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ABSTRACT Contour tracing is an important pre-processing step in many image-processing applications
such as feature recognition, biomedical imaging, security and surveillance. As single-processor architectures
reach their performance limits, parallel processing architectures offer energy-efficient and high-performance
solutions for real-time applications. Parallel processing architectures are thus used for several real-time
image processing applications. Among the several interconnection schemes available, Cayley graph-based
interconnections offer easy routing and symmetric implementation capabilities. For parallel processing
systems with a Cayley graph-based interconnection scheme, torus, we developed three accelerated
algorithms corresponding to three existing families of contour tracing algorithms. We simulated these
algorithms on a parallel processing framework to quantify the normalized speed-up possible in any
torus-connected parallel processing system. We also compared our best-performing algorithm with the
existing parallel processing implementations for Nvidia GPUs. We observed a speed-up of up to 468 times
using our algorithms on a parallel processing architecture in comparison to the corresponding algorithm
on a single processor architecture. We evaluated a speedup of 194 (and 47) compared to the existing
parallel processing contour tracing implementation on Tesla K40c (and Quadro RTX 5000 GPU hardware,
respectively). We observe that for torus-connected parallel processing architectures used for image
processing, our algorithms can speed up contour tracing without any hardware modification.

INDEX TERMS Accelerated contour tracing, image processing, parallel algorithms, multiprocessors, torus,
GPU.

I. INTRODUCTION
As single processor architectures approach their performance
limits, scaling and speed-ups become possible only through
parallel processing architectures [1]. Over the last few years,
these architectures have gained popularity for several applica-
tions, especially in data-intensive applications like scientific
computing, machine learning, big data analytics, human-
computer interaction, where they provide energy-efficient
solutions along with high processing capability [2], [3].

Out of the several interconnection schemes used in parallel
processing systems, Cayley Graph (CG) interconnection-
based schemes – rings, toroids, and hypercubes – are the
most attractive because of their symmetric and decomposable
nature [4]. In recent years, CG interconnected systems
have been used to improve the speed and performance
of algorithms in applications like multimedia processing,
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image processing, and parallel computing [5], [6], [7],
[8], [9], [10], [11], [12]. Hardware implementations like
matrix computations on FPGA [13], contour extraction
on partitionable SIMD/MIMD System - PASM [14], and
edge detection and image resizing on Cell BE and Blue
Gene\L HPC (High-Performance Computing) platforms [15]
have been developed to improve the performance in the
corresponding fields. To improve the speed of contour tracing
(hence image processing) on existing parallel processing
hardware, we developed distributed data processing based
algorithms for implementation on CG interconnected parallel
processors. We used the contour tracing paradigm to quantify
the performance of a parallel processing system in compar-
ison to a single processor system. We also compared our
implementation with the existing parallel processing contour
tracing implementations.

Contour tracing identifies the boundary pixels of the
active region of an image [16]. The contour is then used,
instead of the original image, to reduce the storage memory
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and computation time in image processing applications like
biomedical imaging [17], [18], character recognition [19],
[20], security and surveillance [21], [22], feature recognition
using machine learning and deep learning [23]. Corre-
sponding to the three existing families of contour tracing
algorithms – pixel-following, vertex-following, run-data-
based-following – we developed three parallel processing
algorithms for two-dimensional torus-connected multipro-
cessor architectures [24]. We simulated these algorithms to
quantify the number of time units the parallel processing
architecture takes in comparison to a single processor system
for the same algorithm. We observed a speed-up of n

2

p ×
1p
1c

,
for n processors operating on an image with p pixels, where
1p is the processing time for one comparison operation on a
single processor, and 1c is the per-hop communication delay
in the multiprocessor system.We also compared the expected
time taken by our best-performing algorithmwith the existing
parallel processing contour tracing implementations onGPUs
(Graphics Processing Units). We observed a speed-up of
minimum of 47 times using our algorithm.

We assert and prove that for a very large array of
tiny processors used in image processing applications,
torus-based architectures lead to significantly faster parallel
algorithms for, inter alia, contour tracing.We have developed
parallel algorithms which are mapped to an underlying torus
architecture and can be used to speed up image processing
without any hardware modification in any CG interconnected
system of processors.

