Unpaired Many-to-Many Disjoint Path Covers in Nonbipartite Torus-Like Graphs With Faulty Elements

JUNG-HEUM PARK ${ }^{\bullet}$
School of Computer Science and Information Engineering, Catholic University of Korea, Bucheon, Gyeonggi 14662, Republic of Korea
e-mail: j.h.park@catholic.ac.kr

This work was supported in part by the National Research Foundation of Korea (NRF) funded by the Korean Government (MSIT) under Grant 2021R1F1A1048180; and in part by the Catholic University of Korea, Research Fund, 2022.

Abstract

One of the key problems in parallel processing is finding disjoint paths in the underlying graph of an interconnection network. The disjoint path cover of a graph is a set of pairwise vertex-disjoint paths that altogether cover every vertex of the graph. Given disjoint source and sink sets, $S=\left\{s_{1}, \ldots, s_{k}\right\}$ and $T=\left\{t_{1}, \ldots, t_{k}\right\}$, in graph G, an unpaired many-to-many k-disjoint path cover joining S and T is a disjoint path cover $\left\{P_{1}, \ldots, P_{k}\right\}$, in which each path P_{i} runs from source s_{i} to some $\operatorname{sink} t_{j}$. In this paper, we reveal that a nonbipartite torus-like graph, if built from lower dimensional torus-like graphs that have good disjoint-pathcover properties of the unpaired type, retains such a good property. As a result, an m-dimensional nonbipartite torus, $m \geq 2$, with at most f vertex and/or edge faults has an unpaired many-to-many k-disjoint path cover joining arbitrary disjoint sets S and T of size k each, subject to $k \geq 1$ and $f+k \leq 2 m-2$. The bound of $2 m-2$ on $f+k$ is nearly optimal.

INDEX TERMS Disjoint path, path cover, path partition, torus, toroidal grid, interconnection network.

I. INTRODUCTION

Interconnection networks play a crucial role in the performance of a supercomputing system. Given the internal processor and memory structures in each node, a distributedmemory architecture is primarily characterized by the network used to interconnect the nodes [1]. One of the central issues in the study of interconnection networks is finding parallel paths, which are naturally related to routing among nodes and the fault tolerance of the network [2], [3]. An interconnection network is frequently modeled as a graph, in which the vertices and edges represent nodes and links, respectively. Parallel paths correspond to the disjoint paths of the underlying graph.

The problems of building disjoint paths in a graph have received significant attention in the literature. Refer to, for example, [4], [5], [6], [7], and [8] for details. It is often important to find disjoint paths that collectively pass through all vertices. The disjoint path cover of a graph is a set of

[^0]vertex-disjoint paths that altogether cover every vertex of the graph. Disjoint path cover problems are applicable in many areas such as software testing, database design, and code optimization [6], [9]. In addition, the problem is related to applications in which full utilization of network nodes is important [10].

Let G be a finite, simple undirected graph, where its vertex and edge sets are denoted by $V(G)$ and $E(G)$, respectively. A path from s to t is a sequence $\left\langle u_{1}, \ldots, u_{l}\right\rangle$ of distinct vertices of G such that $u_{1}=s, u_{l}=t$, and $\left(u_{i}, u_{i+1}\right) \in E(G)$ for all $i \in\{1, \ldots, l-1\}$. If $l \geq 3$ and $\left(u_{l}, u_{1}\right) \in E(G)$, then the sequence is called a cycle. An $s-t$ path refers to a path that runs from s to t; an s-path refers to a path starting at vertex s. The path cover of graph G is a set of paths in G such that every vertex of G is contained in at least one path. The disjoint path cover (DPC) of G is a path cover in which every vertex of G is covered by exactly one path. This study is concerned with a disjoint path cover in which each path runs from a prescribed source to a prescribed sink.

Given disjoint subsets $S=\left\{s_{1}, \ldots, s_{k}\right\}$ and $T=$ $\left\{t_{1}, \ldots, t_{k}\right\}$ of $V(G)$ for a positive integer k, a many-to-many
k-disjoint path cover is a DPC composed of k paths that collectively join S and T. If each source $s_{i} \in S$ must be joined to a specific sink $t_{i} \in T$, the many-to-many k-DPC is called paired, and it is unpaired if no such constraint is imposed. As is intuitively clear, we call the vertices in S and T sources and sinks, respectively, which together form a set of terminals.

Definition 1 (see [11]): A graph G is called f-fault paired (resp. unpaired) k-disjoint path coverable if $f+2 k \leq|V(G)|$ and G has a paired (resp. unpaired) k-DPC joining arbitrary disjoint set S of k sources and set T of k sinks in $G-F$ for any fault set $F \subseteq V(G) \cup E(G)$ with $|F| \leq f$.

