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ABSTRACT This paper mainly addresses bipartite containment control of multi-agent systems (MASs)
subject to exogenous disturbances. With dynamic gain technique independent of any global information,
the disturbance observer method is applied to estimate disturbances generated by heterogeneous nonlinear
exosystems. Two disturbance observer-based controllers are accordingly presented via state feedback
approach and output feedback approach. By means of appropriate Lyapunov method, it is shown that
the bipartite containment control is realized under sufficient criteria. Finally, simulations are employed to
validate the effectiveness and correctness of our proposed controllers.

INDEX TERMS Bipartite containment control, disturbance observer, heterogeneous nonlinear exosystems,
feedback control.

I. INTRODUCTION
Over the past decades, the substantial attention has been paid
to control systems owing to its broad applications, especially
for networked systems [1], [2], [3], [4] and multi-agent sys-
tems [5], [6], [7], [8], [9], [10]. Compared with networked
systems, the MASs has the advantage of greater efficiency,
lower cost, less communication requirement. So far, there
have been considerable researches about MASs. Among
them, containment control is a research hotspot currently,
which renders each follower gradually convergent to the con-
vex hull composed of all leaders. Yu et al. [11] took into
account a group of auxiliary systems to handle finite-time
containment control for the unknown internal nonlinearity.
Li et al. [12] investigated the containment problem by the
observer-based output feedback controller and anti-windup
compensator to enhance the performance for MASs.

Remarkably, above-mentioned results mainly consider that
the agents interact collaboratively. However, cooperation and
competition coexist in some practical networks. Therefore,
the communication topology of agents can be represented as
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signed weighted digraphs with positive/negative weights cor-
responding to cooperation/competition [13], which extends
the synchronization to bipartite synchronization. The bipar-
tite containment control [14] was first introduced by utilizing
signed digraphs [15], [16]. It was found that the followers
cooperatingwith leaders asymptotically entered into dynamic
convex hull spanned by leaders, while the followers com-
peting with leaders asymptotically entered into the virtual
convex hull opposite to the dynamic convex hull. Up to
now, some works about bipartite containment have been
done. Zuo et al. [17] figured out the bipartite output contain-
ment problem for linear heterogeneous multi-agent systems
based on state feedback control and output feedback control.
Zhou et al. [19] designed adaptive bipartite containment
control protocols via state-observer-based approach and
event-triggered control to effectively save limited resource.
Yang et al. [18] designed delayed control protocols to solve
the fractional bipartite containment control under in fixed
and time-varying signed networks. However, external distur-
bances are few discussed in the above literatures.

As is known to all, disturbances may cause the
systems with bad performance or even instability. There-
fore, it is of great significance to study the disturbance
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rejection [20], [21], [22]. Li et al. [24] used an novel
fixed-time control method to facilitate the disturbance-based
controller design in improving the transient response and the
steady performance. Yan et al. [25] presented a distributed
disturbance-based controller for MASs with disturbances,
where disturbances were imposed on all leaders and fol-
lowers. Li et al. [23] designed a sliding mode controller to
achieve finite-time containment control for nonlinear MASs
by the pinning control, but it was easy to cause the harmful
chattering phenomenon. But, as far as we know, exogenous
disturbances of MASs with multiple leaders have not been
studied in the cooperation-competition network. For MASs
with multiple leaders in the sign network, the challenging of
the control design includes two aspects: firstly, it will con-
sider the communication connections between the follower
with several leaders, rather than with one/no leader; secondly,
the nonlinear disturbance compensator in controller can be
designed to estimate the exogenous disturbances, which
needs the dynamic gain approach to solve the nonlinearity.
As a result, the follower does not require to track the leader,
but to enter the convex hull formed by leaders.