The structure of the rest of the paper is as follows.
In Section II, we list the existing parallel contour tracing
implementations and state our novelty. In Section III,
we detail the hardware framework, mesh and torus intercon-
nection, choice and partitioning of the test image, details of
the three algorithms, segmentation, metric used for evaluation
of our methodology, and our proposed implementation on
the NVIDIA GPUs used in existing parallel processing algo-
rithms. In Section IV, we present the comparison between the
conventional algorithms and their multiprocessor versions,
the comparison between the three presented algorithms, and
the comparison between the existing parallel processing
systems and our implementation. In Sections V and VI,
we entail the discussion and conclusions of our research
experiment, respectively.

II. RELATED WORK REVIEW
Parallel contour tracing on a segmented image has been
an active area of interest, using both Supercomputers and
Graphics Processing Unit (GPU) hardware, in recent times.
In [25], Agi et al., designed a custom-made hardware to
enable parallel processing. They divided the image into
blocks and implemented a raster scan based algorithm to
achieve parallelism. In [26], Ratnayake et al., interfaced
a high-speed memory with contour tracing modules to
improve throughput. They segmented the image into 3 × 3
windows and implemented the raster scan algorithm using
pipeline architecture. They also made hardware changes
in the memory and its interface to reduce the memory
access time. In [27], Chia et al., used a one-dimensional

array of processing elements for parallel contour tracing.
They used a Moore neighbour tracing based algorithm for
implementation.

In [28], Garcia et al., presented a modification of the
Suzuki algorithm for parallel contour tracing on GPUs. The
Suzuki algorithm is also based on the Moore neighbour
tracing algorithm. They segmented the image into 32 × 32
or 64 × 64 rectangles and performed contour tracing in
each of the rectangles using GPUs. In [29], Cao et al.,
presented a block searching algorithm using Compute
Unified Device Architecture (CUDA) platform for GPUs.
They divided the grid of pixels into four smaller cells and
then identified the contour by detecting the edge crossing
of the image at the boundaries of each of those cells. This
parallel implementation used CUDA threads to perform block
searching tasks. In [30], Zhao et al., developed a parallel
strategy to trace contour in large-scale Digital Elevation
Model (DEM) data using a collaboration of CPU and GPU.
They sectioned the image row-wise and traced the contours,
on the sections, in parallel, using GPU. The reconstruction of
the sectioned contours was done using CPU.

Though these existing techniques lay a fertile foundation
for parallel contour tracing systems, a complete solution for
all the contour tracing algorithms using the existing hardware
does not exist yet. Also, today, the segmentation of the image
can be taken to a single pixel level, given the multitude of
cores available in the state-of-the-art supercomputer andGPU
hardware. Ourmethodology, thus, adapts threemajor families
of contour tracing algorithms for parallel processing on an
existing supercomputer and GPU hardware. The performance
of our parallel algorithms benefits significantly from the close
coupling with the mesh and torus interconnections used in
supercomputer and GPU architectures.

III. METHODOLOGY
A. HARDWARE FRAMEWORK
In the most popular supercomputer and GPU architectures,
the processing cores are directly coupled with a router
(or a fixed number of cores are connected to a single
router) as shown in Fig.1. Multiple core-connected routers
are connected together using a particular interconnection
topology. In our implementation, we have considered that
each router is connected to a single core. We term this single
core-router setup as a processing element (or a processor).

These processing elements have local registers, buffers
and/or shared memory for storage (not shown explicitly in
Fig.1). The system has a global RAM for bulk storage.
The interconnected Processing Elements (PEs), Network
Interface, and shared and global memory enable parallel
processing on such hardware architectures. The complete
image pixels are stored in the global RAM of the system. The
pre-processing steps of grayscaling and thresholding are done
by the control unit (or CPU) using state-of-the-art methods.

After the pre-processing step, each pixel is represented by
a single bit, which can be stored in the local registers or
shared memory corresponding to the PEs. Depending on the
segmentation of the image (detailed in Section III-K), each
PE processes one pixel or a segment of pixels. From the global
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FIGURE 1. General supercomputer and GPU network architecture where
PE is Processing Element, NI is Network Interface, CTRL is Control Unit,
and SCHED is Scheduler. Boxes with cross are the Routers.

FIGURE 2. A c × r 2-D mesh connected network of processors with
8 columns and 6 rows, i.e., a total of 48 processing elements.

RAM, the pixel values are routed to the corresponding PE.
Then, contour tracing is performed on the distributed data
using the algorithms presented in Sections III-F to III-K. The
contour pixels are temporarily stored in the shared memory
while executing the algorithm. After all PEs complete their
contour tracing operations, the contour stack is transferred
to the Global RAM. As a post-processing step, the stored
contour stack is sorted from left to right and top to bottom
order of pixels by the control unit.

