlines
are considered soft and less safety-critical, and their missing
is sometimes acceptable. Applications such as intelligent
entertainment or indoor positioning systems in vehicles are
examples of applications with a soft deadline. In these appli-
cations, it is attempted to complete as many jobs as possible
within their deadlines [18], [19], [20]. This paper focuses on
applications with soft-deadline.

Due to the delay sensitivity of applications and limited pro-
cessing resources in edge servers, offloading the IoT devices’
soft-deadline jobs to arbitrary RSUs, such as the closest unit,
is not an efficient solution, especially when data load is very
high because of critical situations like traffic or accidents.
In this case, someRSUsmay be overloaded and cannot sched-
ule and execute their offloaded jobs on time, so the deadline of
most of the soft-deadline jobsmay bemissed. Since these jobs
are from different IoT devices, there is competition between
jobs to receive their output in a minimum time, satisfying
their deadlines. So, the current study helps VEC to fairly
offload and schedule soft-deadline applications’ jobs (e.g.,
intelligent entertainment or indoor positioning systems in
vehicles) among RSUs tominimize the average response time
and the number of jobs with a missed deadline.

VOLUME 10, 2022 129043

H. Siar, M. Izadi: Selfish Routing Game-Based Multi-Resource Allocation

III. RELATED WORKS
Fair allocation in multi-resource environments is first intro-
duced with the economic mechanism of dominant resource
fairness (DRF) by Ghodsi [6]. The DRF is based on fairness
for users’ utilization, considering all server resources are
pooled together into a single resource, which is incorrect for
distributed computing environments, such as cloud and edge
computing. Many studies are tried to improve this method
by reducing the single resource server assumption [7], [21].
Meskar [8] demonstrated that DRF might not provide a
fair allocation mechanism for edge computing environments,
where both computation and networking resources are vari-
able. Then, they proposed a fair allocation mechanism for
these environments. Max-min fairness for jobs with multi-
ple parallel tasks in the scheduling of distributed comput-
ing platforms is studied in [22]. In this study, the utility of
each job is a decreasing function of its completion time.
The authors first present two notions of approximation in
max-min fairness of multi-task jobs, then scheduling is intro-
duced considering these notations. The problem of fair allo-
cating multiple resources in multiple servers among users in
mobile edge computing is studied in [23]. This paper con-
siders that each user cannot establish a wireless connection
to multiple edge servers, and her/his jobs are executed on
exactly one edge server, also Leontief utilities are assumed for
the users. It introduces a mechanism calledMAGIKS to reach
the fair Nash equilibrium solution. It is a polynomial time
mechanism, provided that resource demands are discrete.

Data centers consist of multiple heterogeneous resources,
and fair allocation is challenging. In [24], Poullie et al. intro-
duced a survey on fair allocation in data centers. Besides
presenting a definition of fairness in multi-resource alloca-
tion and relevant state-of-the-art, the authors explained util-
ity functions and allocation characteristics to support fair
data center resource allocation. The study of [25] presents
multi-user task scheduling among fog nodes with two priority
queues. Tasks can be scheduled in a fog node that receives
offloaded tasks or in a neighboring fog node. In this study,
fairness is defined as a stable allocation of tasks among
scheduling queues, not the satisfaction of tasks. The paper
of [26] tries to establish fairness among offloading services
of resource-limited ground nodes (GNs), considering the
trade-off of energy consumption between computing and
caching operations. It attempts to assign UAV’s computa-
tion resources among GNs equivalently. Furthermore, there
are studies considering the fairness of an allocation solution
regarding servers’ utilization [27], [28], [29].

Round-robin [30] is a fair scheduling algorithm that assigns
resources to jobs in equal time-slices in turn. Although this
simple algorithm tries to allocate equal resources to all jobs,
it is not efficient when there are many jobs with predefined
QoS requirements like the deadline [31]. Many studies have
investigated extending the round-robin algorithm to consider
the priority of the jobs [32], [33], [34]. Stoica, et al. proposed
a weighted round-robin algorithm in [35] for scheduling
real-time processes in time-sharing systems. Also, a weighted

round-robin algorithm for packet scheduling is proposed
in [36].

The study of [31] also introduced a learning-based
approach to allocate and schedule the jobs among edge
servers fairly, considering the dynamic nature of network con-
ditions and server loads. This solution introduces a weighted
round-robin scheduling algorithm combined with deep rein-
forcement learning to schedule the jobs within the edge
servers.

There are research studies on job allocation and scheduling
in edge and cloud infrastructures, considering QoS require-
ments of users such as the deadline, not addressing a fair
solution [37], [38], [39]. Liu, et al. studied task scheduling
in a mobile cloud computing environment to minimize the
application’s total execution cost and load based on a novel
scheduling algorithm called HEFT-T [40]. The authors con-
sidered interdependent tasks and two cases of unconstrained
and deadline-constrained tasks. The paper of [41] introduced
a game-theoretic solution for multi-user computation offload-
ing in a three-tier mobile cloud computing environment,
attempting to find the Nash equilibrium strategy for mobile
users’ offloading. Yuqing Li, et al. studied cooperative ser-
vice placement and scheduling in edge clouds in [42]. This
solution reduces cost by exploiting spatial-temporal diver-
sities in workload and resource cost among federated edge
clouds. The authors investigate this problem in two steps. This
problem is formulated first without considering deadlines,
and then tasks’ deadlines are added to the problem, and a
cooperative solution is presented. The paper of [43] presented
an approximated solution for the computation offloading of
delay-sensitive tasks in mobile edge computing to maximize
energy saving. The paper of [44] introduced a three-layer task
offloading and allocation framework in a mobile computing
environment for multiple tasks of a single application, tak-
ing into account the task dependencies and users’ mobility,
to reduce the processing delay.

There is a significant difference between the studies pre-
sented and ours. The differences between our work and
[8] are as follows. First, our approach attempts to reach a
game-theoretic solution using the Nash equilibrium such that
no player is dissatisfied with her/his job’s response time. Sec-
ond, we introduced a joint allocation and scheduling solution
in multi-resource environments of edge computing. Third,
we consider jobs’ deadlines in the scheduling and try to
minimize the deadline miss rate of jobs. In the MAGIKS
mechanism [23], the assumption of executing each user’s job
at exactly one edge server is similar to that considered in
the current study. In contrast to our study, the edge servers
in MAGIKS are homogeneous. Also, it did not consider any
QoS constraint (e.g., deadline) for the jobs. Most previous
works on single/multi-resource fair allocation [6], [7], [8],
[21] consider jobs to be divisible, whereas our study considers
indivisible loads. In addition, the paper of [41] differs from
ours in some directions. Our solution addresses joint alloca-
tion and scheduling problems considering the fair assignment
of jobs with QoS constraint of the deadline. However, the

129044 VOLUME 10, 2022

H. Siar, M. Izadi: Selfish Routing Game-Based Multi-Resource Allocation

paper of [41] models the response time of applications using
queueing theory without considering any QoS constraint.
In addition, there are differences between our work and [31].
Our joint allocation and scheduling game-theoretic solution
outputs a pure Nash equilibrium where no player (i.e., job)
desires to change its allocation strategy, while [31] is a
learning-based technique.

