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ABSTRACT Few hearing people know and use Mexican Sign Language (MSL). Consequently, this is the
main barrier between people who having total or partial hearing loss and hearing people. This study proposes
a system that recognizes and animates in real time a set of signs belonging to the semantic field of general
medicine consultation services. Therefore, a linkage between a hearing doctor and a deaf patient can be
established in a non-intrusive way andwith easy dynamic interaction. Ourmain contribution is a bidirectional
translator system for Mexican Sign Language in the context of primary care health services, in addition to
basic signs to fingerspell alphabet and numbers as a complement to provide personal information such as
name, age, etc. The recognition module uses a Microsoft Kinect sensor to obtain sign trajectories and images
to feed hidden Markov Models (HMMs) for processing sign samples in real time. The experiments showed
the recognition of 82 different signs by 22 participants. As a result, accuracy and F1 scores average rates of
99% and 88%, respectively, were obtained.

INDEX TERMS Mexican sign language, depth sensor, dynamic sign language recognition, medicine
consultation services, sign language synthesis.

I. INTRODUCTION
Sign languages use observable gestures in space for com-
munication. The International Sign System (ISS) is a pid-
gin, a simplified language created and used by people
from communities that do not have a common language
(e.g., Deaflympics); however, it is limited.

There are more than 137 different sign languages world-
wide that communicate the expressions of each language
[21]. Every sign language evolves by integrating new signs,
eliminating old ones, and generating different ones that refer
to the same words or concepts. Moreover, there are vari-
ants of sign languages by language, country, and geograph-
ical region. For instance, Spanish Sign Language (SSL) and
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Mexican Sign Language (MSL) are very different, although
both refer to Spanish language.

Hearing loss refers to a loss greater than 40 dB in adults
and greater than 30 dB in children. Most people with hearing
loss live in low- income and middle-income countries [47].

According to data from the Mexican National Survey
of Demographic Dynamics, among the population aged
≥3 years with limited listening, only 4.5% use hearing aids.
Of these people, nine out of ten have problems accessing this
type of aid. Consequently, they have fewer opportunities to
communicate and interact with others under equal conditions.
This situation affects the integration of the population in
social, educational, and employment areas [26].

Mexico has 120 million inhabitants, and the prevalence
of disability in Mexico is 6% (7.2 million inhabitants),
of which 33.5% have hearing disabilities. Only 83.3% of
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the population with disabilities in Mexico are affiliated with
health services. The main causes of this disability are birth,
illness, accidents, and advanced age [26].

In the Mexican educational system, none of its educational
levels include the teaching of MSL, so the majority of the
Mexican population does not have knowledge about it, unless
it is for their own interest and they carry out studies afforded
by themselves, which hinders deaf inclusion and communica-
tion in daily life; in addition, there is not enough standardized
material developed by government institutions in MSL for
access to public services such as education, health, justice,
etc.

The main problem is related to the lack of knowledge of
medical staff to communicate with deaf patients in Mexico,
given the great needs of people with hearing loss, this study
focuses on providing a technological tool that supports com-
munication between hearing and deaf, facilitating communi-
cation during a consultation with a Primary Care Physician,
and promoting inclusion in society, so deaf people can have
better access to health services.

The remainder of this study is organized as follows.
Section II presents related works on static or dynamic sign
language recognition and studies of MSL recognition and
synthesis. Section III summarizes the contributions of this
study. Section IV presents the apparatus, sensors, hard-
ware, and software used. Section V explains our approach,
which includes a synthesis module, an MSL recognition
module, and a medical graphical user interface. Section VI
presents the components of evaluation, vocabulary, partic-
ipants, experiments, and metrics. Section VII explains the
results of the recognition of alphabetic vocabulary, num-
bers, and medical consultation service words. Section VIII
presents the discussion of this study. Finally, the conclusions
and future work are presented.

II. RELATED WORKS
The development of low-cost depth sensors has opened
new avenues for Human-Computer Interaction. With new
depth cameras and sensors, gesture recognition has gradually
shifted from a 2D technique to 3D analysis. It is difficult for
computers to extract gestures from a target image because of
the unpredictable environment and complex background. The
hand is a key body part in gesture recognition, particularly in
people with hearing disabilities. A hand is a flexible body
with more than 20 degrees of freedom; therefore, people can
perform the same gesture by starting the hand movement at
different positions.

For instance, Kinect has been widely used to recognize
several sign languages, such as American Sign Language
(ASL) [28], [30], which studies x, y, and z coordinates,
and German Sign Language (GSL) [20], which analyzes the
speed, position, and distance between hands. The Albanian
Sign Language [13] studied hand contours and hand centers.
The Turkish Sign Language (TID) [42] used the trajectories
of sign responses. Chinese Sign Language [5] analyzes hand
posture frames from video and 3D trajectories, and India

Sign Language [18] analyzes angles, speed, and curvature
fingertips.

Moreover, these studies have employed three main tech-
niques to recognize signs: the hidden Markov model [20],
[30], dynamic time warping [13], [42], neural networks [28],
[34], [49], and support vector machines [49]. Consequently,
these studies achieved accuracy rates between 83% [42] and
97% [20], [28].