Among the interconnection networks proposed in the literature, torus is one of the widely recognized networks. An m-dimensional torus is defined as a Cartesian product of m cycles, $C_{d_{1}} \times \cdots \times C_{d_{m}}$, where $C_{d_{j}}$ represents a cycle of length $d_{j} \geq 3$ for $j \in\{1, \ldots, m\}$. Given two graphs, G_{0} and G_{1}, of the same order and a bijection ϕ from $V\left(G_{0}\right)$ to $V\left(G_{1}\right)$, we denote by $G_{0} \oplus_{\phi} G_{1}$ the graph whose vertex set is $V\left(G_{0}\right) \cup V\left(G_{1}\right)$ and edge set is $E\left(G_{0}\right) \cup E\left(G_{1}\right) \cup\{(v, \phi(v)): v \in$ $\left.V\left(G_{0}\right)\right\}$. To simplify the notation, we often omit the bijection ϕ from \oplus_{ϕ}. Given d graphs G_{0}, \ldots, G_{d-1} of the same order n, if we apply the graph constructor \oplus to each pair G_{i} and $G_{(i+1) \bmod d}$ for $i \in\{0, \ldots, d-1\}$, then we obtain a graph with $n d$ vertices. This graph is said to be obtained through the cycle-based recursive construction.

Definition 2 (see [12]): An m-dimensional torus-like graph, $m \geq 1$, is a graph obtained through the cycle-based recursive construction from ($m-1$)-dimensional torus-like graphs $G_{0}, \ldots, G_{d-1}, d \geq 3$, of the same order, where the 0 -dimensional torus-like graph is a one-vertex graph K_{1}.

Here, the graphs G_{0}, \ldots, G_{d-1} are called the components of the torus-like graph. Figure 1 shows examples of toruslike graphs. Each vertex v in component G_{i} has two neighbors outside G_{i} : one in $G_{(i+1) \bmod d}$, denoted by v^{+}, and the other in $G_{(i-1) \bmod d}$, denoted by v^{-}. Contracting the components of the torus-like graph into single vertices results in a cycle C_{d} of length d.

Disjoint path cover problems have been studied for various classes of graphs, including recent studies on dense graphs [13], cube of connected graphs [14], balanced hypercubes [15], [16], hypercube-like networks [17], [18], recursive circulants [19], directed graphs [20], k-ary n-cubes [21], and torus networks [22]. In particular, the paired disjoint path cover problem for torus-like graphs was investigated in [12] for a nonbipartite case and in [23] for a bipartite case. In addition, a study on unpaired disjoint path covers of a bipartite k-ary n-cube, which is a special form of torus, can be found in [24].

In this study, we investigate the unpaired disjoint path cover problem for nonbipartite torus-like graphs, following the approach taken in [12] for the paired DPC problem. We reveal that a torus-like graph has a good disjoint-path-cover property of the unpaired type if every component of the graph has good disjoint-path-cover and Hamiltonian properties. Specifically, we prove that an m-dimensional nonbipartite torus-like graph,

FIGURE 1. Examples of 2-dimensional nonbipartite torus-like graphs, where an intra-component edge is indicated by a thick edge.
$m \geq 3$, composed of d components G_{0}, \ldots, G_{d-1} is f-fault unpaired k-disjoint path coverable for any f and $k \geq 2$ subject to $f+k \leq 2 m-2$ if each component G_{i} is f-fault unpaired k-disjoint path coverable for any f and $k \geq 2$ subject to $f+$ $k \leq 2 m-4$ and moreover, G_{i} is $(2 m-5)$-fault Hamiltonianconnected and $(2 m-4)$-fault Hamiltonian.

As a result, we obtain that an m-dimensional nonbipartite torus, $m \geq 2$, is f-fault unpaired k-disjoint path coverable for any f and $k \geq 1$ subject to $f+k \leq 2 m-2$. To the best of our knowledge, no studies on unpaired disjoint path covers in a nonbipartite torus or in a nonbipartite torus-like graph can be found in the literature. Moreover, the bound of $2 m-2$ on $f+k$ is nearly optimal, specifically, one less than the bound, $\delta(G)-1$, of the necessary condition shown in Lemma 1 below, where $\kappa(G)$ and $\delta(G)$ denote the connectivity and degree of graph G, respectively. Note that the degree of the m-dimensional torus is $2 m$.