B. ABOUT MESH AND TORUS INTERCONNECTION
NETWORK
A c× r 2-D torus connected multiprocessor hardware is used
for this experimentation, where c is the number of columns
and r is the number of rows of the 2-D torus. In a 2-D
mesh network topology, each node is connected with four

FIGURE 3. A c × r , 2-D torus connected network of processors with
8 columns and 6 rows, i.e., a total of 48 processing elements.

neighbours in north, east, south and west directions as shown
in Fig.2. The 2-D torus has wraparound connections to form
a symmetric network in addition to the basic topology of a
mesh network, as shown in Fig.3.

C. OVERVIEW OF THE METHODOLOGY
First, the test image pixel values are distributed over the
multiprocessor hardware. Second, the existing contour trac-
ing algorithm is modified so that the per-pixel mathematical
operations for contour tracing are distributed to multiple
processors. Third, the multiprocessor array is segmented
into symmetric sections. Fourth, the adapted contour tracing
algorithm is run in each of these sections in parallel.
These four steps are consecutively repeated for the three
existing contour tracing algorithms to develop their respective
accelerated versions.

D. CHOICE OF AN APPROPRIATE TEST IMAGE
The choice of a test image (or a set of images) is important,
as it should represent the complete set of binary digital
images. The test image, suggested by T. Miyatake et al.,
in [31], represents every local pattern encountered by two
adjacent scan lines in a digital binary image. This image is
shown in Fig.4a. Since we are considering only the nearest
neighbour of a pixel to detect the contour of an image, the
local patterns encountered by two scan lines cover all local
patterns which can be encountered by our algorithms in
digital binary images. Hence, the image suggested in [31]
can be used as the test image for our algorithms. The ten
local patterns contained in the test image are shown in Fig.5.
Since all the contours in the original image are at most one

pixel wide, the image is scaled up by four times to illustrate
the contour tracing operation. The scaled-up image, shown in
Fig.4b retains all the 10 local patterns present in the original
image. Thus, the results of contour tracing illustrated using
this image can be applied to any binary digital image.

E. PARTITIONING THE TEST IMAGE AS A SQUARE PLANAR
TESSELLATION WITH 4-CONNECTEDNESS TO MATCH
UNDERLYING MULTIPROCESSOR HARDWARE
The pixel values of the standard image (Fig.4) are stored as
a two-dimensional array such that the number of columns (c)
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FIGURE 4. (a) Standard Image and (b) its 4× scaled version.

FIGURE 5. All ten local patterns which can be encountered by our
algorithms in a digital binary image [31].

represents the number of pixels in the horizontal dimension
and the number of rows (r) represents the number of pixels
in the vertical dimension of the image, resulting in a c×r 2-D
array.

Each of the pixels in this 2-D array has four neighbours,
one each in the north, east, south, and west directions, i.e.,
the pixel at (x, y) location in the 2-D array has the neighbours:
(x, y− 1), (x+ 1, y), (x, y+ 1), (x− 1, y) ∀x ∈ [1, c− 1] and
y ∈ [1, r − 1]. It is to be noted that pixels (x, y)∀x ∈ {0, c}
and y ∈ {0, r} are exceptions as they lie on the corners

FIGURE 6. An n × m 2-D torus connected network of processors with
26 rows and 18 columns, i.e., a total of 468 processing elements with the
standard image overlaid – the wraparound connections (similar to Fig. 3)
are present but are not explicitly shown in this figure.

of the image. This arrangement is equivalent to a square
planar tessellation with four-connectedness [32], which is the
same as the network connectedness of a c × r 2-D torus
topology [33]. Hence, the image pixels can be overlaid on
a c× r 2-D torus-connected multiprocessor system (Fig.6) to
enable the implementation of our contour tracing algorithms.

F. DETAILS OF ALGORITHMS (PREPROCESSING AND
CONVENTIONAL CONTOUR TRACING IN THE TEST IMAGE)
The contour of a digital image is precisely 1 pixel wide
and can be used to reconstruct the original image with good
accuracy. An active pixel in a coloured digital image is a pixel
with non-zero RGB (Red, Green, Blue) values. However,
in the case of a grey-scaled and thresholded image, an active
pixel is the one with zero R, G and B values, while an inactive
pixel is the one with 255 R, G and B values each [34].
We have used a grey-scaled and thresholded image in our
implementation. We can thus inspect any one of the R, G or
B values (say R) to detect an active pixel in the image, thus
converting it into a binary digital image.