Additionally, Kinect has been used jointly with the Leap
Motion controller to detect Indian Sign Language [19].
Specifically, they used depth and image data as inputs to a
hidden Markov model and neural network classifiers, achiev-
ing an accuracy of 94.55%.

In the design of gesture-based user interfaces, continu-
ously recognizing complex dynamic gestures is a challenging
task because of the high dimensionality, ambiguous semantic
meaning, and presence of unpredictable non-gesture body
motions.

Sign languages have not been the only object of study,
but also other types of hand gestures, such as movements to
direct an orchestra [44], commands to direct a Smart TV [48],
or activities of daily life [29].

Other approaches do not use depth sensors, such as video
cameras in conjunction with special gloves [25], time-of-
flight cameras [24], web cams [37], or inertial sensors that
measure acceleration and angular velocity [46].

Regarding the progress in the automated recognition and
synthesis of MSL, there are few works that are described
below. However, none of them has considered vocabulary
from a primary care medical consultation service or the
recognition and synthesis of MSL.

Reference [23] presented the use of MSL for the control of
a service robot using eight alphabetic letters. In addition, they
recognized 23 static alphabet letters in the color images. Their
method uses active contours to segment and shape the signa-
ture for description, and a neural network for classification.
The dataset was acquired under controlled conditions with a
background in contrast to the hand. One person generated all
the sign samples. A recognition rate of 95.8 % was achieved.

Reference [32] presented two methods for recognizing the
MSL alphabet: Onemethod uses a controlled background and
illumination to aid Red, Green, Blue (RGB) image segmen-
tation. Then, Hu moments and other descriptors were used to
obtain 2D invariance in translation, rotation, and scale. The
dataset was generated for two subjects. The author reported a
100% classification for 20 letters of the MSL alphabet. The
second method uses a Kinect camera to segment the hand
depth. A 2D template for each letter was then transformed
using evolutionary matrices. In this case, 25 letters were
recognized with 90% accuracy.

Reference [43] presented a method to estimate the 3D
posture and recognize 27 letters of the MSL alphabet with
90.27% precision using a dataset generated by one subject.

Reference [2] presented a Mexican speech-to-sign lan-
guage system. After the speech recognizer, each character,
word, or sentence was performed using an animated avatar.
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In this study, 70wordswere selected from theMSL dictionary
without a particular semantic domain.

Reference [38] recognized 24 staticMSL letters fromRGB
images and achieved a 98.53% recognition rate. The dataset
was generated by one person performing each sign five times.
Then, the background was controlled. Their method used 2D
normalized geometric moments and a neural network.

Reference [12] recognized five vowels and two consonants
from MSL alphabet with 76.19% precision. Their method
uses images, depth, and skeleton from a Kinect sensor, with
random forest and a neural network.

Reference [39] recognized 24 letters of the MSL alpha-
bet from RGB images, with a 95% recognition rate. Their
method employs Jacobi-Fourier moments, which are two-
dimensional (2D) rotation invariants. The dataset was gen-
erated for a single user.

Reference [40] classified 24 static signs of MSL alpha-
bet from RGB images by using normalized moments and a
neural network. These moments are invariant to translation
and scale but not 2D rotation. The dataset was generated for
a single user. Their method achieved a recognition rate of
95.83 %.

Reference [4] classified 249 dynamicMSLwords in a con-
trolled environment from 22 people using black cloth and a
black background. The images were processed, and the hands
were segmented to extract 743 geometric, textural, and color
features. Feature selection was performed using a genetic
algorithm. Training and test classification were performed
with a support vector machine to achieve an average accuracy
of 97 %.

Reference [41] present a real-time MSL recognition sys-
tem. It operates indoors without controlled background or
clothes. The dataset was generated by ten participants per-
forming each word five times. In total, 33 dynamic words
were classified, with 86% sensitivity and 80% specificity.

Reference [16] recognized five letters and five numbers,
with an F1 score of 95%. A database was generated by
100 participants who performed each sign once. This method
works with 3D point clouds and uses 3D Haar features.

Reference [14] used data time warping to recognize
20 dynamic words from Kinect data, achieving an accuracy
of 98.57%. The dataset was generated by 35 participants, who
performed each sign once.

Reference [11] present a system to recognize 249 dynamic
MSL words from 17 semantic categories. The dataset was
generated by 11 people and producing 2480 videos. The
acquisition environment was controlled using black back-
ground land, and black cloths were used to aid image seg-
mentation. An average precision of 96.27% was obtained
using geometric features and an SVM. For the nine words,
the accuracy was less than 70%.

Reference [35] developed a system to recognize
75 dynamic words from nine categories and obtained an
average accuracy of 94.9%. Some important features of their
work are that they extract information from both hands, the
body, and facial expressions. In addition, they interpreted

20 sentences from a medical context and obtained an average
accuracy of 94.1% for this case. Their medical context was
related to hospital emergencies. The dataset was generated
by six participants, and the vocabulary had an average of
35 samples per word. Their method uses the MediaPipe
and OpenCV libraries to extract and standardize geometric
features from the body, hands, and facial expressions. Then,
three 2D convolutional neural networks (CNN) are used
for encoding, followed by concatenation and a fully con-
nected layer. Finally, an Hidden Markov Model (HMM) was
applied.