Lemma 1: (see [11]) Let G be anf-fault unpaired k-disjoint path coverable graph, where $k \geq 2$. Then, $f+k \leq \kappa(G)$. Furthermore, if G has $f+2 k+1$ or more vertices, then $f+k \leq$ $\delta(G)-1$.

II. PRELIMINARIES

The disjoint path cover problems of a graph are closely related to the Hamiltonian properties, as well as the vertex connectivity, of the graph. For example, an unpaired 1-DPC joining two vertices is the Hamiltonian path that connects them. A path that visits each vertex exactly once is a Hamiltonian path, and a cycle that visits each vertex exactly once is a Hamiltonian cycle. A graph is traceable if a Hamiltonian path exists, a graph is Hamiltonian if a Hamiltonian cycle exists, and a graph is Hamiltonian-connected if every two distinct vertices are joined by a Hamiltonian path. The Hamiltonian properties of the torus networks are as follows:

Lemma 2: (see [12], [25]) Every m-dimensional nonbipartite torus, $m \geq 2$, is $(2 m-3)$-fault Hamiltonian-connected and $(2 m-2)$-fault Hamiltonian.

As mentioned above, studies on unpaired DPCs of a nonbipartite torus cannot be found in the literature. However, we can see from Lemma 2 that an m-dimensional nonbipartite torus, $m \geq 2$, is ($2 m-3$)-fault unpaired 1-disjoint path coverable. In addition, we can refer to the studies on paired DPCs because a paired k-DPC joining S and T is, by definition, an unpaired k-DPC joining the two. Some studies on paired disjoint path covers in a nonbipartite torus can be summarized as follows:

Lemma 3: (Kronenthal et al. [26] and Park [27]) A 2-dimensional nonbipartite torus is paired 2-disjoint path coverable.

Lemma 4: Let G be an m-dimensional nonbipartite torus $C_{d_{1}} \times \cdots \times C_{d_{m}}$, where $m \geq 2$.
(a) G is f-fault paired k-disjoint path coverable for any f and $k \geq 2$ subject to $f+2 k \leq 2 m$ (Park [12]).
(b) If $m \geq 3$ and at most one d_{j} is even, G is $(2 m-3)$-edgefault paired 2-disjoint path coverable (Li et al. [22]).

Lemma 3 leads to that a 2-dimensional nonbipartite torus is unpaired 2-disjoint path coverable. However, not every 2-dimensional nonbipartite torus is unpaired 3-disjoint path coverable nor 1-fault unpaired 2-disjoint path coverable. For example, consider the 4×5 torus shown in Figure 1(a), which has 20 vertices, half of them are colored green and the other half are colored white. Except for the four edges, two joining pairs of green vertices and two joining pairs of white vertices, all other edges join two vertices with different colors. It can be seen that an unpaired 3-DPC joining S and T cannot exist if S and T both contain white vertices only. Also, an unpaired 2-DPC joining S and T of two white vertices cannot exist if a white vertex is faulty, or if an edge joining a pair of green vertices is faulty.

Let us now consider some topological properties of a toruslike graph, which were discovered in [12].

Lemma 5:(see [12]) Let G be an m-dimensional torus-like graph composed of d components G_{0}, \ldots, G_{d-1}. (a) G is a regular graph of degree $2 m$, which has at least 3^{m} vertices. (b) The connectivity of G is $2 m$. (c) The diameter of G is no more than $\left\lfloor\frac{d}{2}\right\rfloor$ plus the maximum diameter over all components. (d) G has no triangle (cycle of length three) if $d \geq 4$ and every G_{i} has no triangle. (e) There are at most three common neighbors for any pair of vertices in G. Moreover, if $d \geq 4$ and any pair of vertices in each component have at most two common neighbors, then any pair of vertices in G have at most two common neighbors.

Lemma 6: There is at most one common neighbor for two adjacent vertices in a torus-like graph.

Proof: The proof is by induction on the dimension m of a torus-like graph. Suppose two vertices u and v are adjacent. It is obvious that the two have at most one common neighbor if $m=1$. Let $m \geq 2$ for the inductive step. If (u, v) is an edge of some component G_{i}, then there is at most one common neighbor belonging to G_{i} by the induction hypothesis. If (u, v)
is an inter-component edge, then there is at most one common neighbor in a component other than the components to which u or v belongs, proving the lemma.