We did not find in the literature any game-theoretic
approach presenting a fair joint allocation and scheduling
solution for time-sensitive jobs with indivisible loads in a
multi-resource edge computing environment.

IV. SYSTEM MODEL
Figure 1 shows an overall view of the considered system
model. It consists of n IoT devices and m edge servers.
Each IoT device belongs to a user and receives/sends data
from/to its surrounding environment. The IoT device’s input
data triggers an IoT application associated with its specified
user. We assume the applications as independent jobs with
indivisible loads that are time-sensitive. So, two terms, IoT
application and job, are the same throughout this paper. The
set of input jobs to the system in each time is represented by
τ = {T1,T2, . . . ,Tn}, and Ti represents the job associated
with user i. There are m access points with different wireless
link bandwidths. Each access point is associated with a server
with k type of computational resources at the network’s edge.
We consider every access point and associated server an edge
server with a total of k + 1 resources, where link bandwidth
is its k + 1th resource. So, we assume the set of edge servers
as E = {R1,R2, . . . ,Rm}. Each edge server Rj is represented
as (Rjcc=1:k ,Rjb), where Rjc indicates the capacity of the com-
putational resource of type c in the server and Rjb represents
the link capacity for the jth access point. So, we assume each
job demands k types of computational resources besides the
link bandwidth as k+1th resource. We are representing every
job Ti with a tuple (Ticc=1:k ,Tib; di) where Tic represents Ti’s
demand of computational resource of type c, and Tib is Ti’s
link request or data size which should be transmitted from
the wireless communication link. We assume the resource
demands of all jobs for each resource type are non-zero:

FIGURE 1. System model.

Ticc=1:k > 0, and Tib > 0 ; ∀i. Every job Ti announces a
deadline di, and desires to be executed within this time.
It should be noted that we used the capacity of the links

in bit rate, not the actual physical channel’s bandwidth (Hz).
Considering the actual physical bandwidth of edge servers’
links in Hz will result in different values for the equations
of this paper. Using the following Shannon’s theory [45],
[46], links’ capacity in bit-rate calculates from physical band-
width (Hz).

C = B log2(1+
S
N
) (1)

where, S is the average signal power and N is the average
noise power.

Each edge server executes the jobs of a set of IoT devices.
The assumption is that jobs allocated to one edge server are
not transferred to another. Every job desires to be executed
by its deadline while minimizing response time. However,
this can not be obtained for all jobs due to the limitations in
edge servers’ resources and different resource requirements
and deadlines. Thus, our resource allocation and scheduling
solution seeks to minimize the average response time of input
jobs and the number of jobs that miss their deadline. A list of
all notations used in this paper is presented in table 1.

V. WEIGHTED TIME-SHARING SCHEDULING
The process of transmitting and executing the jobs in the
system is as follows. Every job Tj transfers from its associated
IoT device to an edge server, executing the job according to its
resource requirements. Then the processing output of the job
is sent back to that device. The output data size is in bytes, and
very small compared to the job’s size, which is ignorable [31],
[47], [48]. Therefore, we consider the response time of a job
as the sum of two values: the transmission time, which is the
time of sending the job from the IoT device to the edge server,
and the computation time, which is the time of processing the
job in k computation resources of the edge server. So, a job is
executable if transmitted through thewireless communication
link, and its data is placed on the allocated edge server.

Considering the competition among users’ jobs to mini-
mize their response times, we formulated the joint allocation
and scheduling problem as a selfish game among jobs. Non-
preemptive scheduling methods lead to starvation for jobs
with low-priority, which likely miss their deadlines [31].
So, these scheduling approaches are not fair in assigning
resources to jobs. Hence, we used a weighted time-sharing
scheduling method to allocate resources to jobs proportional
to their demands and deadlines, using k+1weight parameters
as their share of resources. Our selfish allocation and fair
scheduling solution attempt to yield a strategy profile of the
game in which all users’ jobs are satisfied with their response
times.

Jobs determine one value for their deadlines and desire
the sum of transmission time in the communication link, and
the execution time in computation resources does not violate
this value. So we split each job’s deadline into transmission

VOLUME 10, 2022 129045

H. Siar, M. Izadi: Selfish Routing Game-Based Multi-Resource Allocation

TABLE 1. List of notations.

and computation deadlines for executing the job in the edge
servers’ resources. In more detail, if job Ti is allocated to edge
server Rj, its transmission and computation deadlines are
represented by di,jb , and di,jc , respectively. All computation
resources of Rj, suppose di,jc for their deadlines, which is
obtained using the maximum ratio of request to the resource
capacity among computation resources. We can estimate
these parameters as follows. di,jc + di,jb = di

(maxc∈[1:k]{Tic/Rjc})
(Tib/Rjb)

=
di,jc
di,jb

(2)

Our weighted time-sharing scheduling estimates weights for
jobs to determine their shares of the edge server’s resources.
If wi,jκ is job Ti’s weight in resource κ of edge server Rj, bel-
low equation evaluates this job’s share of this resource [35].

fi,jk =
wi,jκ∑
l∈Ijκ

wl,jκ
(3)

where Ijκ is the set of jobs in the scheduling queue of resource
κ of edge server Rj.

Computation resources can process at most one job at a
time, so these resources are assigned to every job succes-
sively, corresponding to the job’s share. On the other hand,
edge server Rj’s link bandwidth divides into χ separate parts
(for example, different frequency bands in the frequency
division multiple access (FDMA) or different time slots in the
time division multiple access (TDMA)), where χ is the num-
ber of jobs allocated to Rj. The share of link bandwidth for
job Ti is proportional to its demand and deadline. Although
multiple access methods can reduce wireless interference to
some extent, the interference between edge servers is still
established. Please note that we refer to these examples to
provide intuition on the function of the introduced scheduling
method. So, the challenges related to interference manage-
ment are not in the scope of this article. However, there are
several studies in the literature [49], [50], [51], [52] to address
these challenges, that can be used in the current study.

We estimate the weight of every job Ti on resource κ of
edge server Rj according to equation (4).

wi,jκ∑
l∈Ijκ

wl,jκ
× di,jκ =

Tiκ
Rjκ

(4)

where, di,jκ is the deadline of job Ti on resource κ of edge
server Rj, Tiκ is job Ti’s request for this resource, and Rjκ is
the capacity of resource of type κ in edge serverRj. So, we can
estimate every wi,jκ as follows.

wi,jκ =

(Tiκ /Rjκ)
di,jκ

∑
l∈Ijκ , l 6=i

wl,jκ

1− (Tiκ /Rjκ)
di,jκ

(5)

Our weighted time-sharing scheduling assigns resources to
jobs according to their shares, estimated using equation (3).
Therefore if Rxi is the allocated edge server to job Ti, and
X = (x1, . . . , xi, . . . , xn) is the allocation decision for input
jobs, the below equation estimates the response time of Ti.

C i(X)

=

(
max
c=1:k

(
9xic ×

Tic
Rxic × wi,xic

)
+9xib ×

Tib
Rxib × wi,xib

)
(6)

where9xic is the sum of weights of jobs in resource c of edge
server Rxi , and 9xib

is the sum of weights of jobs in the link
bandwidth of Rxi .