III. CONTRIBUTION
Most studies on sign language recognition identify static
gestures belonging to alphabetic letters. Moreover, the Kinect
sensor has been widely used for sign language recognition
because it can identify several body joints and hand positions.
Nevertheless, Kinect does not recognize the fingers individu-
ally, which is required to identify the signs belonging toMSL.

The main contributions of this study are:
• Our system recognizes 31 static and 51 dynamic MSL

gestures, including medical signs, letters, and numbers
(Table 1, FIGURE. 12 and FIGURE 13). These signs
were selected as the basic and necessary words in a
general medicine consultation service by a group of
three primary care physicians.

• Recognition has been focused on a semantic field of
importance, which is the vocabulary used in a primary
care consultation service. This is a significant contri-
bution to the recognition of MSL, because this context
has not been studied in MSL.

• Our system includes the synthesis of MSL, which
allows the doctor to type text, which is converted
to animated MSL using a signing avatar. Conse-
quently, a bidirectional patient-doctor communication
is obtained for this semantic context. No other work has
reported the recognition and synthesis of sign language
in a general medicine consultation service.

• The use of an avatar that performs the signs rein-
forces communication because it is difficult for many
deaf people in Mexico to identify words written in
Spanish; they identify the signs better because it is
what they know and handle to communicate between
them.

• The proposed solution is highly economical because it
is installed on a computer that the doctor already has
in his office, and only an inexpensive sensor that is
easy to acquire is added. Unlike approaches such as
the one presented in [31], where they only translate the
ASL alphabet in speech, sign languages are not just the
alphabet; it is necessary to analyze other elements such
as hand movements while making the sign, the body
area where the sign is made to express whole words
not only fingerspell them, spelling is not practical; it is
only used as the last resort when the sign for a word is
not known.
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FIGURE 1. Diagram showing the two communication paths between patient and physician: 1) The MSL performed by the
patient is recognized and converted to Mexican Spanish text, which is read by the physician; and 2) The physician writes
Mexican Spanish text, which is converted into MSL and performed by a signing avatar that is understood by the patient.

IV. APPARATUS
The Microsoft Kinect v1 device was used in this study
because of its advantages of low cost, easy data acquisition,
software libraries, depth cameras, and RGB cameras.

The Kinect device developed by Microsoft is a sensor that
can be used as a signal receiver to collect video and audio
data. This depth sensor is known for its excellent performance
in detecting each human joint position represented by a cor-
responding three-dimensional data point, which is used for
easy human gesture recognition [7], [8], [9], [15], [45].

Our study uses point clouds captured by the Kinect depth
sensor. A point cloud is a set of vertices in a three-dimensional
coordinate system. These vertices are usually identified as X,
Y, and Z coordinates and are representations of the external
surface of an object. Point clouds are typically created using
a three-dimensional laser scanner. Based on the 3D points,
an object can be tracked. The points captured in time repre-
sent the sequence of movements made by the subject’s hands.
In our study, Kinect for Windows SDK v1.8, and Microsoft
Visual Studio 2015 were used to process the data.

The experimental environment for implementing and
testing the recognition system consisted of the following
hardware:
• Computer 1: A notebook with a processor Intel Core

i7-2630QM. A memory capacity of 6 GB of RAM and a
Windows 7 operating systemwith a 64-bit architecture, Video
Card Radeon HD 6770M with a total graphics memory of up
to 1024 MB.
• Computer 2: Notebook with Intel Core i5-5200U

processor A memory capacity of 6 GB of RAM and
Windows 8.1 operating system with a 64-bit architecture.
Intel HD Graphics 5500 with a total graphics memory of up
to 3036 MB.
• Microsoft Kinect v1 was used as the real-time image

capture technology. It generates 30 fps and provides RGB and
depth data.

V. PROPOSED APPROACH
FIGURE 1 presents our system, which is composed of two
main modules: a synthesis module, which converts a text
input into a dynamic MSL using a signing avatar, and a
recognition module, which interprets the sign language of the
patient and generates a text output composed ofwords, letters,
or numbers read by the doctor.

The fundamental aspect of the application of hidden
Markov models (HMMs) is the use of a pattern structure
model. In this way, the knowledge that has a priori on sign
language structure can be incorporated into the modeling
process, allowing a deeper analysis.

In addition, HMM’s are easily implementable and consti-
tute a highly flexible modeling tool that was initially used in
the field of automatic speech recognition, which has found
numerous applications in diverse scientific and technical
areas, highlighting the possibilities they can offer for the
analysis of complex spatial patterns, since they allow the
incorporation of a priori information on the analyzed system
into the modeling process.

The HMM was also selected because when performing a
sign in space, the hands move through certain milestone posi-
tions. In addition, several signs share the initial movement
but then differ. This situation is similar to that of written and
spoken language understanding.

A. SYNTHESIS MODULE: SIGNING AVATAR
Deaf people have different ways of communicating with one
another. They employ space, hands, and body in a differ-
ent linguistic syntax than that of Spanish. Therefore, it is
important to configure a signing avatar - an animated 3D
model of a virtual human that presents messages in sign lan-
guage with the same characteristics. Signing avatars requires
extremely fine motor movements and minimal collision-
avoidance routines.
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FIGURE 2. 3D Model of the signing avatar. The left image shows the
avatar and one of her hands. The right image shows the bones separated
by the joints that will allow movements with the same degrees of
freedom as the human body.