Motivated by foregoing discussion, we handle the bipar-
tite containment for MASs with disturbances generated
from heterogeneous nonlinear exosystems. In the paper, the
major contributions include three aspects. (i) Unlike bipar-
tite containment control with bounded disturbances [26],
disturbance observers are designed via adaptive control in
the paper, which are irrespective of the whole spectrum
information of the interaction topology. (ii) Compared with
the disturbance rejection problem [27], it extends the con-
tainment on nonnegative communication digraphs to signed
communication digraphs with antagonistic interactions from
the reality aspect. Moreover, exogenous disturbances gen-
erated from nonlinear exosystems are investigated, which
generate much more exogenous signals and have wider
application than linear systems do. (iii) The proposed
state feedback disturbance-observer-based control algorithm
guarantees agents realize the bipartite containment con-
trol if the state is obtainable. Moreover, an output feed-
back disturbance-observer-based controller is constructed to
complete the bipartite containment if the state is unob-
tainable. To sum up, it extends the linear exosystems
model to the nonlinear exosystems model and extends
the cooperative-cooperative communication connections to
cooperative-competitive connections. Both the state feedback
controller and the output feedback controller are considered
while disturbance observers are designed via adaptive control
to reduce the dependence of communication information. The
problems are generally less restrictive in this article.

The outline of this paper is organized as follows. Notations,
graph theory and problem formulation are introduced briefly
in Section 2. In Section 3, main results about bipartite con-
tainment control are respectively shown on the basis of state
feedback approach and output feedback approach. Numerical
simulations are given in Section 4. Section 5 reports the final
conclusion.

II. PRELIMINARIES AND PROBLEM FORMULATION
A. NOTATIONS
Throughout this paper, R,Rl×l are respectively denoted as
the real number and the l × l real matrix. I refers to the
identity matrix while 1 = [1, 1, · · · , 1]T with the compatible
dimensions. TheKronecker product ofC andD is represented
byC⊗D. Let λ(E ),ET be respectively the eigenvalue and the

transpose of E . We define ‖x‖p = (
l∑
i=1
|xi|p)1/p for p > 0 and

for a vector x = [x1, x2, · · · , xl]T .

B. GRAPH THEORY
The adjacency matrix A = (aij)l×l describes the connections
of followers, where aij > 0 if the follower i can get the coop-
erative interaction from the follower j, aij < 0 if the follower
i can get the the antagonistic interaction from the follower
j, otherwise aij = 0. The Laplacian matrix is defined as
L = D − A, where D = diag(d1, d2, · · · , dl) is a diagonal

matrix with diagonal elements d1, d2, · · · , dl(di =
l∑
j=1

aij).

What is more, Gk = diag(gki ) represents the communi-
cation connection between the th − k leader and the th − i
follower. gki > 0 if the interaction is cooperation, gki < 0 if
the interaction is competition, otherwise gki = 0. Moreover,
G̃k = diag(

∣∣gki ∣∣), ϕk = 1
mL + G̃k .

Assumption 1: There is at least one leader which has
a directed path to every follower in the communication
topology.

C. PROBLEM FORMULATION
Consider a group of agents with m leaders and l followers in
this section. Let’s begin with the following kinematics

Followers:

ṙi(t) = Ari (t) + Bui(t)+ Bdi(t),

yi(t) = Dri(t), (1)

Leaders:

ṙk (t) = Ark (t),

yk (t) = Drk (t), (2)

where ri(t), di(t), ui(t), yi(t) are respectively the state vec-
tor, exogenous disturbance, control input and output of the
follower i, meanwhile, rk (t), yk (t) respectively represent the
state vector and output of the leader k . A,B,D are constant
system matrices.

For system (1), disturbances di(t) are generated by hetero-
geneous nonlinear exosystems:

di(t) = Hiηi(t),

η̇i(t) = Fiηi(t)+ ψi(ηi(t)), (3)

where ηi(t) denotes the internal state of the nonlinear exoge-
nous system. Hi,Fi are constant matrices with appropriate
dimensions. Nonlinear function ψi(ηi(t)) is continuous and
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differential in t . Define the bipartite containment error as

ei(t) =
l∑
j=1

(
∣∣aij∣∣ ri(t)− aijrj(t))

+

l+m∑
k=l+1

(
∣∣∣gki ∣∣∣ ri(t)− gki rk (t)). (4)

Setting e = [e1T , e2T , · · · , el T ]T , r̄k = 1 ⊗ rk and
r = [r1T , r2T , · · · , rl T ]T for convenience, the bipartite
containment error can be equally rewritten as

e(t) = ((D− A)⊗ I ) r(t)+
l+m∑
k=l+1

(
G̃k ⊗ I

)
r(t)

−

l+m∑
k=l+1

(Gk ⊗ I ) (1⊗ rk (t))

=

l+m∑
k=l+1

(ϕk ⊗ I ) r(t)−
l+m∑
k=l+1

(Gk ⊗ I ) r̄k (t).