Hence, we have formulated the joint fair allocation and
scheduling problem to minimize jobs’ response time in
the introduced system model. According to the illustrated
scheduling, in each edge server Rj, the shares and response
time of every job Ti depends on the number of jobs assigned
to that edge server and their demands and deadlines. As a
result, we model the joint allocation and scheduling problem
as a selfish game, which we will explain in the next section.

VI. SELFISH JOB ALLOCATION GAME
According to the defined system model, we want to allocate
users’ jobs to edge servers such that resources are assigned

129046 VOLUME 10, 2022

H. Siar, M. Izadi: Selfish Routing Game-Based Multi-Resource Allocation

proportional to jobs’ demands and deadlines, and no job is
unsatisfied with its response time. Every job attempts toward
its benefit without caring for others. Therefore, we are facing
a selfish allocation game among n users’ jobs as players of the
game [53], [54], [55]. We modeled this strategic problem as
a routing game. The routing game is defined among players
who want to transfer their loads in a network, including links
with specified capacities. Every link has a cost, a function
of the amount of traffic that uses the link. Selfish players
choose routes to minimize the cost incurred. In equilibrium,
all players choose a path of minimum cost [55], [56].

Since the jobs have indivisible loads, every job is assigned
to exactly one edge server. So, the players’ strategy is choos-
ing one edge server amongm edge servers (i.e., pure strategy).
We used a variable xi ∈ [1,m] to represent the strategy
of player i in our selfish game; it denotes the index of the
edge server selected by job Ti. Therefore, the strategy pro-
file of our routing game can be shown using vector X =
(x1, . . . , xi, . . . , xn), where every entry xi of this vector rep-
resents the allocation decision of player i.
Considering the cost of job Ti in selecting an edge server,

as the cost of all jobs selecting that edge server, we define
each edge server Rj’s cost as follows.

costRj (X) =
(
max
c=1:k

(
9Rjc ×

∑
i:xi=j

Tic
Rjc × wi,jc

)
+ 9Rjb

×

∑
i:xi=j

Tib
Rjb × wi,jb

)
(7)

According to equations (6) and (7), minimizing the cost of
each edge server is obtained by reducing the cost of every job
assigned to that edge server.

In the defined selfish routing game, each player attempts to
minimize her/his response time. The most common concept
in solving such games is the Nash equilibrium [53], [55]. The
following claim explains when strategy profile X is a Nash
equilibrium of the defined game.
Claim 1: X = (x1, . . . , xi, . . . , xn) represents a Nash

equilibrium in our selfish allocation and fair scheduling game
if we have the following for all jobs Ti.

C i(xi, x−i) < C i(x ′i , x−i) (8)

where x−i represents the allocation strategy of players other
than i. So, in the Nash equilibrium, no player can decrease
her/his response time by changing her/his allocation.

In general, Nash equilibria are defined in terms of proba-
bility distributions over the set of pure strategies called mixed
strategies. Since we considered indivisible jobs which must
be assigned to specific edge servers, we are interested only in
pure strategy Nash equilibrium [28], [53].
Theorem 1: At least one pure Nash equilibrium exists for

the proposed selfish allocation and fair scheduling game.
To prove theorem 1, we define lexicographically minimum

vectors as follows.

Definition 1 (Lexicographically Minimum Vector): For
any two m × 1 vectors x and y; x is lexicographically less
than y, if there is an index k ≤ m such that for each index
i ≤ k, xi = yi, while xk < yk . The lexicographically
minimum vector is the least element of this total order.

Having definition 1, we can prove theorem 1 [56].
Proof: Every pure strategy profile X induces a sorted

cost vector ζ =< costR1 , costR2 , . . . , costRm >, in non-
increasing order such that costR1 ≥ costR2 ≥ . . . ≥ costRm .
We show that the pure Nash equilibrium strategy profile of
X∗ corresponds to the lexicographicallyminimum sorted cost
vector of ζ∗.

To reach a contradiction, suppose that X∗ is not a Nash
equilibrium. So, there exists a job Tii∈[1:n] which assigned its
load on edge serverRj, (i.e. xi = j) and an edge serverRj′

j′∈[1:m]
,

such that costRj′ < costRj , if xi = j′. Hence, if job Ti
changes her strategy from edge server Rj to Rj′ , the cost of
edge server Rj′ after the change is also smaller than Rj’s cost
in X . Therefore, the sorted cost vector after job Ti changing
its strategy from edge server Rj to Rj′ is lexicographically less
than ζ∗, which is a contradiction. �
According to proof of theorem 1, the lexicographically

minimum cost vector of edge servers corresponds to a
pure Nash equilibrium of the introduced game. Since jobs’
demands of resources are non-zero, they must select edge
servers to minimize their response times to reach a pure
Nash equilibrium. This reduces the sum of the response times
of all jobs selecting that edge server (i.e., the cost of the
edge server). Therefore, in the pure Nash equilibrium of
our game, every job must select an edge server such that
its response time is minimized and it has no incentive to
change the selected strategy. The following section presents
a greedy and polynomial time algorithm to reach the pure
Nash equilibrium of the introduced selfish allocation and fair
scheduling game.

VII. ALGORITHMIC SOLUTION
In this section, we present a greedy and polynomial time
algorithm called SAFSA (selfish allocation and fair schedul-
ing algorithm) to compute a pure Nash equilibrium strategy
profile of the introduced game.

SAFSA assigns jobs to edge servers greedy in terms of
resource demands and deadlines, algorithm 1 represents its
pseudo-code. Inputs of the algorithm represented in the first
line, including the set of input jobs of {T }, the set of avail-
able edge servers of {E}, 9jb as the sum of weights of
jobs assigned to the link bandwidth of every edge server
Rj, and 9jc is the sum of weights of jobs assigned to each
computation resource c of every edge server Rj. Initially,
SAFSA assigns every input job to an edge server where the
sum of the ratio of resource demand to the resource capacity
(i.e., Tiκ

Rjκ
) for all resource types of κ is minimized. So, the

weights of jobs do not consider in the initial assignment
(lines 2 to 4). Also, the cost of edge servers’ resources initial-
izes to zero (lines 5-7). After the initial assignment of jobs,

VOLUME 10, 2022 129047

H. Siar, M. Izadi: Selfish Routing Game-Based Multi-Resource Allocation

the following process (i.e., lines 9-20) will be done on each
edge server. Edge server Rj gives the highest priority to job

T1 if the sum of
T1κκ=1:k+1

Rjκκ=1:k+1×d1,jκκ=1:k+1
is greater than that of

jobs with Rj as their strategy (line 10). The reason is that in
the introduced weighted time-sharing scheduling, the weight
of job Ti in each resource κ ∈ [1 : k + 1] of edge server
Rj is directly related to the ratio of Tiκ

Rjκ×di,jκ
(according to

equation (5)). If no job is allocated to Rj, then T1 will assign
to this edge server with weight one, and the sum of weights of
resources will be updated (lines 12-13). Otherwise, the sum
of weights will be updated after calculating the weight of job
T1 according to equation (5) (lines 15-16). After assigning job
T1 to Rj, the execution time of this job on each resource of Rj
will be added to the cost of that resource. Finally, T1 will be
removed from the set of input jobs (i.e., set {T }) (lines 18-19).