To provide a natural appearance to the signing avatar,
we used a 3D model and its bone structure, which allowed
accurate folding (FIGURE 2). The visible part of the signing
avatar consists of a three-dimensional polygonal mesh with
associated skin, clothing, and hair textures to create a realistic
representation of a human being.

Regarding the automatic translation of written text into
sign language without human intervention, motion capture
(MoCap) was employed to capture body, limb, and head
movements in 3D space. Specifically, MoCap technology
enables the recording of natural and accurate descriptions of
signs and sentences performed by a signer. However, MoCap
equipment is not capable of tracking finger movements prop-
erly. Consequently, these movements must be corrected dur-
ing the postproduction process.

We used the motions captured by Kinect to animate the
arms of the virtual character. To refine the finger movements,
we made additional animations by moving each finger bone
to the required sign position (FIGURE 3).

B. MSL GRAMMAR
All languages have grammar to structure words and make
sentences. MSL has special grammar; for example, verbs are

FIGURE 3. Interface to adjust finger positions of the signing avatar for
each sign.

used in the infinitive. The structure of a sentence depends
on the type of the verb used. The most common structure is
Subject-Verb-Object (SVO) [1], [6], [22]. However, depend-
ing on the type of verb, other constructions are possible,
such as OSV, VOS, VSO, OVS and SOV [6]. In this study,
we concentrate on basic structures in the medical context and
with a small vocabulary. FIGURE 4 presents the following
sentence in MSL: I speak only a little Spanish.

FIGURE 4. Translation of the sentence: I speak only a little Spanish. From
Spanish into MSL using its specialized grammar. I only speak Spanish
little (Gesture images are interpreted continuously from left to right and
from top to bottom).

C. MEXICAN SIGN LANGUAGE SYNTHESIS
The MSL synthesis is composed of two main modules:

1. The translation module analyzes the input text and con-
verts it into intermediary representation. This representation
uses glosses to represent the signs accompanied by infor-
mation associated with inflection. The intermediary repre-
sentation provides a straightforward mapping to the signs
and defines animation commands that are interpreted by the
animation module to control the movements of the avatar.

The input text was then decomposed into words. If a word
is not part of the vocabulary, it is expressed letter by letter in
MSL. If a word is recognized, the information is communi-
cated to the animation module to perform the associatedMSL
sign. The translation module was coded in the C# language
using MS Visual Studio.

2. The animation module is responsible for animating the
avatar and presenting the outcome on a device screen.

The avatar/virtual human was created in iClone, a tool
that facilitates virtual human animation. Each letter and some
medical context vocabulary were modeled by moving the
body of the virtual character. Word models were created for
vocabulary from [3] and [36]. (FIGURE 5 and 6).

Once the animations were modeled, we decided to use
Unity, because it is a game development platform that allows
us to easily export the system toWindows, Android, and iOS.
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FIGURE 5. Medical context vocabulary.

To import the animations to Unity, they were first exported to
the FBX format using 3DXchange.

Then, we imported a virtual human into Unity. To auto-
mate the system, we created an animated state machine (see
FIGURE 7). This machine contains an animation alphabet
controlled by a C# script.

When the user types words, the virtual human displays the
corresponding sign letters or words in MSL.

D. MSL RECOGNITION, SIGNAL ACQUISITION
Two inputs were obtained from the two cameras of Kinect:
i) the X, Y, and Z coordinates were obtained from the hand
joints provided by the Kinect’s infrared (IR) camera, and
ii) a color picture of each hand was obtained from Kinect’s
RGB camera. These two inputs were taken simultaneously
(FIGURE 8).

The contour of the hands was obtained to recognize its
shape and compare it with the database. To obtain trajectory
coordinates from the sign made with the hands, the user’s
initial position is saved immediately before starting the cap-
ture of coordinates. Users were asked to stand in front of
the sensor, with their arms relaxed at their sides without
moving.

The images were saved in a jpg format of 95 × 95 pixels.
Depth filtering is obtained from the joints identified by skele-
tal tracking, saving the image whose coordinates of depth are
smaller than those corresponding to the articulation of the
wrists, and making a precise segmentation of the hands.

It should be mentioned that hand pictures used to detect
dynamic signs are the front view poses of the hands. Although
a sign could not correspond to the image of alphabet letters
because the sign can be performed with the letter posture
starting at different positions (e.g., downwards, upward, ver-
tical, or horizontal). To overcome this limitation, different
databases were acquired from different hand angles to iden-
tify alphabetic letters and medical context words.

For feature extraction, the images were preprocessed, and
the dimensionality of the data was reduced.

E. MSL RECOGNITION, PREPROCESSING
First, the images were captured in RGB color. These images
were then binarized (black and white) to detect the blobs.

The hand posture contour is represented as a set of X and Y
coordinates (FIGURE. 9). The top and bottom edge methods

were used to scan each column of the blob and find the
upmost and lowest points, which were added to the lists.
These points (X and Y coordinates) are the inputs to a hidden
Markov model for classifying the hand shape involved in the
sign.

Additionally, the X, Y, and Z coordinates of the centroid
and the left and right hands describing the signal movement
were saved in XML format for retrieval during the training
and testing processes (FIGURE. 10).