Assumption 2: There exists a non-negative constant C
such that

‖ψi(ηi1(t))− ψi(ηi2(t))‖ ≤ C ‖ηi1(t)− ηi2(t)‖ .

Lemma 1: Under Assumptions 1, the bipartite contain-
ment problem of system (1) and (2) is realized if
lim
t→∞

ei(t) = 0.
Proof: It can be testified in the similar way as the proof

process of lemma 3 in [28].
Remark 1: The linear exosystems di(t) = Hiηi(t), η̇i(t) =

Fiηi(t) can be seen in [29]. In addition, equation
di(t) = Hiηi(t), η̇i(t) = Fiηi(t) is equivalent to equation
ḋi(t) = Sidi(t), where it is common in mass-damper-spring
systems [30], unmanned aerial vehicles (UAVs) [31] with
disturbances as the vibration frequency in radians per second.
The system is generally nonlinear with the improvement
of industrial automation degree, the increasing diversity of
production processes and increasing complexity of controlled
object. Therefore, the equation(3) is reasonable.

III. MAIN RESULTS
In this section, two disturbance-observer controllers are cor-
respondingly constructed based on state feedback control
and output feedback control to solve bipartite containment
control. The design procedures are detailed below.

A. BIPARTITE CONTAINMENT VIA STATE
FEEDBACK CONTROL
The following distributed controller, using state feedback
approach, is designed to handle out the bipartite containment
problem

ui(t) = K1ei(t)− Hiη̂i(t) , (5)

where the estimates η̂i(t) of ηi(t) is generated by

η̂i(t) = ξi(t)+Miri(t),

FIGURE 1. The block diagram of the proposed control strategy of the
follower i.

ξ̇i(t) = (Fi −MiBHi)(ξi(t)+Miri(t))−Mi(Ari(t)

+Bui(t))+ ψi(ξi(t)+Miri(t))+ P−1i
θi(t)(ηi(t)

θ̇i(t) = (ηi(t)− η̂i(t))T (ηi(t)− η̂i(t)),−η̂i(t)),

d̂i(t) = Hiη̂i(t), (6)

where ξi(t) is the internal variable of the observer, d̂i(t) is the
disturbance observer and P−1

i
is the inverse matrix of the Pi

which will be determined later. The feedback gain K1 and
observer gainMi are designed later.
Assumption 3: Positive real constant θ̄ is selected to assure

θ̄ ≥ 1
2λ + C ‖Pi‖ with λ ≥ 2

∥∥∥∥∥Qe(( l+m∑
k=l+1

ϕk )⊗ B)H

∥∥∥∥∥
2

+ 1,

where H = diag(H1, · · · ,Hl).
Theorem 1: Under Assumptions 1, 2 and 3, the control

input (5) addresses the bipartite containment control problem
if the following conditions hold: (i) Mi and K1 are designed

such that Fi −MiBHi and (I ⊗ A) + ((
l+m∑
k=l+1

ϕk ) ⊗ BK1) are

Hurwitz matrices;
(ii) positive definite matrix Pi is designed to satisfy Pi(Fi −
MiBHi)+ (Fi −MiBHi)TPi = −I .
Proof: Let σi(t) = di(t) − d̂i(t), zi(t) = ηi(t) − η̂i(t).