The conventional contour tracing algorithms [24] compare
the value of each pixel in a grey-scaled and thresholded digital
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FIGURE 7. (a) Tracing of the standard image using our implementation of the pixel-following algorithm; dot represents the first active pixel detected;
(b) The resultant pixels in the contour stack.

image with its four neighbours to detect whether that pixel is
a pixel on the boundary of the image.

G. CONVERTING CONVENTIONAL CONTOUR TRACING
ALGORITHM FOR A MULTIPROCESSOR IMPLEMENTATION
In our adaptation of the algorithms, by distributing the
image pixels over the multiprocessor system (Fig.6), we con-
vert the basic operation of comparison between pixels to
communication between processing elements. Each pixel in
our system is assigned to one processing element in the
array of embedded systems. To detect an active pixel, the
processor containing the pixel communicates with the four
neighbouring processing elements and compares their pixel
value with its own. The four operations of comparison for
detecting each active pixel, thus, are converted into four
operations of communication in the case of a 2-D torus-
connected multiprocessor system.

Though a two-dimensional array of processors is the basic
requirement for our implementation, the algorithms can also
be ported to higher order torus topology by executing them in
parallel on two-dimensional planes of processors for different
images or image segments. We note that the number of
processing elements (n) is equal to the number of pixels
(p) in the test image, in each dimension, in our presented
experiment. If, however, n > p, then only p number of
processing elements will be (each containing the value of one
pixel) active. In contrast, if n < p, then our algorithms can
be used in two ways – (i) the image can be down-sampled
to n number of pixels to execute the algorithms; (ii) the
image can be divided into d pne parts of n pixels each, and
each of these parts can be processed sequentially by the
n processors.

The conventional contour-tracing algorithms fall under
three broad categories: (i) pixel-following, (ii) vertex-
following and (iii) run-data-based-following [24] differenti-
ated by the process of pixel scanning and detection of active
pixels. The adaptation of each of these algorithms is described
next.

H. ADAPTATION OF PIXEL-FOLLOWING ALGORITHM TO
MULTIPROCESSOR IMPLEMENTATION
The pixel-following (PF) algorithm is based on the
wall-following concept of contour tracing [35]. In a room,
to detect the contour of the room, i.e., the continuous structure
made by the walls, we start from any point in the room and
keep tracing the next point on the wall to trace the walls
(or contour) of the complete room. Similarly, in the case
of an image, we do a standard scan (top to bottom and left
to right) to detect the first active pixel and keep tracing for
the neighbouring active pixels till we reach the first pixel
of this contour. This is done repeatedly over the complete
image till the full image is scanned to detect disconnected
contours. To decide whether a pixel is active while scanning,
the pixel R (Red component) value is compared with its four
neighbouring pixel values. If the pixel value of the pixel being
scanned is smaller (zero) than any of its neighbours, the pixel
is denoted as an active (or boundary) pixel. The contour pixels
thus detected are pushed onto a common shared stack to get
a complete set of contour pixels at the end of the algorithm.

In our adaptation of the PF algorithm, each of the image
pixel R values is assigned to the corresponding processor in
the 2-D array, as shown in Fig.6. The PF algorithm is then
run on the complete array of active processors to trace the
contour. In this implementation, since, to compare values
of any two neighbouring pixels, two processors need to
communicate with each other, each comparison is converted
into a communication between two processing elements of
the network. This is a noteworthy salient feature of our
adaptation.

Fig.7a shows the sequential tracing of contour pixels using
our implementation of the PF algorithm and the resultant
contour pixels in Fig.7b. Algorithm1 shows the pseudocode
for our adaptation of the PF algorithm.

The contour tracing using the PF algorithm does not scale
very well as the image scales – it requires large amounts of
memory for large and dense images [24]. The discontinuities
in the scan, at the corners of the test image (shown in Fig.7a),
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Algorithm 1 Pixel-Following Algorithm
Result: Returns a stack of contour points (x,y)
processorNodesUsed = pixelsInImage;
for All nodes do

for [neighbor] east and south sorted neighbors of
node do

if nodeIsInContour not set then
if pixelValueNeighbor > pixelValueNode
then

push node to contourStack;
set nodeIsInContour;
searchNeighbor(node);

if neighborIsInContour not set then
if pixelValueNeighbor < pixelValueNode
then

push neighbor to contourStack;
set neighborIsInContour;
searchNeighbor(neighbor);

searchNeighbor(neighbor)
for [neighbor1] east and south sorted neighbors of
neighbor do

if neighbor1IsInContour not set then
for [neighbor2] All sorted neighbors (north,
south, east, west) of neighbor1 do

if pixelValueNeighbor2 >

pixelValueNeighbor1 then
push neighbor1 to contourStack;
set neighbor1IsInContour;
searchNeighbor(neighbor1);

return

is another limitation of the PF algorithm for 4-connected
tessellations [24].