As the heights and arm lengths of the volunteers who
participated in the experiments were different, the coordi-
nates were normalized in a range between 0 and 1 to reduce
the variance in the measurements produced by each person.
Subsequently, the coordinates corresponding to the signal
were smoothed to reduce the noise caused by involuntary
movements performed by the users.

A locally estimated scatterplot smoothing (LOESS) algo-
rithm was used to fit smooth surfaces to the data. It uses
locally weighted linear regression to smoothen the data. This
process is weighted because a regression weight function is
defined for the data points contained within the span. Larger
smoothing values (h) produce the smoothest functions that
move the least in response to fluctuations in data. The smaller
the value of h, the closer is the fit of the regression function to
the data. Using too small a value for the smoothing parameter
is undesirable because the regression function will start to
capture the random error in the data. Useful values of the
smoothing parameter are generally in the range of 0.25 to
0.5 for most LOESS applications. Testing values between
0.25 and 0.5, the best fit was reached at 0.25, to maintain the
general form of the sign.

F. MSL RECOGNITION, CLASSIFICATION
To interpret sign language automatically from coordinate
sequences, we observe N frames {xn}Nn=1 of a scene sequence.
Specifically, we want to infer theM discrete variables {wi}

M
i=1

that encode the sign that is present in each of the N frames.
The data at time n reveal something about the sign; however,
this may be insufficient to specify it accurately. Moreover,
dependencies between adjacent states are modeled, signs are
more likely to appear in a certain order, and we use this
knowledge to reduce the ambiguity in the sequence. These
dependencies have the form of a chain model because we
model probabilistic connections only between adjacent states
in a time series.

The model describes the joint probability of a set of con-
tinuous measurements {xn}Nn=1 and a set of discrete states
{wi}

M
i=1. The tendency to observe the xn measurements given

the wi state takes the k value.
This value is encoded in the likelihood Pr(xi| (wi = k)) The

prior probability of the first state {w1} is explicitly encoded
in the discrete distribution Pr(w1) We assume that this is uni-
form. Each remaining state depended on the previous state.
This information is captured in the distribution Pr(wi|wi−1)
known as Markov assumption.
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FIGURE 6. Some Mexican sign language (MSL) animated alphabet letters performed by the avatar. Letters that show more
than one frame are dynamic.

The overall joint probability was factorized. This model
is known as the Hidden Markov Model (HMM). The states
{wi}

M
i=1 in the directed model have the form of a chain and

the overall model has the form of a tree [33].
To discriminate and identify a sign, classification

(FIGURE 8) was performed on two data types: images and

X, Y, and Z coordinates. Specifically, an HMM was applied
to the images, and another HMMwas performed on the X, Y,
and Z coordinates.

One of the related problems of an HMM is to find a model
µ that maximizes the probability of a sequence of observa-
tions O= (o1, o2, . . . , oT); that is, to determine themodel that
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FIGURE 7. Animation state machine. The orange rectangle is the initial state. The arrows are transitions between states. When two states are
connected, Unity computes a linear interpolation between the last pose of the previous state and the first pose of the next state. Each gray
rectangle is an animation of a letter or an action.

FIGURE 8. Data flow for the recognition of Mexican sign language using Kinect data.

best explains the sequence. However, it is not possible to find
such a model analytically; therefore, the Baum-Welch algo-
rithmwas used to estimate the parameterµ of anHMMmodel
that maximizes the probability of a sequence of observations

P(O|µ). Also known as the forward-backward algorithm, the
Baum-Welch algorithm is a dynamic programming approach
and a special case of the expectation-maximization algorithm.
Its purpose is to tune the parameters of the HMM, namely the
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FIGURE 9. Hand contour.

FIGURE 10. Examples of hand trajectories described by the kilogram sign.
(a) right hand (red curve), (b) left hand (blue curve).

state transitionmatrix A, the emissionmatrix B, and the initial
state distribution π0, such that the model is maximally similar
to the observed data [17].

The HMM uses five states per sign applied to coordinates
X, Y, and Z in the classification phase.

The outputs from the coordinates and hand posture were
compared against the scheme of the body area where the sign
was made. Four main areas were identified in the process
of capturing the signs: the head, left body side, right body
side, and central body part (FIGURE 11). Within these areas,
location is determined by where a person performs a sign.
Consequently, this was provided as an input to recognize the
signs. Moreover, there were signs that required movement
from both hands or only the dominant hand; therefore, the
number of hands involved in the sign was used as the input.

G. MSL RECOGNITION, TRAINING PROCESS
For training, the coordinates are stored in XML databases
with the sign trajectory and sequences describing hand
contours to create the model of each sign. There are
three databases: alphabet letters from MSL finger spelled
(29 signs) (FIGURE 12), numbers from 0 to 9 (10 signs)
(FIGURE 13), and medical context words (43 signs)
(Table 1).

Twelve volunteers (ten listeners and two deafs) participated
in the training process. Each user performed each sign ten
times. Model creation took four minutes. The task was con-
ducted offline. In contrast, test classification was performed
in real time.

H. MSL RECOGNITION, TEST PROCESS
Ten volunteers (eight listeners and two deafs) participated in
this test. These were different from those of the participants

FIGURE 11. Body areas used for sign recognition.

FIGURE 12. Alphabet letters from MSL.