According to (3) and (6), one can easily conclude that

żi(t) = η̇i(t)− ˙̂ηi(t)

= Fiηi(t)+ ψi(ηi(t))− [(Fi −MiBHi)η̂i(t)

−Mi(Ari(t)+ Bui(t))+ ψi(η̂i(t))

+Pi−1θi(t)(ηi(t)− η̂i(t))+Miṙi(t)]

= Fiηi(t)+ ψi(ηi(t))− (Fi −MiBHi)η̂i(t)

−ψi(η̂i(t))− Pi−1θi(t)z(t)−MiBdi(t)

= (Fi −MiBHi)zi(t)+ ψi(ηi(t))− ψi(η̂i(t))

−Pi−1θi(t)zi(t). (7)

Define the Lyapunov function as Vi(t) = ziT (t)Pizi(t) +
(θi(t)− θ̄ )2 under (ii). Differentiate Vi(t) as follows

V̇i(t) = ziT (t)[Pi(Fi −MiBHi)+ (Fi −MiBHi)TPi]zi(t)
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+2ziT (t)Pi[ψi(ηi(t))− ψi(η̂i(t))]

−2ziT (t)θi(t)zi(t)+ 2(θi(t)− θ̄)ziT (t)zi(t)

≤ −‖zi(t)‖ 2
+ 2C ‖Pi‖ ‖zi(t)‖ 2

− 2θ̄ ‖zi(t)‖ 2

≤ −2(θ̄ − C ‖Pi‖) ‖zi(t)‖ 2

≤ −λ ‖zi(t)‖ 2.

Under Assumption 3 and stability theory, we have
lim
t→∞

zi(t) = 0. Moreover, the dynamics of agents can be
expressed in a matrix form

ṙ(t) = (I ⊗ A) r(t) + (I ⊗ BK1) e(t)+ (I ⊗ B)Hz(t),
˙̄rk (t) = (I ⊗ A) r̄k (t),

where z = [z1T , z2T , · · · , zl T ]T . Therefore, the derivative
of e(t) obtains

ė(t) =
l+m∑
k=l+1

(ϕk ⊗ I )((I ⊗ A)r(t)+ (I ⊗ BK1)e(t)

+(I ⊗ B)Hz(t))−
l+m∑
k=l+1

(Gk ⊗ I )(I ⊗ A)r̄k (t)

= (I ⊗ A)e(t)+ ((
l+m∑
k=l+1

ϕk )⊗ BK1)e(t)

+((
l+m∑
k=l+1

ϕk )⊗ B)Hz(t)

= Af e(t)+ ((
l+m∑
k=l+1

ϕk )⊗ B)Hz(t).

Because Af is a Hurwitz matrix, there must be a positive
definite matrixQe satisfying AfQe+QeTAf = −I . Construct

the Lyapunov function as V (t) = eT (t)Qee(t)+
l∑
i=1

Vi(t). The

derivative of V (t) obtains

V̇ (t) = eT (t)[AfQe + QeTAf ]e(t)+ 2eT (t)Qe

((
l+m∑
k=l+1

ϕk )⊗ B)Hz(t)+
l∑
i=1

V̇i(t)

≤ −‖e(t)‖2 +
1
2
‖e(t)‖2 − λ‖z(t)‖2

+2

∥∥∥∥∥∥Qe((
l+m∑
k=l+1

ϕk )⊗ B)H

∥∥∥∥∥∥
2

‖z(t)‖2

≤ −
1
2
‖e(t)‖2 − ‖z(t)‖2.

Under Assumption 3, lim
t→∞

zi(t) = 0 and Lyapunov stability
theory, we have lim

t→∞
ei(t) = 0, lim

t→∞
σi(t) = 0. The proof is

completed.

B. BIPARTITE CONTAINMENT VIA OUTPUT
FEEDBACK CONTROL
The following distributed controller, using output feedback
approach, is designed to handle out the bipartite containment

FIGURE 2. The block diagram of the proposed control strategy of the
follower i.

problem

ui(t) = Kêi(t)− Hiη̂i(t), (8)

where the estimates η̂i(t) of ηi(t) is generated by

η̂i(t) = ξi(t)+Mir̂i(t),

ξ̇i(t) = (Fi −MiBHi)(ξi(t)+Mir̂i(t))−Mi(Ar̂i(t)

+Bui(t))+ P−1i
θi(t)(ηi(t)− η̂i(t))

+ψi(ξi(t)+Mir̂i(t)),

θ̇i(t) = (ηi(t)− η̂i(t))T (ηi(t)− η̂i(t)),
˙̂r i(t) = Ar̂i (t) + Bui(t)

+Bd̂i(t)− S (
l∑
j=1

(
∣∣aij∣∣ (yi(t)