In the following, edge server Rj will be selected for the
allocation strategy of every job Ti in the set of unassigned
input jobs of {T } if the cost of this server is minimized by
adding the ratio of Tiκ

Rjκ×w
′
i,jκ
×9jκ to the current cost of every

resource κ of Rj. Where w′i,jκ is a temporary weight of Ti in

resource κ ∈ [1 : k + 1] of Rj by having the current sum of
weights in the resources (lines 21-23). Then, SAFSA reruns
the process of selecting the job with the highest priority in
every edge server (lines 9-20). The algorithm repeats until all
jobs are assigned to the edge servers (lines 8-24).
Claim 2: SAFSA computes the pure Nash equilibrium of

the introduced selfish allocation and fair scheduling game in
a polynomial time.

Proof: We assume X (s) = (xs1, x
s
2, . . . , x

s
s) is the output

strategy profile of SAFSA for the first s jobs with the highest
priority, and C i(X (s)) is the response time of job Ti in X (s).
We represent the allocation strategy of Ti in X (s) with xsi , and
xs
−i is the allocation strategy of jobs other than Ti.
Since the initial assignment is based on jobs’ resource

demands and edge servers’ available resources, the claim
is correct if there is one job in the system. We inductively
consider that for all s ≥ 1, s ∈ [1 : n], X (s) is a pure Nash
equilibrium for the first s jobs with the highest priority. Then
we show that X (s+1) is a pure Nash equilibrium for the jobs
in [1 : s+ 1].

Job Ts+1 will be assigned to edge server Rj where
its response time is minimized considering the available
resources of the edge servers and the jobs allocated to them.
Also, Ts+1’s weight in Rj’s resources is more than all jobs
selected that edge server as their strategy. So Ts+1 cannot
decrease its response time by changing its allocation strategy,
and we have the following inequality:

Cs+1(xs+1s+1 , x
s+1
−(s+1)) < Cs+1(x′s+1s+1, x

s+1
−(s+1)) (9)

Also, for each job Tl 6= Ts+1 assigning to edge server Rq 6=
Rj, we have the following:

C l(X (s+ 1)) = C l(xsl , x
s
−l) < C l(x′sl , x

s
−l) (10)

TABLE 2. Experimental parameters.

Since Tl had been assigned to an edge server other than Rj,
inserting Ts+1 into the input jobs does not affect its response
time, and the equality is correct. Also, the inequality holds
because X (s) is assumed to be the Nash equilibrium of the
game. On the other hand, the following inequality is correct
for each job Tm 6= Ts+1 that is assigned to Rj.

Cm(xs+1m , xs+1−m) < Cm(x′s+1m , xs+1−m) (11)

Since the jobs are assigned to edge servers in order of priority,
the priority of Tm in Rj is higher than Ts+1, and Tm has no
incentive to change its allocation. Therefore, the players (i.e.,
jobs) have no incentive to change their allocation, and X =
(x1, x2, . . . , xn) is the pure Nash equilibrium of the introduced
selfish allocation and fair scheduling game.
The main operation of determining a job with the highest

priority for each edge server is in the loop of lines 8-24 of
algorithm 1. It is in the order of O(nmk), where n is the
number of input jobs,m is the number of edge servers, and k is
the number of resources in each edge server. Each iteration of
this loop assigns at least one job to its appropriate edge server.
So, the computation complexity of this algorithm isO(n2mk),
and SAFSA can calculate the pure Nash equilibrium of the
introduced selfish allocation and fair scheduling game in a
polynomial time. �
SAFSA runs in a central server with general knowledge of

the system. This central server can be a broker in the edge
layer or the cloud layer, and the output of this algorithm is
the allocation and scheduling decision for the input jobs.

VIII. EXPERIMENTS
We simulate our joint allocation and scheduling scheme
using an extended version of the CloudSim framework
[13] and an initial implementation of SAFSA. The simu-
lation environment consists of 50 IoT devices and 5 edge
servers. We considered one computation resource of CPU,
along with the link bandwidth, in each edge server. Edge
servers in the simulations have link capacities from {1 GB/s,
5 GB/s, 10 GB/s}, and processing powers from {800 MIPS,
1500 MIPS, 2000 MIPS, 3300 MIPS}. Table 2 represents the
parameters of the simulation environment.
We used Google cluster traces [57] representing resource

requirements and usage data for tasks in several days of
using Google machines. The traces provide information on
job duration, resource demands, and resource usage. We used
500 traces in this analysis. Most resource requirements and
usage in the traces include CPU, memory, disk space, and
disk time fraction. However, the Google cluster traces do
not have any information on bandwidth usage. Therefore,

129048 VOLUME 10, 2022

H. Siar, M. Izadi: Selfish Routing Game-Based Multi-Resource Allocation

Algorithm 1 Selfish Allocation and Fair Scheduling Algo-
rithm (SAFSA)
1: Inputs: {T}: the set of input jobs; {E}: the set of edge

servers; 9jb : the sum of weights of jobs assigned to the
link bandwidth resource of every edge server Rj; 9jc :
the sum of weights of jobs assigned to each computation
resource c of every edge server Rj

2: for each job i = 1 : n do
3: xi = argminj∈{1:m}{maxc=1:k (

Tic
Rjc

)+
Tiκ+1
Rjκ+1
}

4: end for
5: for each edge server j = 1 : m do
6: λjκκ=1:k+1

= 0 F λjκ is the cost of resource κ in Rj
7: end for
8: repeat
9: for each edge server j = 1 : m do
10: Consider T1 the job with

maxi:xi=j
(
maxc=1:k (

Tic
Rjcdic

)+
Tiκ+1

Rjκ+1diκ+1

)
F T1 is the job

with the highest priority in Rj
11: if no job was assigned to Rj then
12: w1,jκκ=1:k+1

= 1
13: 9jκκ=1:k+1

= w1,jκκ=1:k+1
14: else
15: calculate w1,jκ according to equation (5)
16: 9jκκ=1:k+1

+ = w1,jκκ=1:k+1
17: end if
18: λjκκ=1:k+1

+ =
T1κκ=1:k+1

Rjκκ=1:k+1×w1,jκκ=1:k+1
×9jκκ=1:k+1

19: {T } = {T } − T1
20: end for
21: for each job i in {T } do
22: xi = argminj∈{1:m}{maxc=1:k (λjc+

Tic
Rjcw

′
i,jc
9jc) +

(λjκ+1 +
Tiκ+1

Rjκ+1w
′
i,jκ+1

9jκ+1)} F w
′
i,jκκ=1:k+1

is a temporary

weight of Ti in Rj having 9jcc=1:k , 9jκ+1
23: end for
24: until {T } = ∅
25: return X = {x1, x2,, xn}

we borrowed the instructions of [58] to model the bandwidth
demand of jobs according to their CPU usage. ConsideringW
indicates the number of CPU cycles used by an application,
and L is the number of data bits as the input to the application,
we have W = L × Y , where Y is a random variable with
Gamma distribution. We used the shape parameter α = 4,
and rate parameter β = 200, to generate Y , according to [58].