FIGURE 13. Decimal digits for MSL.

in the training phase. During the test phase, participants per-
formed each sign once. Consequently, a test set of 430 signs
ofmedical context words, 290 signs from alphabet letters, and
100 signs from numbers were obtained.
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TABLE 1. Words, hands number and areas involved in each sign
recognition.

The test phase was performed in real time by placing a
person in front of the sensor to capture the corresponding
data. Four sets of data were obtained to determine which sign
was made: sign trajectory, image contour, body area where
the sign was made, and the number of hands involved in
the sign performance (See Table 1). The data for each sign
were compared to the sign database to discard incorrect signs.
Sign-trajectory identification was performed in seconds and
displayed in the text at the interface. To recognize the sign, the
probability of each sign given the observations was obtained
and the model with the highest probability was selected.

I. MEDICAL CONTEXT GRAPHICS USER INTERFACE (GUI)
The system interface is composed of three modules:

1. The doctor-patient module (FIGURE. 14). This allows
interaction between doctors and patients. Specifically,
this module has five areas: a) the area where the doctor

writes the question. It is important to mention that the
doctor requires prior training in the words available
in the system to ask his questions; b) an area that
shows the video of the patient answering the doctor’s
question in real time; c) an area with an avatar where
the translations from Spanish into MSL of the doctor’s
questions are displayed; d) an area displaying text with
the same message as the avatar to ensure deaf patient
comprehension. This helps in the case that the deaf
person is able to understand written language; and e)
an area displaying the patient’s sign response in terms
of written Spanish for the doctor. To use this interface,
the doctor was placed in front of the computer and the
patient was placed in front of the sensor (FIGURE 15).
There are two screens to display the same interface to
the patient and doctor, so that the doctor and patient can
see the doctor’s question and the patient’s answer at the
same time.

2. Alphabet module. This module helps to spell words
(FIGURE 16) and is accessed from the doctor-patient
interface. Specifically, this module displays images of
the hand postures corresponding to each letter. This
module is also useful for including new words finger-
spelled by users in a dataset.

3. The numbers module (FIGURE 17) works in a similar
way to the alphabet module and can also be accessed
from the doctor–patient interface. This is activated
when it is necessary to express numerical quantities.
It only identifies numbers from zero to nine. To express
two or more digits, one must spell digits by digit until
the end of the complete number.

VI. EVALUATION
A. WORDS USED IN PRIMARY CARE
CONSULTATION SERVICE
Words belonging to the semantic field of a primary care con-
sultation service were used in the system. These words were
chosen based on the advice of three qualified primary care
physicians, an MSL interpreter, and a deaf person regarding
the most commonly used medical questions posed by doc-
tors in a general medicine consultation service. As a result,
43 words were selected for the experiments (Table 1).

B. PARTICIPANTS
The experiments were performed according to the Declara-
tion of Helsinki and Nuremberg Code. All human subjects
who used sign language for data acquisition (images and 3D
scans) participated voluntarily. The subjects signed a consent
form to participate in the data acquisition experiments.

The research protocol for this study was reviewed by a
Ph.D. Research Program Committee of the Research Center
in Artificial Intelligence of the University of Veracruz prior to
the initiation of the research. In addition, the participants were
informed of the research objectives. Nobodywas harmed, and
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FIGURE 14. Doctor-Patient Interface. The Figure shows doctor’s question to deaf patient (in ‘‘DOCTOR QUESTION’’ section): how much weight you (how
much do you weigh?) in MSL and patient’s response to the physician (in ‘‘PATIENT’S ANSWER’’ section) recognized in real time is 60 (60 kilograms).
Within its section the physician has the controls to go to the interface to spell letters and numbers when its required. Yellow boxes indicate physician
and deaf patient interface sections in the figure.

FIGURE 15. Real-time system test (tripods with cellphones shown in the
figure were used only to record a demo video from different angles of the
scene but they are not part of system implementation.)

each participant could withdraw from the experiments at any
moment if they wished.

Twenty-two volunteers (18 listeners and 4 deaf, mean age
of 22 years, standard deviation of 7.15 years) participated in
the experiments, all of whom used the same dialect of MSL.
The volunteers were divided into 12 in the training phase
and 10 in the test phase. The participants did not have any
previous experience with interaction with a computer system
developed for this task. They were given previous training
for data collection, explaining how the experiment would

FIGURE 16. Interface of the alphabet fingerspell module (Alphabet
module) The physician can use alphabet module when the patient needs
to express words not recognized by the system by fingerspelling them
out, the controls include the options to capture the signal and evaluate it
and even add new fingerspelled words.

be performed, and how to interact with the system. Each
participant practiced three times before starting data capture.

C. EXPERIMENTS
Prior to performing the experiments, the users were informed
about the objective of the experiment, steps to perform the
experiment, interaction with the system, storage of the out-
come data, and repetitions to be performed for each signal.
Moreover, all participants were instructed on the words that
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FIGURE 17. Number fingerspell module interface (Numbers Module).
It shows the detected hand posture and shows the number to which it
corresponds, as it only recognizes numbers from 0 to 9, the figures must
be fingerspelled.

FIGURE 18. System users signing.