−ŷi(t))− aij(yj(t)− ŷj(t)))+
l+m∑
k=l+1

(
∣∣∣gki ∣∣∣ (yi(t)

−ŷi(t))− gki (yk (t)− yk (t)))),

d̂i(t) = Hiη̂i(t), (9)

where ŷi(t) = Dr̂i(t), r̂i(t) is state observer, ξi(t) is the internal
variable of the observer η̂i(t), d̂i(t) is constructed to estimate
di(t), K ,Pi and S are designed later. Moreover, the bipartite
containment observer errors

êi(t) =
l∑
j=1

(
∣∣aij∣∣ r̂i(t)− aijr̂j(t))

+

l+m∑
k=l+1

(
∣∣∣gki ∣∣∣ r̂i(t)− gki rk (t)). (10)

Assumption 4: Positive real constant θ̄ is selected to assure
θ̄ ≥ 1

2λmax(BTQQB)‖H‖2+ (C ‖Pi‖)max+
1
2‖PiMiSD‖2max,

where H = diag(H1, · · ·Hl).
Theorem 2: Under Assumptions 1, 2 and 4, the control

input (8) addresses the bipartite containment if the follow-
ing conditions hold: (i) Fi is a Hurwitz matrix and positive
definite matrix Pi is designed to satisfy PiFi + FiTPi = −I ;
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(ii) the state observer gain and the control gain are respec-
tively designed as S = −Q−1DT , K = −BTQ, where the
positive definite matrix Q meets

QA+ ATQ+ (λmax(DTDDTD)

+λ2max(
l+m∑
k=l+1

ϕk )+ 1)I < 0. (11)

Proof: Let σi(t) = di(t) − d̂i(t), zi(t) = ηi(t) − η̂i(t) and
ẽi(t) = ei(t)−

_ei(t). According to (2) and (9), one can easily
conclude that

żi(t) = η̇i(t)− ˙̂ηi(t)

= Fiηi(t)+ ψi(ηi(t))− [(Fi −MiBHi)η̂i(t)+Mi
˙̂r i(t)

−Mi(Ar̂i(t)+ Bui(t))+ Pi−1θi(t)(ηi(t)− η̂i(t))

+ψi(η̂i(t))

= Fizi(t)+ ψi(ηi(t))− ψi(η̂i(t))− Pi−1θi(t)zi(t)

+MiSDẽi(t). (12)

Define the Lyapunov function as Vi(t) = ziT (t)Pizi(t) +
(θi(t)− θ̄ )2 under (i). The time derivative of Vi(t) is

V̇i(t) = ziT (t)[PiFi + FiTPi]zi(t)+ 2(θi(t)− θ̄ )ziT (t)zi(t)

+2ziT (t)Pi[ψi(ηi(t))− ψi(η̂i(t))]− 2ziT (t)θi(t)zi(t)

+2ziT (t)PiMiSDẽi(t)

≤ −‖zi(t)‖ 2
+ 2C ‖Pi‖ ‖zi(t)‖ 2

− 2θ̄ ‖zi(t)‖ 2

+2ziT (t)PiMiSDẽi(t).

Setting ê = [êT1 , ê
T
2 , · · · , ê

T
l ]
T , r̂ = [r̂T1 , r̂

T
2 , · · · , r̂

T
l ]

T ,
the observer tracking errors are equally expressed

ê(t) =
l+m∑
k=l+1

(ϕk ⊗ I ) r̂(t)−
l+m∑
k=l+1

(Gk ⊗ I )r̄k (t).

Based on K = −BTQ, the dynamics of agents under the
distributed controller (8) are expressed in a matrix form

ṙ(t) = (I ⊗ A) r(t) −
(
I ⊗ BBTQ

)
ê(t)+ (I ⊗ B)Hz(t),

˙̂r(t) = (I ⊗ A) r̂(t)−
(
I ⊗ BBTQ

)
ê(t)− (I ⊗ SD) ẽ(t),

˙̄rk (t) = (I ⊗ A) r̄k (t) ,

where z = [z1T , z2T , · · · , zl T ]T . Therefore, the derivative
of e(t) obtains

ė(t) =
l+m∑
k=l+1

(ϕk ⊗ I )((I ⊗ A) r(t)− (I ⊗ BBTQ)ê(t)

+ (I ⊗ B)Hz(t))−
l+m∑
k=l+1

(Gk ⊗ I )((I ⊗ A)r̄k (t))

= (I ⊗ A) e(t)− ((
l+m∑
k=l+1

ϕk )⊗ BBTQ)ê(t)

+((
l+m∑
k=l+1

ϕk )⊗ B)Hz(t).