The experiments are performed on a personal computer
with Intel(R) Core(TM) i5, 2.5 GHz CPU and 8 GB RAM.
We divide the set of input jobs into n equally non-overlapping
groups where group i indicates the input jobs of IoT device i.
The input jobs are entered with a specific arrival rate.We used
two performance metrics in the evaluations. The first is the
average response time of jobs, and the second is the deadline
miss rate, which is the number of jobs that take longer to
complete than their deadlines divided by the total number of
jobs. We have repeated all experiments at least 100 times,

so each point on the plots is the average result of at least
100 different simulation runs. The proposed algorithm of
SAFSA is compared with the following four methods:

• Max-min+FCFS: In this scheme, the jobs are allocated
to edge servers using the minimum dominated resource
concept of DRF [6]. Also, the allocated jobs are sched-
uled in the edge servers’ resources using the first come,
first service (FCFS) algorithm [9]. itemMax-min+RR:
This scheme also uses the DRF [6] method for allocating
jobs. However, the allocated jobs are scheduled using the
round-robin [30] algorithm.

• Greedy+FCFS: In this scheme, every job selects an
edge server such that the sum of the ratio of resource
demand to the available resource of the edge server for
all resource types is minimized. Then the allocated jobs
are scheduled using the FCFS algorithm.

• Greedy+RR: This scheme also allocates jobs greedily
according to the sum of the ratio of resource demand
to the available resource of the edge server for all
resource types. This method schedules the jobs using the
round-robin.

We called evaluated schemes that use the max-min allocation
as max-min based schemes and the methods that use the
greedy allocation as greedy based schemes.

A. EVALUATION EXPERIMENTS
We first analyze response time and deadline miss rate for ten
jobs of the dataset to study the ability of SAFSA compared
to other evaluated schemes. The specifications of these jobs,
including the deadline, the input data size, and the number
of CPU cycles needed to complete the jobs, are represented
in figure 2, respectively. Figure 3 shows the average results
for 100 simulation runs of these jobs. The results confirm
that response times for greedy based schemes with FCFS
and RR scheduling are higher than all other methods. Except
for two jobs of 4 and 8, where the response time of SAFSA
is a little higher than max-min based schemes, SAFSA has
a better response time for other jobs. As you can see in
figure 2, deadlines for jobs 4 and 8 are higher than others.
At the same time, their data size and required CPU cycles
are not very high. So, the priority of these jobs in SAFSA
is lower than other jobs having smaller deadlines and higher
resource requests, which leads to a little higher response time
thanmax-min based approaches. Nevertheless, thanks to their
high deadlines, they can be completed within their deadlines
with either SAFSA or max-min based approaches. In other
words, SAFSA has 100% superior response time than greedy
based schemes and 80% greater than that of max-min based
schemes with RR and FCFS scheduling.

Regarding the deadline miss-rate of jobs, all compared
schemes can execute all jobs except job 7 before their dead-
lines. It is due to the very small deadline of this job compared
to other jobs. The greedy based schemes can not execute job 7
within its deadline in all 100 runs. Furthermore, max-min
based methods missed this job’s deadline 70 and 80 times,

VOLUME 10, 2022 129049

H. Siar, M. Izadi: Selfish Routing Game-Based Multi-Resource Allocation

FIGURE 2. The specifications of 10 jobs from Google cluster traces.

FIGURE 3. Response time and deadline miss rate for 10 jobs in 100 simulation runs.

FIGURE 4. Average response time and deadline miss rate, in terms of the number of input jobs.

respectively. At the same time, SAFSA gives a high priority
to job 7 and succeeded in executing all jobs within their
deadlines. So, the deadline miss rate of our scheme is zero
for all ten jobs.

1) IMPACT OF THE NUMBER OF INPUT JOBS
Figure 4 represents the performance of different schemes
by increasing the number of input jobs to the system
from 50 to 500. In this analysis, the arrival rate of jobs did
not change. In all evaluated schemes, increasing the num-
ber of jobs increments the average response time. Greedy
based schemes with RR and FCFS scheduling have a higher
response time than other evaluated methods in all cases.

SAFSA attempts to simultaneously decrease the deadline
miss rate and average response time by considering the

shares of jobs allocated to each edge server. At the same
time, approaches similar to max-min based only consider the
resource request of the jobs. In these schemes minimizing the
response time of jobs with high resource requests and dead-
lines can decrease the average response of the jobs. However,
neglecting jobs with fewer requests and very short deadlines
can cause them to miss deadlines. Therefore, max-min based
approaches can compete with SAFSA in terms of the average
response time, while their performance is not acceptable in
minimizing the deadline miss rate of jobs. Since in SAFSA,
the set of jobs assigned to each edge server affects the alloca-
tion decision of a new job, the performance of our method is
robust by increasing the number of input jobs. This feature
is proved in figure 4a, where the performance of SAFSA
improves and distances from max-min based approaches by

129050 VOLUME 10, 2022

H. Siar, M. Izadi: Selfish Routing Game-Based Multi-Resource Allocation

FIGURE 5. Average response time and deadline miss rate, in terms of the number of edge servers.

increasing the number of input jobs. Max-min based methods
have equal response time for both RR and FCFS scheduling in
all cases. It indicates the significant importance of allocating
jobs to edge servers compared to scheduling in the servers.

On the other hand, in terms of deadline miss rate, SAFSA
outperforms in comparison to all other schemes with sig-
nificant performance. Increasing the number of input jobs
increases the time needed to execute them over limited
resources. However, in some cases, the jobs’ deadline is large
enough such that they can be executed at their deadlines.
So, an appropriate allocation and scheduling approach can
be robust against increasing the deadline miss rate as the
number of jobs increments. Therefore there is not neces-
sarily a reverse relation between the average response time
and deadline miss rate of the jobs. This situation can be
established in the analysis of this section and the following
sections.

In this evaluation, by increasing the number of input jobs,
the deadline miss rate increases in the evaluated schemes,
while SAFSA prevents deadline violations when the number
of input jobs increases. Results from this evaluation confirm
that SAFSA is robust in minimizing average response time
and deadline miss rate for the different number of input jobs.

2) IMPACT OF THE NUMBER OF EDGE SERVERS
In this part, we have analyzed the performance of the pro-
posed scheme in an edge computing system with 50 IoT
devices entering 500 jobs when the number of edge servers
changes from 4 to 15. Decreasing the number of edge servers
leads to limitations in the communication and computa-
tion resources, which increases competition among jobs in
allocating resources. A successful approach must complete
more jobs within their deadlines when limited resources are
available.

Figure 5 indicates greedy-based approaches’ performance
does not change by increasing the number of edge servers.
This is because all jobs greedily select an edge server with
higher resource capacity and do not assign to other edge
servers, even if idle. It significantly reduces greedy allo-
cation performance with RR and FCFS scheduling meth-
ods. However, the average response times of max-min based

approaches and SAFSA decrease by increasing the number
of edge servers. Since the jobs do not have many options
to change their allocation strategy when there is a low
number of edge servers, SAFSA’s average response time is
close to max-min based approaches in this case (figure 5).
By incrementing the number of edge servers and increasing
jobs’ options for allocation strategies in SAFSA, its average
response time difference with max-min based approaches
increases. The configurations of edge servers are obtained
arbitrarily according to table 2. So, the new edge server may
not have better resource capacity than available edge servers,
preventing jobs from choosing it for their initial allocation
strategy. It can bring fluctuations in the results of SAFSA and
max-min based approaches for the different number of edge
servers.