I. ADAPTATION OF VERTEX-FOLLOWING ALGORITHM TO
MULTIPROCESSOR IMPLEMENTATION
A contour vertex is the line demarcation between an active
and an inactive pixel in a digital image. The vertex-following
(VF) algorithm scans these contour vertices (as shown in
Fig.8a) and pushes the pair of pixels containing the contour
line (vertex) onto the common shared stack. The scanning
of the image pixels is done similar to the pixel-following
algorithm, i.e., from top to bottom and from left to right. The
demarcation between any two pixels is a vertex if the value
of the two pixels is unequal in the grey-scaled, thresholded
image.

The VF algorithm need not be a recursive algorithm,
since one sequential scan over all the pixels gives all the
vertices of the image. To store a vertex, the pixel pair
{(x1, y1);(x2, y2)} is pushed onto the common shared stack.
To optimize the algorithm further, we compare only the
east and the south neighbours of each pixel with themselves

to reduce the number of redundant comparisons. Similar
to the adaptation of the PF algorithm, the VF algorithm
is adapted for a multiprocessor system by assigning each
pixel to each processing element and hence converting all
the computations to communications between the processing
elements.

Fig.8a shows the traced boundary in the test image using
the VF algorithm, and Fig.8b shows the resultant boundary
pixel pairs stored in the common shared stack. Algorithm2
shows the pseudocode for our adaptation of the VF algorithm.

In comparison to the PF algorithm, the VF algorithm needs
a larger stack size since pixel pairs are stored. Also, additional
processing is required while retrieving the image from the
vertices stored as pixel pairs.

Algorithm 2 Vertex-Following Algorithm
Result: Returns a stack of corners (node,neighbor)
processorNodesUsed = pixelsInImage;
for All nodes do

for east and south sorted neighbors of node do
if node_neighborIsCorner not set then

if pixelValueNeighbor != pixelValueNode
then

push (node,neighbor) to cornerStack;
set node_neighborIsCorner;

J. ADAPTATION OF RUN-DATA-BASED-FOLLOWING
ALGORITHM TO MULTIPROCESSOR IMPLEMENTATION
In the run-data-based-following (RDBF) algorithm, the scan
of pixels is done in the form of horizontal scan lines from
left to right and sequentially from top to bottom. Within
each of these scan lines, small active line segments are
detected, which are the active pixels of the image. The
endpoints {(x1, y1);(x2, y2)} of these active line segments
are stored in the common shared stack representing the
contour of the image. Since the comparison is done only
along these horizontal scan lines, each pixel is supposed
to be compared with the west and east neighbours only.
To further optimize the algorithm, we have compared each
pixel with only its east neighbour to avoid comparison
redundancy.

Algorithm 3 shows the pseudocode for the adaptation of
the RDBF algorithm for a multiprocessor system. Fig.9a
shows the line segments scanned to detect the contour, and
Fig.9b shows the resultant line segment ends representing the
contour.

The stack required for the RDBF algorithm is very small
in comparison to the PF and the VF algorithms, especially for
dense images. However, additional processing is required to
generate the original image from the ends of line segments
representing the contour. The contour stack generated by the
RDBF algorithm can easily be scaled to scale the size of the
image.
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FIGURE 8. (a) Tracing of the standard image using our implementation of the vertex-following algorithm; dot represents the starting of the first vertex
detected; (b) The resultant pixels in the contour stack.

FIGURE 9. (a) Tracing of the standard image using our implementation of the run-data-based-following algorithm; dot represents the first active pixel
detected; (b) The resultant pixels in the contour stack.

Algorithm 3 Run-Data-Based-Following Algorithm
Result: Returns a stack of line segments (x,y)
processorNodesUsed = pixelsInImage;
for All nodes do

for east neighbor of node do
if pixelValueNeighbor != pixelValueNode then

if pixelValueNode == 0 then
push (node) to lineSegmentStack;

else
push (neighbor) to lineSegmentStack;

K. EFFICIENT PARALLEL ALGORITHMS FOR A
MULTIPROCESSOR SYSTEM USING SEGMENTATION
In the third step in our methodology, the array of micro-
processors is segmented into symmetric parts. This leads to
the segmentation of the image being processed, as shown in
Fig.10(b). Since, in our implementation of the contour tracing
algorithms, any active pixels on the corners of the image are

not considered as a part of the contour, the resulting contour
stacks from different segments of the image can be combined
in any order to form the complete contour stack of the image.
Any extra processing, to merge the boundary pixels of the
segments of the image, is not required.