Similarly, one also gets the time derivative of ê(t)

˙̂e(t) = ((I ⊗ A)− ((
l+m∑
k=l+1

ϕk )⊗ BBTQ)ê (t)

−((
l+m∑
k=l+1

ϕk )⊗ SD)ẽ(t).

Therefore, it is not hard to derive that

˙̃e(t) = ((I ⊗ A)+ ((
l+m∑
k=l+1

ϕk )⊗ SD)ẽ(t)

+((
l+m∑
k=l+1

ϕk )⊗ B)Hz(t).

Considering the Lyapunov function as V (t) = êT (t)(I ⊗

Q)ê(t) + ẽT (t)(I ⊗ Q)ẽ(t) +
l∑
i=1

Vi(t) and designing S =

−Q−1DT , it can be derived that

V̇ (t) = ẽT (t)[I ⊗ (QA+ ATQ)− 2((
l+m∑
k=l+1

ϕk )⊗ DTD)]ẽ(t)

+êT (t)[I ⊗ (QA+ ATQ)− 2((
l+m∑
k=l+1

ϕk )

⊗QBBTQ)]ê(t)+2ẽT (t)((
l+m∑
k=l+1

ϕk )⊗ QB)Hz(t)

+

l∑
i=1

V̇i(t)+ 2êT (t)((
l+m∑
k=l+1

ϕk )⊗ DTD)ẽ(t).

It follows from the Young’s inequality that

2êT (t)((
l+m∑
k=l+1

ϕk )⊗ DTD)ẽ(t) ≤ λ2max(
l+m∑
k=l+1

ϕk )
∥∥ê(t)∥∥2

+λmax(DTDDTD)‖ẽ(t)‖
2,

2ẽT (t)((
l+m∑
k=l+1

ϕk )⊗ QB)Hz(t) ≤ λ2max(
l+m∑
k=l+1

ϕk )‖ẽ(t)‖
2

+λmax(BTQQB)‖H‖2‖z(t)‖2.

On the basis of above analysis, it yields

V̇ (t) ≤ λ2max(
l+m∑
k=l+1

ϕk )
∥∥ê(t)∥∥2 + λmax(DTDDTD)‖ẽ(t)‖

2

+êT (t)[−2((
l+m∑
k=l+1

ϕk )⊗ QBBTQ)+ I ⊗ (QA

+ATQ)]ê(t)+ ẽT (t)[−2((
l+m∑
k=l+1

ϕk )⊗ DTD)

+I ⊗ (QA+ ATQ)]ẽ(t) + λ2max(
l+m∑
k=l+1

ϕk )‖ẽ(t)‖
2
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+

l∑
i=1

(2C ‖Pi‖ ‖zi(t)‖ 2
− 2θ̄ ‖zi(t)‖ 2

+‖PiMiSD‖2 ‖zi(t)‖ 2
+ ‖ẽi(t)‖

2)

+λmax(BTQQB)‖H‖2‖z(t)‖2

≤

l∑
i=1

¯̂ei
T
(t)[QA+ ATQ− 2λi(

l+m∑
k=l+1

ϕk )QBBTQ

+λ2max(
l+m∑
k=l+1

ϕk )I ] ¯̂ei(t)+
l∑
i=1

¯̃ei
T
(t) [QA+ ATQ

−2λi(
l+m∑
k=l+1

ϕk )DTD+ (λmax(DTDDTD)