According to figure 5b, the deadline miss rates of max-min
based allocation schemes with RR and FCFS scheduling
are decreasing by increasing the number of edge servers.
However, they can not reach that of SAFSA, and it always
succeeds in terms of deadline miss rate over other evaluated
approaches, thanks to considering the jobs’ deadlines besides
their resource demands, in the introduced weighted time-
sharing scheduling. This result confirms the ability of SAFSA
to decrease both average response time and deadline miss
rate, while max-min based approaches’ success is just in
terms of the average response time.

3) IMPACT OF THE NUMBER OF IoT DEVICES
Analyzing the methods by increasing the number of IoT
devices from 50 to 700 is represented in Figure 6. Incre-
menting the number of IoT devices in the system leads to
enlarging the input jobs, increasing the average response
time of all evaluated schemes. However, the slopes of greedy
based approaches’ average response time curves are steeper
than other schemes. It indicates the poor function of these
methods for a large number of IoT devices. This performance
is predictable from section VIII-A1 in analyzing the methods
regarding the number of input jobs. Since both max-min
based schemes and SAFSA pay attention to the resource
requirements of the jobs, they provide comparable aver-
age response times (figure 6a). However, by increasing the

VOLUME 10, 2022 129051

H. Siar, M. Izadi: Selfish Routing Game-Based Multi-Resource Allocation

FIGURE 6. Average response time and deadline miss rate in terms of the number of IoT devices.

FIGURE 7. Average response time and deadline miss rate, in terms of jobs’ arrival rate.

number of IoT devices, SAFSA’s performance surpasses that
of max-min based approaches. This result, along with that
of section VIII-A1, confirms SAFSA’s efficient and robust
performance by increasing the number of input jobs and IoT
devices.

On the other hand, figure 6b indicates the deadline miss
rate of SAFSA is lower than that of other evaluated schemes
for different numbers of IoT devices. It is because of consid-
ering the jobs’ deadlines besides their resource demands in
allocation and scheduling decisions of SAFSA. In contrast,
other schemes like max-min based approaches only focus
on jobs’ resource demands. Although SAFSA has a similar
average response time or even worse in some limited points
in comparison to max-min based approaches, its outstanding
ability to decrease the deadline miss rate of the jobs for all
different numbers of IoT devices confirms SAFSA’s capabil-
ity in decreasing both response time and deadline miss rate
of jobs by changing the number of IoT devices. This power
is evident for a large number of IoT devices, a key feature of
IoT applications.

4) IMPACT OF JOBS’ ARRIVAL RATE
Figure 7 exhibits the performance of the analyzed meth-
ods with different arrival rates of 500 jobs to the edge
computing system. We represent jobs’ arrival rates with val-
ues from 0 to 7, where 0 indicates a very high job arrival
rate and 7 indicates a very low arrival rate. By decreasing

the arrival rate of jobs, the average response time dimin-
ishes in both SAFSA and max-min based schemes. Never-
theless, according to figure 7a, the average response time of
SAFSA is lower than all other evaluated schemes for different
arrival rates. Since SAFSA considers jobs’ deadlines besides
resource requirements on their allocation and scheduling,
it decreases deadline miss rate by reducing jobs’ arrival rates.
In contrast, other methods do not significantly change their
deadline miss rates for different arrival rates. This indicates
the outstanding ability of our scheme in minimizing both
response time and deadline miss rate for different arrival rates
of jobs.

IX. CONCLUSION
We proposed a joint allocation and scheduling scheme for
multi-user edge computing environments in which com-
petition among users’ jobs is modeled as a selfish game.
We considered heterogeneous communication and compu-
tation resources in the edge computing system and the
multi-resource requirements of IoT applications with dead-
line constraints. Also, we have focused on jobs with indi-
visible loads in which they are allocated and scheduled on
one edge server. The satisfaction of jobs is considered with
allocating resources proportional to their resource demands
and deadlines. A selfish allocation game and a weighted
time-sharing scheduling method were introduced to achieve
this objective. By demonstrating the existence of pure Nash

129052 VOLUME 10, 2022

H. Siar, M. Izadi: Selfish Routing Game-Based Multi-Resource Allocation

equilibrium, we provided a greedy and polynomial time
algorithm to achieve selfish allocation and fair scheduling
solution called SAFSA. We assessed the performance of
SAFSA using a real-world dataset of Google cluster [57],
and an extended version of the CloudSim simulator [14]. The
evaluations are performed in terms of average response time
and the ratio of jobs with missed deadlines in an edge com-
puting system with two types of resources (i.e., CPU and link
bandwidth) for the edge servers. SAFSA’s performance was
compared with greedy and max-min allocations also FCFS
and RR scheduling. SAFSA minimizes both measurements
simultaneously, while others just focus on improving the
average response time. The evaluations confirm this result for
different circumstances of the edge computing environment,
especially a large number of input jobs and IoT devices,
a characteristic of IoT applications. To extend the current
study, it is encouraging to consider the QoS requirements of
users along with the constraints of resources such as energy.
A further exciting topic for future research is the joint alloca-
tion and scheduling of dependent jobs.

ACKNOWLEDGMENT
The authors would like to thank Mohammad Amin Rayej for
his help in providing the simulation environment.

REFERENCES
[1] R. Buyya and S. N. Srirama, Fog and Edge Computing: Principles and

Paradigms. Hoboken, NJ, USA: Wiley, 2019.
[2] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang,

‘‘A survey on the edge computing for the Internet of Things,’’ IEEE access,
vol. 6, pp. 6900–6919, 2017.

[3] H. Siar and M. Izadi, ‘‘Offloading coalition formation for scheduling
scientific workflow ensembles in fog environments,’’ J. Grid Comput.,
vol. 19, no. 3, pp. 1–20, Sep. 2021.

[4] F. J. Miandashti, M. Izadi, A. A. N. Shirehjini, and S. Shirmohammadi,
‘‘An empirical approach to modeling user-system interaction conflicts in
smart Homes,’’ IEEE Trans. Hum.-Mach. Syst., vol. 50, no. 6, pp. 573–583,
Dec. 2020.

[5] M. Drozdowski, Selected Problems of Scheduling Tasks in Multiprocessor
Computer Systems. Politechnika Poznańska, 1997.

[6] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica, ‘‘Dominant resource fairness: Fair allocation of multiple resource
types,’’ in Proc. NSDI, vol. 11, 2011, p. 24.

[7] W. Wang, B. Li, and B. Liang, ‘‘Dominant resource fairness in cloud
computing systems with heterogeneous servers,’’ in Proc. IEEE Conf.
Comput. Commun. (INFOCOM), Apr. 2014, pp. 583–591.

[8] E. Meskar and B. Liang, ‘‘Fair multi-resource allocation in mobile edge
computing with multiple access points,’’ in Proc. 21st Int. Symp. The-
ory, Algorithmic Found., Protocol Design Mobile Netw. Mobile Comput.,
Oct. 2020, pp. 11–20.