As the fourth step, one of the three algorithms discussed
is run on these segmented hardware sections in parallel to
achieve the hypothesized speed up in contour tracing. The
resulting algorithms are termed Adapted and Segmented
(AnS) algorithms for contour tracing.

L. METRIC USED FOR COMPARISON BETWEEN
DIFFERENT ALGORITHMS AND THEIR ADAPTATIONS
In our adaptation of the PF, VF, and RDBF contour tracing
algorithms, pixel value comparisons have been converted
into communications between processors. One pixel value
comparison has, thus, been converted into one hop commu-
nication between two neighbouring processors. To normalize
the time taken for the comparison operation and the
communication operation, we have defined one comparison
or one communication operation as one time-tick. This

VOLUME 10, 2022 127371



S. Gupta, S. Kar: Algorithms to Speed up Contour Tracing in Real Time Image Processing Systems

FIGURE 10. Pictorial explanation of the concept of the paper – (a) Distribution of image pixels in a multiprocessor system; Each dotted square in the
2-D array is a processing element; (b) The multiprocessor hardware system divided into 3 × 3 segments.

means that when one pixel value is compared with one
neighbour value, one time-tick is used in both conventional
implementation and our adaption of the PF, VF and RDBF
algorithms. This metric of time-ticks is used for comparison
between the algorithms and their adaptations.

To calculate the time taken for our algorithms to process
the test image, we used python as the simulation tool.
We used the networkx package [36] in python to model
the torus interconnected parallel processor system. The
memory connected to each of the PE was modelled as
the local variables of each node in networkx. Based on
the segmentation of the image, the pixel comparisons were
performed in parallel or sequentially using the framework.
To calculate the total time taken for an algorithm run
on the test image, we increase the number of time-ticks
as the comparison/communication proceeds sequentially.
When the algorithm runs in parallel on different segments
of the image, the time ticks are calculated for individual
segments and normalized over the number of segments. Since
the processing time taken for one comparison operation
by a single processor, 1p, and the communication time
taken for one bit communication between two neighbouring
processors, 1c, will not be equal, we would have to multiply
the normalized speed-up by a factor of 1p

1c
, corresponding to

the hardware system being used for implementation.
The second metric used for comparison is the size of the

common shared stack used for storing the contour pixels
generated by different algorithms and their multiprocessor
versions.

M. PROPOSED IMPLEMENTATION ON NVIDIA GPUs USED
IN EXISTING PARALLEL PROCESSING ALGORITHMS
For performance analysis, we have designed a methodology
to implement our algorithms using the NVIDIA GPUs used
in [28] and [30]. The pre-processed image (after greyscaling
and thresholding, respectively) is stored in the global memory
of the GPU. Each byte of a coloured image leads to a single

bit after pre-processing. To reduce the memory space and
enable parallel processing, each word (32-bit long) is used
to store 32 row-wise adjacent pixels (in bits). A single-
bit comparison is modelled as a single-bit XOR operation.
Since the AnS-RDBF algorithm is observed to have the
best performance (detailed in Section IV), we implement the
AnS-RDBF algorithm only on the GPU hardware. In case
of complete parallelism (Number of Segments = Number of
pixels in the image = 18× 26 in Table 1), each PE compares
a single pixel (32 pixels stored as a 32-bit word in this case)
of the image. This leads to complete image contour tracing
in just one time tick. However, the number of CUDA cores
available in the GPU hardware is a fraction of the number of
pixels in the image, thus, the image is segmented depending
on the number of CUDA cores available. The segments of the
image are operated on serially for complete contour tracing.

For each segment of the image, the number of CUDA
processors×32 single-bit XOR operations are performed in
parallel. These operations are programmed to be SIMD
threads in CUDA [37], [38]. The complete data required for
contour tracing on one segment of the image is stored in
the shared memory of the GPU to minimise latency. After
the contour tracing of one segment completes, the contour
stack is transferred to the global memory and the pixels
corresponding to the next segment are transferred to the
shared memory. This continues till the complete image has
been traced.