+λ2max(
l+m∑
k=l+1

ϕk )+ 1)I ] ¯̃ei(t)+ (‖PiMiSD‖2max

+λmax(BTQQB)‖H‖2+(2C ‖Pi‖)max − 2θ̄ ) ‖z(t)‖ 2,

where ¯̂e
T
(t) = (U ⊗ I )êT (t), ¯̃e

T
(t) = (U ⊗ I )ẽT (t),U is

an orthogonal constant matrix satisfying UT (
l+m∑
k=l+1

ϕk )U =

diag(λ1, λ2, · · · , λl), 0 < λ1 ≤ λ2 ≤ · · · ≤ λl are the

eigenvalues of
l+m∑
k=l+1

ϕk . ¯̂e(t), ¯̃e(t) are respectively the column

stack vectors of ¯̂ei(t), ¯̃ei(t). In addition, it is easy to yield the
following inequalities

QA+ ATQ− 2λi(
l+m∑
k=l+1

ϕk )QBBTQ+ λ2max(
l+m∑
k=l+1

ϕk )I

≤ QA+ ATQ+ λ2max(
l+m∑
k=l+1

ϕk )I ,

QA+ ATQ− 2λi(
l+m∑
k=l+1

ϕk )DTD+ (λmax(DTDDTD)

+λ2max(
l+m∑
k=l+1

ϕk )+ 1)I

≤ QA+ ATQ+ (λmax(DTDDTD)

+λ2max(
l+m∑
k=l+1

ϕk )+ 1)I .

Therefore, when (11) and Assumption 4 are satisfied, it is
obviously that V̇ (t) < 0. Based on Lyapunov stability theory,
we obtain lim

t→∞
V (t)→ 0. Thus, ê(t)→ 0, ẽ(t)→ 0, z(t)→

0 as t → ∞, that is to imply, ei(t) → 0, σi(t) → 0. The
rigorous proof is completed.
Remark 2: Due to communication constraints, packet

dropout and other reasons, the state is always not easy to
obtain or unobtainable while output information is most
available. As a result, bipartite containment problem via out-
put feedback approach is more realistic than state feedback
approach in most practical engineering. However, the sate
feedback approach has better system performance than the

FIGURE 3. The interaction topology.

output feedback approach because it uses more signal. There-
fore, different control methods can be selected for different
situations.
Remark 3: The approach to handle disturbances includes

sliding mode control [32], robust control [33], and
disturbance-observer-based control [34]. The main idea of
SMC is to drive and obtain a system state to the suitably
designed sliding mode, which is usually independent of
disturbances. However, the control law is a discontinuous
switching signal, and it easily generates chattering phe-
nomenon. The core idea of robust control is to consider the
control effect in the worst case, it results in the conservative
outcome. The above twomethods utilize the feedback control
structure to reduce the influence of unknown disturbance
on system performance. However, the disturbance observer
is to use feedforward structure to estimate and compensate
for the disturbances so that the systems can have faster
response speed to disturbances and can have better system
performance. Nevertheless, the disturbance-observer method
mainly focuses on the disturbances generated by the linear
exosystem. To overcome this limitation, the nonlinear distur-
bances is proposed in the paper and the adaptive parameter is
employed to solve the nonlinearity.
Remark 4: Compared with the issue in [27], it has two

advantages. Firstly, the disturbances are generated by non-
linear exosystems, not just linear exosystems. Obviously,
it extends the range of disturbance types. Secondly, consid-
ering the relations between agents are not only cooperative
but also competitive in reality, the issue for containment
control under disturbances is extended to the issue for bipar-
tite containment control. Based on the above two aspects,
the problem for multiagent systems with disturbances is
more general from systemsmodel and communication reality.
Furthermore, Let ψi(ηi(t)) = 0 and aij > 0, aik > 0, the
methods in this paper can solve the problem in [27].
Remark 5: Through the comparison with [37], [38], and

[39], we find disturbance estimator in the three articles esti-
mates a limited disturbance. However, estimator in this article
can estimate high-order disturbance.

IV. NUMERICAL SIMULATIONS
Suppose that the relations of of agents are shown in Fig.3
with followers labeled 1, 2, 3, 4 and leaders labeled 5, 6.
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FIGURE 4. The state paths of agents for example 1.

FIGURE 5. The bipartite containment errors of the MASs for example 1.

Numerical examples show the effectiveness of theoretical
results. For simplicity, the original values of each agent are
chosen randomly within [−10, 10].