[9] J. L. Peterson and A. Silberschatz, Operating System Concepts. Boston,
MA, USA: Addison-Wesley, 1985.

[10] X. Liu, Z. Qin, Y. Gao, and J. A. McCann, ‘‘Resource allocation in
wireless powered IoT networks,’’ IEEE Internet Things J., vol. 6, no. 3,
pp. 4935–4945, Jun. 2019.

[11] H. Zhang, Y. Zhang, Y. Gu, D. Niyato, and Z. Han, ‘‘A hierarchical game
framework for resource management in fog computing,’’ IEEE Commun.
Mag., vol. 55, no. 8, pp. 52–57, Aug. 2017.

[12] R. Tripathi, S. Vignesh, V. Tamarapalli, A. T. Chronopoulos, and H. Siar,
‘‘Non-cooperative power and latency aware load balancing in distributed
data centers,’’ J. Parallel Distrib. Comput., vol. 107, pp. 76–86, Sep. 2017.

[13] R. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya,
‘‘CloudSim: A toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,’’ Softw.,
Pract. Exper., vol. 41, no. 1, pp. 23–50, 2011.

[14] M. A. Rayej, H. Siar, and M. Izadi, ‘‘WIDESim: A toolkit for simulating
resource management techniques of scientific workflows in distributed
environments with graph topology,’’ 2022, arXiv:2206.03538.

[15] Q. Luo, C. Li, T. H. Luan, and W. Shi, ‘‘Minimizing the delay and cost
of computation offloading for vehicular edge computing,’’ IEEE Trans.
Services Comput., vol. 15, no. 5, pp. 2897–2909, Sep. 2022.

[16] S. Islam, S. Badsha, S. Sengupta, H. La, I. Khalil, and M. Atiquzzaman,
‘‘Blockchain-enabled intelligent vehicular edge computing,’’ IEEE Netw.,
vol. 35, no. 3, pp. 125–131, May 2021.

[17] M. D. Hossain, L. N. T. Huynh, T. Sultana, T. D. T. Nguyen, J. H. Park,
C. S. Hong, and E.-N. Huh, ‘‘Collaborative task offloading for overloaded
mobile edge computing in small-cell networks,’’ in Proc. Int. Conf. Inf.
Netw. (ICOIN), Jan. 2020, pp. 717–722.

[18] M. Kloock, P. Scheffe, I. Tulleners, J. Maczijewski, S. Kowalewski, and
B. Alrifaee, ‘‘Vision-based real-time indoor positioning system for multi-
ple vehicles,’’ IFAC-PapersOnLine, vol. 53, no. 2, pp. 15446–15453, 2020.

[19] S. Malik, S. Ahmad, I. Ullah, D. H. Park, and D. Kim, ‘‘An adaptive emer-
gency first intelligent scheduling algorithm for efficient task management
and scheduling in hybrid of hard real-time and soft real-time embedded
IoT systems,’’ Sustainability, vol. 11, no. 8, p. 2192, Apr. 2019.

[20] T. M. Amert, ‘‘Enabling real-time certification of autonomous driving
applications,’’ Ph.D. dissertation, Dept. Comput. Sci., Univ. North Carolina
Chapel Hill, Chapel Hill, NC, USA, 2021.

[21] J. Khamse-Ashari, I. Lambadaris, G. Kesidis, B. Urgaonkar, and Y. Zhao,
‘‘Per-server dominant-share fairness (PS-DSF): A multi-resource fair allo-
cation mechanism for heterogeneous servers,’’ in Proc. IEEE Int. Conf.
Commun. (ICC), May 2017, pp. 1–7.

[22] M. Shafiee and J. Ghaderi, ‘‘On max-min fairness of completion times for
multi-task job scheduling,’’ in Proc. IFIP Netw. Conf., 2020, pp. 100–108.

[23] E. Meskar and B. Liang, ‘‘MAGIKS: Fair multi-resource allocation game
induced by Kalai-Smorodinsky bargaining solution,’’ IEEE Open J. Com-
mun. Soc., vol. 3, pp. 797–810, 2022.

[24] P. Poullie, T. Bocek, and B. Stiller, ‘‘A survey of the state-of-the-art in
fair multi-resource allocations for data centers,’’ IEEE Trans. Netw. Service
Manag., vol. 15, no. 1, pp. 169–183, Mar. 2018.

[25] M. Mukherjee, M. Guo, J. Lloret, R. Iqbal, and Q. Zhang, ‘‘Deadline-
aware fair scheduling for offloaded tasks in fog computing with inter-fog
dependency,’’ IEEE Commun. Lett., vol. 24, no. 2, pp. 307–311, Feb. 2020.

[26] M. Zhao, W. Li, L. Bao, J. Luo, Z. He, and D. Liu, ‘‘Fairness-aware
task scheduling and resource allocation in UAV-enabled mobile edge
computing networks,’’ IEEE Trans. Green Commun. Netw., vol. 5, no. 4,
pp. 2174–2187, Dec. 2021.

[27] A. Kishor, R. Niyogi, and B. Veeravalli, ‘‘Fairness-aware mechanism for
load balancing in distributed systems,’’ IEEE Trans. Services Comput.,
vol. 15, no. 4, pp. 2275–2288, Jul. 2022.

[28] D. Grosu and A. T. Chronopoulos, ‘‘Noncooperative load balancing
in distributed systems,’’ J. Parallel Distrib. Comput., vol. 65, no. 9,
pp. 1022–1034, 2005.

[29] G. Xing, X. Xu, H. Xiang, S. Xue, S. Ji, and J. Yang, ‘‘Fair energy-efficient
virtual machine scheduling for Internet of Things applications in cloud
environment,’’ Int. J. Distrib. Sensor Netw., vol. 13, no. 2, Feb. 2017,
Art. no. 155014771769489.

[30] R. V. Rasmussen and M. A. Trick, ‘‘Round Robin scheduling—A survey,’’
Eur. J. Oper. Res., vol. 188, no. 3, pp. 617–636, 2008.

[31] H. Yuan, G. Tang, X. Li, D. Guo, L. Luo, and X. Luo, ‘‘Online dispatching
and fair scheduling of edge computing tasks: A learning-based approach,’’
IEEE Internet Things J., vol. 8, no. 19, pp. 14985–14998, Oct. 2021.

[32] A. J. Neha, ‘‘An improved round Robin CPU scheduling algorithm,’’ Iconic
Res. Eng. J., vol. 1, no. 9, pp. 82–86, 2018.

[33] S. Zouaoui, L. Boussaid, and A. Mtibaa, ‘‘Priority based round Robin
(PBRR) CPU scheduling algorithm,’’ Int. J. Electr. Comput. Eng. (IJECE),
vol. 9, no. 1, p. 190, Feb. 2019.

[34] M.M. Tajwar,M. N. Pathan, L. Hussaini, andA. Abubakar, ‘‘CPU schedul-
ing with a round Robin algorithm based on an effective time slice,’’ J. Inf.
Process. Syst., vol. 13, no. 4, pp. 941–950, 2017.