IV. RESULTS
A. COMPARISON BETWEEN THE CONVENTIONAL
ALGORITHMS AND THEIR MULTIPROCESSOR VERSIONS
In Table 1, we compare the execution time of these
three new algorithms to their single processor counterparts
to quantify the speed-up. We use two metrics for these
comparisons – (a) the amount of time taken (in normalized
time-ticks) and (b) the size of the stack generated for contour
tracing in a standard image.
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TABLE 1. Performance speed-up of the three algorithms for the different number of segments.

The number of time-ticks observed for adaptation of each
of the algorithms, for a multiprocessor system was the same
as that of the single processor implementation because each
comparison got converted into a single hop communication.
We have normalized the speed-up by a factor of 1c

1p
, where

1c is the single hop communication time, and 1p is a single
comparison process time, to quantify the speed-up obtained
by exclusively parallelizing the algorithms. As we introduced
data-level parallelism through segmentation, the number of
time-ticks decreased (speed increased) with an increase in the
number of segments, as shown in Table 1 and Fig.11. The
speed-up is calculated as TTs

TTm
, where TTs is the number of

time ticks taken by the single processor implementation and
TTm is the number of time ticks taken by the multiprocessor
implementation. Also, as the number of segments increases,
the contour points are pushed onto the stack in random
order because of the parallel running algorithm instances.
This might require additional buffer hardware to access the
stack. Pre-ordering of the stack before reconstruction of the
image from the contour pixels might also be needed in some
cases.

In Table 2, we show the comparison of time-ticks and
the contour stack size generated by the single processor
implementation of the PF, VF and RDBF algorithms. The
percentage of memory saved is equal to pi−pc

pi
× 100, where

pi is the number of pixels in the image, and pc is the number
of pixels in the contour.

B. COMPARISON OF THE INCREASED EFFICIENCY IN THE
THREE ALGORITHMS
The comparative results obtained from our experimentation
are -

1) AnS algorithms, using a multiprocessor system cor-
responding to the PF, VF, and RDBF algorithms,
are faster than the corresponding conventional imple-
mentations for contour tracing when the number of
segments is greater than one.

2) a) If the number of processors (n) is equal to the
number of pixels (p), as in our experiment, the
speed of contour tracing using our algorithms
increases to up to n-times as the number of
segments is increased because, when the number
of segments is equal to the number of pro-
cessing elements (maximum segmentation), each

FIGURE 11. Speed-up as a function of number of segments in log-log
scale.

TABLE 2. Comparison between the adaptation of the three algorithms on
the basis of various parameters.

processing element (or segment) performs only
basic comparison operation with the neighbours
of only one pixel.

b) However, if n > p, then speed up will be limited
by the number of pixels (also the number of active
processing elements) and can be up to p-times.

c) Also, if p > n, then there can be two cases. (I) If
the image is down-sampled to match the number
of processors, the case becomes the same as ii)(a)
and a speed of up to n-times is observed. (II) If the
image is divided into d pne parts of n length each,
processed sequentially (details in section III-G),
the maximum speed-up reduces to n

p/n =
n2
p .

Thus, in general, we can say that the speed up
using our algorithms can be up to n2

p times.
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TABLE 3. Performance of our methodology using GPU hardware used by existing parallel processing implementations.

TABLE 4. Memory access time and total time of our methodology using GPU hardware used by existing parallel processing implementations.

3) Converting the comparison between pixels to com-
munication between processing elements, i.e., just the
adaptation of the single processor algorithms for a
multiprocessor system, is not sufficient to increase the
speed of contour tracing. Segmentation is additionally
required for parallelization and thus speed-up.

4) The AnS-RDBF algorithm was found to be the
fastest and the most memory-efficient contour tracing
algorithm, amongst our algorithm implementations, for
digital images.

5) The pixel-following algorithm does not offer much
improvement in the speed with the increase in
segmentation.

6) We also observed that the improvement in speed for
both the VF and the RDBF algorithms is exactly the
same, for the same number of segments, as seen in
Fig.11 and Table1. This happens because the number
of time-ticks for the RDBF algorithm comes out to
be exactly half of that for the VF algorithm in both
the adapted algorithms and the AnS algorithms since
these both are constant comparison algorithms. In the
VF algorithm, two neighbours (east and south) of each
pixel are compared with itself, while in the RDBF
algorithm, only one neighbour (east) is compared. This
makes the time-ticks for the RDBF algorithm exactly
half of the VF algorithm for all cases.

C. PERFORMANCE COMPARISON BETWEEN THE
EXISTING PARALLEL PROCESSING ALGORITHMS AND
OUR IMPLEMENTATION
We have compared our implementation with parallel pro-
cessing implementations of Garcia-Molla et al., [28] and

TABLE 5. Time comparison between the performance of our
methodology and the existing parallel processing methodologies by
Garcia-Molla et al., [28] and Zhou et al., [30].