It is useful to extend the notion of an unpaired k-disjoint path cover on not necessarily disjoint sets, S and T, of sources and sinks in a way that a vertex that belongs to both sets is considered as a valid, one-vertex path. Note that a disjoint path cover joining disjoint terminal sets contains no onevertex path. A generalized k-disjoint path cover [28] joining S and T in graph G is defined as a set of k disjoint paths of G composed of

- $|S \cap T|$ one-vertex paths for terminals in $S \cap T$, and
- $k-|S \cap T|$ paths that form an unpaired $(k-|S \cap T|)$-DPC joining $S \backslash(S \cap T)$ and $T \backslash(S \cap T)$ in $G-(S \cap T)$.
Lemma 7: Let G_{i} be an $(m-1)$-dimensional torus-like graph that is f-fault unpaired k-disjoint path coverable for any f and $k \geq 1$ subject tof $+k \leq 2 m-4$, where $m \geq 3$. Then, there exists a generalized k-DPC joining arbitrary distinct set S_{i} of k sources and set T_{i} of k sinks for any fault set F_{i} with $\left|F_{i}\right| \leq f$ subject to $f+k \leq 2 m-4$.

Proof: Given distinct terminal sets S_{i} and T_{i} of size k each in G_{i}, along with a fault set F_{i} such that $\left|F_{i}\right| \leq f$ and $f+k \leq 2 m-4$, we are to build a generalized k-DPC joining S_{i} and T_{i} in $G_{i}-F_{i}$. A vertex in $S_{i} \cap T_{i}$ can be seen as a one-vertex path, which runs from a vertex in S_{i} to itself also in T_{i}. So, it suffices to build an unpaired $\left(k-f^{\prime}\right)$-DPC joining $S_{i} \backslash F^{\prime}$ and $T_{i} \backslash F^{\prime}$ in $G_{i}-\left(F_{i} \cup F^{\prime}\right)$ where $F^{\prime}=S_{i} \cap T_{i}$ and $f^{\prime}=\left|F^{\prime}\right|$. The unpaired $\left(k-f^{\prime}\right)$-DPC exists by the hypothesis of the lemma, because $k-f^{\prime} \geq 1$ and $\left(f+f^{\prime}\right)+\left(k-f^{\prime}\right)=f+k \leq 2 m-4$. Thus, the lemma is proven.

Lemma 8: Let G_{i} be an $(m-1)$-dimensional torus-like graph, $m \geq 3$, such that G_{i} is f-fault unpaired k-disjoint path coverable for any f and $k \geq 2$ subject to $f+k \leq 2 m-4$ and moreover, G_{i} is $(2 m-5)$-fault Hamiltonian-connected and $(2 m-4)$-fault Hamiltonian. Suppose we are given a fault set F_{i}, arbitrary sets S_{i} of k^{\prime} sources and T_{i} of k sinks in G_{i}, where $\left|F_{i}\right|+k \leq 2 m-4$ and $k^{\prime}=k+1$ or $k+2$. (a) If $k^{\prime}=k+1$, then there is a vertex u such that S_{i} and $T_{i} \cup\{u\}$ are joined by a generalized $(k+1)$-DPC of $G_{i}-F_{i}$. Also, there is another vertex u^{\prime} than u such that S_{i} and $T_{i} \cup\left\{u^{\prime}\right\}$ are joined by a generalized $(k+1)-D P C$. (b) If $k^{\prime}=k+2$, there is a vertex subset $\{u, v\}$ such that S_{i} and $T_{i} \cup\{u, v\}$ are joined by a generalized $(k+2)$-DPC of $G_{i}-F_{i}$. Also, there is a vertex subset $\left\{u^{\prime}, v^{\prime}\right\}$ other than $\{u, v\}$ such that S_{i} and $T_{i} \cup\left\{u^{\prime}, v^{\prime}\right\}$ are joined by a generalized $(k+2)-D P C$.

Proof: Let $S_{i}=\left\{s_{1}, \ldots, s_{k^{\prime}}\right\}$ and $T_{i}=\left\{t_{1}, \ldots, t_{k}\right\}$. We assume w.l.o.g. $s_{1} \notin T_{i}$ if $k^{\prime}=k+1$ and $s_{1}, s_{2} \notin T_{i}$ if $k^{\prime}=$ $k+2$. For the proof of (a), let $k^{\prime}=k+1$. Firstly, suppose $T_{i} \nsubseteq$ S_{i}. Then, there exists a generalized k-DPC joining $S_{i} \backslash\left\{s_{1}\right\}$ and T_{i} in $G_{i}-F_{i}$ by Lemma 7 and the hypothesis of this lemma. A path in the DPC, say the $s_{a}-t_{a^{\prime}}$ path, passes through s_{1} as an intermediate vertex. Dividing the $s_{a}-t_{a^{\prime}}$ path, represented as $\left(s_{a}, \ldots, u, s_{1}, \ldots, t_{a^{\prime}}\right)$, into two path segments, $\left(s_{a}, \ldots, u\right)$ and $\left(s_{1}, \ldots, t_{a^{\prime}}\right)$, results in a generalized $(k+1)$-DPC joining S_{i} and $T_{i} \cup\{u\}$, as required. We now show that another vertex $u^{\prime} \neq u$ exists.