FIGURE 19. Experimental design for data acquisition.

to be performed in MSL, even if they had prior knowledge of
MSL. They practiced 82 signs, five times each. (FIGURE 18)

The Kinect sensor was located at a height of 1.3 meters and
at 1.5 meters from the person. This was due to the average
height (0.093 height standard deviation) of the participants
(FIGURE 19). A mark was placed on the floor to indicate
to the participants the distance of 1.5 meters apart from the
sensor.

Moreover, the following conditions were met in the exper-
iments: i) participants stayed indoors away from windows,
ii) there was a single light source coming from the ceiling
and projecting downwards, and iii) the distances to which the
sensor was placed were met.

To verify that the sign was correctly performed, it was
rehearsed before starting the capture. Additionally, there was
a person who reminded participants how to perform the sign

and told them to perform it twice for its correct validation
before capturing it.

Each participant performed each sign 10 times. Each rep-
etition was stored in database.

D. METRIC
Accuracy, sensitivity, specificity, and F1 Score metrics were
used to measure the validity of our proposal in terms of MSL
sign classification.

Where:
True positive (TP) = number of cases in which the sign is

detected when that sign is made.
False positive (FP) = number of cases where the sign is

detected when another sign is made.
True negative (TN) = the number of cases in which the

sign was not detected when another sign was present.
False negative (FN) = the number of cases in which the

sign was not detected when that sign was made.
Accuracy refers to the closeness of a measured value to an

actual or true value. The accuracy metrics (Eq. 1) assesses the
ability to correctly classify a test sign as true.

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
· 100 (1)

Sensitivity or recall is the rate of true positives (Eq. 2). The
greater the sensitivity of the test, the more the signs are
properly identified.

Sensitivity =
TP

TP+ FN
· 100 (2)

The specificity of the test was the true negative rate (Eq. 3).
The higher the specificity of the test, the lower the FP rate.

Specificity =
TN

TN+ FP
· 100 (3)

Precision refers to how precise/accurate the model is out of
the predicted positive, howmany of them are actually positive
(Eq. 4).

Precision =
TP

TP+ FP
· 100 (4)

F1 Score is a balance between Precision and Sensitivity
(Eq. 5).

F1 = 2 ·
Precision ∗ Sensitivity
Precision+ Sensitivity

· 100 (5)

VII. RESULTS
Table 2 shows the values obtained in the metrics (accuracy,
sensitivity, specificity, precision, and F1 Score) for the exper-
iments performed using primary care consultation service
words (Table 1). In terms of specificity, a mean specificity
rate of 99.80% was obtained for the general medicine con-
sultation service words. Specifically, most of the words (36 of
43) obtained an accuracy rate of 100%, whereas ‘‘Tiredness’’
word had the lowest specificity rate (98%). Similarly, a mean
accuracy of 99.5% was achieved. Many of the words (26 of
43) reported an accuracy rate of 100%, whereas ‘‘Tiredness’’
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word obtained the lowest accuracy rate (98%). The precision
metric also reported a mean rate of >90%. Over half of the
words (24 of 43) reported a 100% precision rate; however, the
lowest precision rate was 53% (‘‘Tiredness’’ word).

The sensitivity and F1 score metrics reported mean rates
below 90 (87.90% for sensitivity and 88.60% for F1 score).
Specifically, half of the words (21 of 43) had a 100% sensi-
tivity rate. In contrast, ‘‘scorch’’ and ‘‘so-so’’ words reported
the lowest sensitivity rate (60%). On the other hand, only
16 of 43 words reported 100% as F1 score rate, whereas
‘‘Tiredness’’ word reported the lowest F1 score rate (64%).
It is important to note that the ‘‘tiredness’’ word obtained the
lowest rates for four of the five metrics.

For all the dynamic signs that obtained a low score, this was
because the hand contour was not always clearly visible, but
only the wrist or back of the hand. In other cases, the sign was
performed too quickly. For improvement and future work,
we plan to use a sensor with a higher resolution and temporal
sampling rate and also incorporate additional RGBD cameras
to obtain complementary views of the signs that are partially
occluded from a frontal view. From a machine learning point
of view, the acquisition of more examples from more users
will help our models to generalize better.

Table 3 presents the results for the alphabet letter metrics.
The specificity achieved the highestmean (99.70%), followed
by the accuracy metric (99.50%). Most letters achieved 100%
specificity (22 of 29 letters) and accuracy rates (18 of 29 let-
ters). Conversely, 98% and 99% were reported as the lowest
rates for accuracy (letter: s) and specificity (letters: d, e, f, g,
m, n, s), respectively.

The precision, F1-score, and sensitivity metrics achieved
mean rates of 92.80%, 92.50% and 92.40%, respectively.
More than half of the letters achieved a 100% precision
rate (17 of 22 letters), F1 score rate (13 of 22 letters), and
sensitivity rate (15 of 22 letters). These three metrics reported
70% as the lowest rate in letters.

This is an exploratory study because there are no previous
MSL studies on patient-doctor interaction; similar studies
focus only on alphabet fingerspelling, and this is not practical
for communication in daily life.

Regarding doctor-patient communication in an interview
with three primary care physicians, they expressed that the
system improves direct communication with the deaf patient,
since in many cases deaf people have no way to communicate
with the doctor and they have to depend on a relative who
tells the doctor the symptoms and who decides the treat-
ment which is not ideal but the patient must be informed
of all implications and give consent for the treatment of his
illness. The doctors commented that deaf people do not go
to medical visits daily for communication difficulties that if
those barriers were broken patient consultations would surely
increase between deaf patients, and a doctor mentioned that
a patient read the lips and thus communicated, but that is
not a skill widespread that deaf people possess, which is
why the community deaf is limited in accessing a medical
consultation by the existing communication difficulties.