Zhou et al., [30]. Garcia-Molla et al., have used Server 1 with
a Tesla K40c GPU card and Server 2 with an Nvidia Quadro
RTX 5000 for CUDA-based implementation. Zhou et al.,
have used an Nvidia Tesla K20c device for three sizes of
the DEM data set. Detailed performance calculations and
respective comparisons, using the methodology detailed in
Section III-M, are shown in Table 3, 4 and 5.

In comparison to the parallel processing framework
developed by Garcia-Molla et al., we observe a speed-
up of 194 and 47 for Tesla K40c and Quadro RTX
5000 respectively. The Suzuki algorithm used by them is
based on the Moore Neighbour Tracing algorithm which
is a part of the Pixel-Following family of contour tracing
algorithms. We observed that the RDBF algorithms, used for
our implementation, are faster for parallel processing than
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the PF algorithms. This contributes to the speed-up observed
using our GPU hardware implementation framework.

In comparison the implementation by Zhou et al.,
we observe a speedup of 8 × 105, 6.3 × 105 and 5.6 ×
105 corresponding to the DEM data-set of 6.11, 21.44 and
37.81 GB respectively, for Tesla K20c GPU. One of the
reasons for this speed-up is the reduction of data size
owing to the pre-processing performed in our methodology.
Zhou et al., have processed the large DEMdata set using close
interaction of the CPU and GPU, but, we have transformed
the data into single-bit pixels and used only the GPU
for parallel processing. This led to reduced time-intensive
communications between the global and the shared memory
in our implementation. They have also used the CPU for
post-processing the broken contours, which further added up
to the processing time of their implementation.

Though the speed-up observed in comparison to the
methodology presented by Zhou et al., is very optimistic,
we speculate that our implementation would lead to less
accurate contour tracing for the same DEM data set. This
loss of accuracy is adequate for our use case – real-time
image processing applications like tracking a moving object,
character recognition etc.

V. DISCUSSION
The results obtained from our experimentation of adapting
and segmenting conventional contour tracing algorithms
can be used to increase the speed of image processing
or pre-processing of an image, without any hardware
modifications. Our AnS algorithms can be easily plugged into
any torus-connected multiprocessor system. The speed-up
observed will be especially high for systems optimized for
faster communication between processors, i.e., the systems
with 1p

1c
, where 1p is one bit comparison time and 1c is one

bit communication time, greater than one. However, even in
the case of systems with 1p

1c
less than one, our algorithms

provide a good factor of speed-up.
Based on the application, any of these three AnS

algorithms can be used to obtain this speed up. In case
there is no constraint on the choice of algorithm, the
AnS-RDBF algorithm is preferred. The speed-up is directly
proportional to the number of segments for the AnS-VF
and the AnS-RDBF algorithms, though segmentation incurs
additional software costs. The trade-off between the software
cost of segmentation and the speed-up can be decided
based on the application requirement and hardware-software
constraints.

These algorithms are especially effective for applications
where an array of embedded systems is used for capturing
the image. An interesting application can be in detecting a
fast-moving object in a sports video sequence (ex: a football
or a baseball moving across a playfield) - with overlapping
fields of view from networked cameras covering the entire
playing field. Since tracing of a moving object across a
sequence of images is similar to contour tracing in an image,
our AnS algorithms can significantly speed up the processing
in this application.

The algorithms presented in this paper can be used to
improve the efficiency of image processing in various appli-
cations without any hardware upgrade given that affordable
multi-processor cards are easily available.

VI. CONCLUSION
We have adapted three existing contour tracing algorithms
for a multi-processor, 2-D mesh or torus-connected system
to introduce data-level parallelism. The system was further
segmented to run the adapted algorithm in parallel for
different sections of the image. We observed a speedup of
up to n2

p times, where n is the number of processing elements
and p is the number of pixels in the system. This speedup
was observed for two of the three algorithms, i.e., vertex-
following and run-data-based-following. Out of the three
algorithms developed, run-data-based-following is observed
to have the fastest speed and lowest memory consumption for
the same image.

In future, this methodology of introducing data-level
parallelism can be extended to different algorithms and
network topology for potential speed up. Application spe-
cific parameters like communication delays and software
overhead can also be evaluated in detail by implementing
the algorithms on Field Programmable Gate Arrays or
Application-Specific Integrated Circuits.
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