[35] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. K. Baruah, J. E. Gehrke, and
C. G. Plaxton, ‘‘A proportional share resource allocation algorithm for
real-time, time-shared systems,’’ in Proc. 17th IEEE Real-Time Syst.
Symp., Dec. 1996, pp. 288–299.

[36] S. Ramabhadran and J. Pasquale, ‘‘Stratified round Robin: A low complex-
ity packet scheduler with bandwidth fairness and bounded delay,’’ in Proc.
Conf. Appl., Technol., Archit., Protocols Comput. Commun. (SIGCOMM),
2003, pp. 239–250.

VOLUME 10, 2022 129053

H. Siar, M. Izadi: Selfish Routing Game-Based Multi-Resource Allocation

[37] M. Mukherjee, V. Kumar, D. Maity, R. Matam, C. X. Mavromoustakis,
Q. Zhang, and G. Mastorakis, ‘‘Delay-sensitive and priority-aware task
offloading for edge computing-assisted healthcare services,’’ inProc. IEEE
Global Commun. Conf. (GLOBECOM), Dec. 2020, pp. 1–5.

[38] J. Meng, H. Tan, X.-Y. Li, Z. Han, and B. Li, ‘‘Online deadline-aware
task dispatching and scheduling in edge computing,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 31, no. 6, pp. 1270–1286, Jun. 2020.

[39] S. Lee, S. Lee, and S.-S. Lee, ‘‘Deadline-aware task scheduling for IoT
applications in collaborative edge computing,’’ IEEE Wireless Commun.
Lett., vol. 10, no. 10, pp. 2175–2179, Oct. 2021.

[40] L. Liu, Q. Fan, and R. Buyya, ‘‘A deadline-constrainedmulti-objective task
scheduling algorithm in mobile cloud environments,’’ IEEE Access, vol. 6,
pp. 52982–52996, 2018.

[41] V. Cardellini, V. D. N. Persone, V. D. Valerio, F. Facchinei, V. Grassi,
F. L. Presti, and V. Piccialli, ‘‘A game-theoretic approach to computation
offloading in mobile cloud computing,’’ Math. Program., vol. 157, no. 2,
pp. 421–449, 2016.

[42] Y. Li, W. Dai, X. Gan, H. Jin, L. Fu, H. Ma, and X. Wang, ‘‘Coopera-
tive service placement and scheduling in edge clouds: A deadline-driven
approach,’’ IEEE Trans. Mobile Comput., vol. 21, no. 10, pp. 3519–3535,
Oct. 2022.

[43] X. Lyu, H. Tian, W. Ni, Y. Zhang, P. Zhang, and R. P. Liu, ‘‘Energy-
efficient admission of delay-sensitive tasks for mobile edge computing,’’
IEEE Trans. Commun., vol. 66, no. 6, pp. 2603–2616, Jun. 2018.

[44] A. Naouri, H. Wu, N. A. Nouri, S. Dhelim, and H. Ning, ‘‘A novel
framework for mobile-edge computing by optimizing task offloading,’’
IEEE Internet Things J., vol. 8, no. 16, pp. 13065–13076, Aug. 2021.

[45] C. E. Shannon, ‘‘A mathematical theory of communication,’’ Bell Syst.
Tech. J., vol. 27, no. 3, pp. 379–423, 1948.

[46] C. E. Shannon, ‘‘A mathematical theory of communication,’’ ACM SIG-
MOBILE Mobile Comput. Commun. Rev., vol. 5, no. 1, pp. 3–55, 2001.

[47] J. Du, L. Zhao, J. Feng, and X. Chu, ‘‘Computation offloading and
resource allocation in mixed fog/cloud computing systems with min-max
fairness guarantee,’’ IEEE Trans. Commun., vol. 66, no. 4, pp. 1594–1608,
Apr. 2017.

[48] Y. Mao, J. Zhang, Z. Chen, and K. B. Letaief, ‘‘Dynamic computation
offloading for mobile-edge computing with energy harvesting devices,’’
IEEE J. Sel. Areas Commun., vol. 34, no. 12, pp. 3590–3605, Dec. 2016.

[49] A. Iyer, C. Rosenberg, and A. Karnik, ‘‘What is the right model for
wireless channel interference?’’ in Proc. 3rd Int. Conf. Quality Service
Heterogeneous Wired/Wireless Netw., 2006, pp. 1–10.

[50] M. Noura and R. Nordin, ‘‘A survey on interference management for
device-to-device (D2D) communication and its challenges in 5G net-
works,’’ J. Netw. Comput. Appl., vol. 71, pp. 130–150, Aug. 2016.

[51] C. D. Nwankwo, L. Zhang, A. Quddus, M. A. Imran, and R. Tafazolli,
‘‘A survey of self-interference management techniques for single fre-
quency full duplex systems,’’ IEEE Access, vol. 6, pp. 30242–30268, 2018.

[52] A. Padmanabhan and A. Tolli, ‘‘Interference management via user clus-
tering in two-stage precoder design,’’ in Proc. IEEE 19th Int. Workshop
Signal Process. Adv. Wireless Commun. (SPAWC), Jun. 2018, pp. 1–5.

[53] M. J. Osborne, An Introduction to Game Theory, vol. 3. New York, NY,
USA : Oxford Univ. Press, 2004.

[54] S. Tadelis,Game Theory: An Introduction. Princeton, NY, USA: Princeton
Univ. Press, 2013.

[55] T. Roughgarden, ‘‘Algorithmic game theory,’’ Commun. ACM, vol. 53,
no. 7, pp. 78–86, 2010.

[56] D. Fotakis, S. Kontogiannis, E. Koutsoupias, M. Mavronicolas, and
P. Spirakis, ‘‘The structure and complexity of Nash equilibria for a selfish
routing game,’’ in Proc. Int. Colloq. Automata, Lang., Program. Berlin,
Germany: Springer, 2002, pp. 123–134.

[57] C. Reiss, J. Wilkes, and J. L. Hellerstein, ‘‘Google cluster-usage traces:
Format + schema,’’ Google, Mountain View, CA, USA, White Paper,
2011, pp. 1–14.

[58] W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, and D. O. Wu, ‘‘Energy-
optimal mobile cloud computing under stochastic wireless channel,’’ IEEE
Trans. Wireless Commun., vol. 12, no. 9, pp. 4569–4581, Sep. 2013.

HAJAR SIAR is currently pursuing the Ph.D.
degree with the Distributed and Multi-Agent Sys-
tems Laboratory, Department of Computer Engi-
neering, Sharif University of Technology, Tehran,
Iran. Her research interests include cloud/edge
computing, distributed and multi-agent systems,
game theory, and machine learning.

MOHAMMAD IZADI received the B.Sc., M.Sc.,
and Ph.D. degrees in computer engineering, the
M.Sc. degree in philosophy of science from the
Sharif University of Technology, Tehran, Iran,
and the Ph.D. degree in computer science from
Leiden University, The Netherlands. He is cur-
rently an Associate Professor and the Head of
the Distributed and Multi-Agent Systems Labora-
tory, Department of Computer Engineering, Sharif
University of Technology. His research interests

include distributed and multi-agent systems, logic in computer science,
semantics, game theory, and theory of computation.

129054 VOLUME 10, 2022