FIGURE 6. The disturbance observer errors of agents for example 1.

FIGURE 7. The coupling weights for example 1.

Example 1: In this example, the validity of Theorem 1 is
tested. The dynamics of agents are given by (1) and (2) with

a network of mass-spring systems in [35] A =
[

0 2
−1 0

]
,

B =
[
3
1

]
, D =

[
1 0

]
. In addition, the disturbances di(t)

are generated by the following systems[
η̇i1(t)
η̇i2(t)

]
=

[
−i i
−i 0

] [
ηi1(t)
ηi2(t)

]
+

[
0

0.1i sin(ηi2(t))

]
,

di(t) =
[
2i 0

] [ ηi1(t)
ηi2(t)

]
, i = 1, 2, 3, 4.

Assuming K1 =
[
−3 −1

]
and Mi =

[
0 0.1i
0 0.1i

]
such that

Fi − MiBHi(i = 1, 2, 3, 4) are Hurwitz matrices, which
is the premise to reach the bipartite containment control.
Fig.4 and Fig.5 respectively show the state paths and state
errors of agents while the disturbance observer errors are
represented in Fig.6. From the Fig.4, the followers cooper-
ating with the leaders will go to the dynamic convex hull
spanned by the leaders, while the followers competing with
the leaders will asymptotically go to the opposite one. And the
bipartite containment error gradually tends to zero in Fig.7.
Obviously, the bipartite containment control has been realised
under the state-feedback controller (5) according to Fig.4
and Fig.5. The disturbance observer errors is shown in Fig.6,
which means the disturbance observer is valid. The adaptive
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FIGURE 8. The state paths of agents for example 2.

FIGURE 9. The bipartite containment errors of the MASs for example 2.

coupling weights are represented to be convergent to their
own constants in Fig.7.
Example 2: The validity of Theorem 2 is verified in this

example. The dynamics of agents and disturbances are the

FIGURE 10. The disturbance observer errors of agents for example 2.

FIGURE 11. The coupling weights for example 2.

same as in Example 1. By solving thematrix inequalities (11),

the feasible solutions of S,K can be elected as S =
[
−2
−1

]
,

K =
[
−1.25 −0.5

]
. Moreover, Mi =

[
0 0.05i
1 −2

]
(i = 1, 2,

3, 4). The state trajectories of agents in Fig.8 and the state
errors in Fig.9 illustrate that the bipartite containment con-
trol is realized for systems (1) and (2). Moreover, the state
observer is valid from the fact that disturbance observer errors
gradually enter into zero in Fig.9 and Fig.10. The adaptive
coupling weights are no doubt to convergence to constants
in Fig.11.
Example 3: In this example, the method in this paper is

compared with the method in [27]. The dynamics of agents
are given by (1) and (2) as the same dynamics in [35].
Considering communication connections of agents are all
cooperative and the disturbances are generated by the linear
exo-systems in the paper [35], the parameters aij > 0, gki >
0 and ψi(ηi(t)) = 0 is selected in this paper. Based on this,
the control gain K is selected as K = [−3 − 1]. Simulation
results are presented in the Fig.12 and Fig.13. Evidently,
the bipartite containment state errors tend to zeros and the
trajectories of followers is surrounded by the trajectories
of leaders in Fig.12. Therefore, it is enough to explain the
method in the paper is also applied in the problem of the
paper [27].
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FIGURE 12. The state paths of agents for example 3.

FIGURE 13. The bipartite containment errors of the MASs for example 3.

V. CONCLUSION
The bipartite containment control for MASs subject to dis-
turbances generated by heterogeneous nonlinear exosystems
is investigated in this paper. The disturbance observers with

coupling gains are provided to compensate for the exoge-
nous disturbances of MASs via adaptive control. Two differ-
ent control laws are respectively provided by state-feedback
method and output-feedback method. Sufficient conditions
are presented to realize the bipartite containment control by
Lyapunov stability theory and other mathematical analysis.
Finally, numerical simulations are carried out to validate
theoretical results. Future work will be on the bipartite
containment for MASs with more complex disturbances,
such as more general disturbances, such as stochastic distur-
bances [36] and completely unknown disturbances.
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