TABLE 2. Metric results for general medicine consultation service words.

Table 4 presents the metrics of these numbers. It can
be noticed that specificity achieved the highest mean rate
(99.70%) followed by accuracy (99.40%). The remaining
metrics achieve similar mean rates (97%).

Only numbers one and six reported mean rates between
80% and 99% for the five metrics. The remaining numbers
were 100% for all metrics.

VIII. DISCUSSION
Our recognition method achieved a precision of 99% and a
F1-Score average of 88%.Obtaining a higher precision (99%)
than similar works using Kinect, such as [20] and [30].

Our proposal has the following advantages:

- The Kinect sensor involved in the interaction is non-
intrusive; consequently, people simply place it in front
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TABLE 3. Metric results for alphabet letters.

TABLE 4. Metric results for numbers.

of the sensor and perform the signs without wearing any
clothing or device. The Kinect is an easily affordable
device. After the experiments, it was observed that it was
only necessary to save the coordinates corresponding to
the hands.

Body joints (i.e., elbows) did not provide key data for
recognition and could provide noise to the data because each
person moved their arms and placed them at different posi-
tions when they performed a sign. In our case, it was also
possible to use an RGBD camera instead of a Kinect sensor.

TABLE 5. Comparative table of works related to signs in medical field.

- Our prototype system showed that communication
between the patient and doctor, due to the translation
from Spanish to MSL, and vice versa, is feasible. In the
future, we plan to conduct usability tests to confirm
successful communication.

- Our study combines the features of both sensors, the
depth sensor when retrieving the X, Y, and Z coordi-
nates, and the RGB camera for capturing images of
the hands when signing. Some signs describe the same
trajectory, and what differentiates them is hand posture.

It is important to note that the performance of our system
can be affected by the use of the Kinect sensor. Specifically,
the performance of the Kinect sensor may be affected by the
following factors:

- Sunlight: Consequently, to obtain the best results, our
system should only be used indoors.

- It is used for several hours (approximately 6 h of uninter-
rupted use). Consequently, the body could not be accu-
rately identified. This led we stopped the experiments
and switched off the sensor to cool it.

Regarding the comparison with other works that have been
used to test medical signs (see Table 5), [10] reported a case
study of the recognition of five medical signs in American
sign language with 93% accuracy. Reference [35] presented
a system that recognized 73 MSL words with a precision of
94.9%. Of these words, 10 were from emergency medical
vocabulary. [27] developed a method to combine a hand
glove with a computer vision system to translate Filipino sign
language for medical purposes. Their vocabulary consisted of
26 alphabet letters, 10 decimal digits, and 30 words used in
healthcare, with 80.55% accuracy. In the case of these three
studies, our method recognizes 82 different signs with an
average accuracy of 99%.

IX. CONCLUSION
Sign language recognition through computational vision is
not a trivial task as it is for people who, despite the variations
between subjects or noise added to the signal, can easily
distinguish the signs. Incorporating a bimodal interface and
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combining the two inputs (depth and RGB data) yields the
best results for both sensors to obtain fast results that are
susceptible to being used in real time, which is necessary for
communication.

The main contribution of this work lies in the support of
deaf people’s communication in the medical consultation of
a primary care physician. This can be implemented in health
services and opens the door to providing in Mexico a func-
tional prototype of MSL interpretation focused on the health
context. Additionally, this implementation is not limited to
the digital alphabet.

The chosen sensor and developed software fulfilled the
task of identifying the proposed signs with 99% precision,
despite its limitations. It should be mentioned that with more
training data, the system will become more robust and can be
used for other sign languages only by storing databases with
the signs of the corresponding language.

The resulting average F1 Score of 88% could be improved
by strengthening with more cases of sign training. In future
work, we intend to add more words used in the medical con-
text to improve communication for deaf people and hearing
people, as well as to increase the size of the database by
inviting more test subjects.

The low metrics in the recognition of signs such as fatigue,
week, burns, menstruation, and heart are related to the adap-
tation of the space for capturing the signs, which must be far
from windows and sunlight that allows the sensor to avoid
a bad communication that could cause the doctor to write
a bad prescription or not see some symptoms due to the
mistranslation.

In addition, the failure is related to the heating of the sensor
owing to continuous hours of use, which can be solved by
turning off the sensor when it is not used to guarantee its
proper functioning when interviewing a patient.

In future work, we propose a percentage evaluation of
cases where the doctor could communicate correctly with the
patient and thus correctly diagnose the disease and avoid poor
selection of drugs for treatment.

In addition, other sensors such as the Leap Motion Con-
troller (small optical USB hand-tracking module designed to
be placed on a physical desk, facing up) and Empatica E4
(a portable wireless multisensor device for data and com-
puterized biofeedback in real-time acquisition. It has four
built-in sensors: a photoplethysmograph (PPG), electroder-
mal activity (EDA), 3-axis accelerometer, and temperature.)
to enhance the effectiveness of the proposed solution.
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