(a) x lies on the $s_{a}-u$ path.

(b) x lies on the $s_{j}-t_{j^{\prime}}$ path.

FIGURE 2. Illustrations of the proof of lemma 8.

There exists a neighbor, x, of u such that x and (u, x) are both fault-free, x is different from any source in $S_{i} \backslash\left\{s_{a}\right\}$ and also different from the predecessor of u in the $s_{a}-u$ path. This is because there are $\delta\left(G_{i}\right)$ candidates for x in G_{i} whereas at most $\left|F_{i}\right|+\left|S_{i} \backslash\left\{s_{a}\right\}\right|+1$ of them could be blocked (by $\left|F_{i}\right|$ faults, $\left|S_{i} \backslash\left\{s_{a}\right\}\right|$ sources other than s_{a}, and the predecessor of u), for which $\left|F_{i}\right|+\left|S_{i} \backslash\left\{s_{a}\right\}\right|+1=\left|F_{i}\right|+k+1 \leq 2 m-3<$ $2 m-2=\delta\left(G_{i}\right)$. As shown in Figure 2(a), if x lies on the $s_{a}-u$ path and is different from the immediate predecessor of u, representing the $s_{a}-u$ path as $\left(s_{a}, \ldots, x, x^{\prime}, \ldots, u\right)$ where x^{\prime} is the immediate successor of x, it suffices to replace the $s_{a}-u$ path with a $s_{a}-x^{\prime}$ path $\left(s_{a}, \ldots, x, u \ldots, x^{\prime}\right)$. If x lies on the $s_{j}-t_{j^{\prime}}$ path and $x \neq s_{j}$, representing the $s_{j}-t_{j^{\prime}}$ path as $\left(s_{j}, \ldots, x^{\prime}, x, \ldots, t_{j^{\prime}}\right)$ where x^{\prime} is the immediate predecessor of x, it suffices to divide the $s_{j}-t_{j^{\prime}}$ path into two path segments $\left(s_{j}, \ldots, x^{\prime}\right)$ and $\left(x, \ldots, t_{j^{\prime}}\right)$ and then redefine $\left(s_{j}, \ldots, x^{\prime}\right)$ as a new s_{j}-path and $\left(s_{a}, \ldots, u, x, \ldots, t_{j^{\prime}}\right)$ as a new s_{a}-path. Secondly, suppose $T_{i} \subseteq S_{i}$. There exists a Hamiltonian cycle C in $G_{i}-\left(F_{i} \cup T_{i}\right)$, from which we can extract a Hamiltonian path of the graph that runs from s_{1} to some vertex u. The Hamiltonian path and $\left|T_{i}\right|$ one-vertex paths together form a generalized ($k+1$)-DPC joining S_{i} and $T_{i} \cup\{u\}$. We can also extract a Hamiltonian $s_{1}-u^{\prime}$ path from C for some $u^{\prime} \neq u$ by traversing C in reverse order, meaning there is a generalized $(k+1)$-DPC joining S_{i} and $T_{i} \cup\left\{u^{\prime}\right\}$.

For the proof of (b), let $k^{\prime}=k+2$. Firstly, suppose $T_{i} \nsubseteq S_{i}$. Then, there exists a generalized k-DPC joining $S_{i} \backslash\left\{s_{1}, s_{2}\right\}$ and T_{i} in $G_{i}-F_{i}$. So, we can build a generalized $(k+2)$-DPC joining S_{i} and $T_{i} \cup\{u, v\}$ for some vertices u and v by dividing each of the paths in the DPC that passes through s_{1} and/or s_{2} into path segments, similar to the proof of (a). Let $s_{a}-u$ and $s_{b}-v$ paths denote the paths in the generalized $(k+2)$-DPC that run to u and v, respectively. If there is a neighbor of u on the $s_{a}-u$ path different from the immediate predecessor of u, or if there is a neighbor of u on the s_{j}-path, $j \neq a$, different from s_{j}, we can build a generalized $(k+2)$-DPC joining S_{i} and $T_{i} \cup\left\{u^{\prime}, v\right\}$ for some vertex u^{\prime} in the same manner as the proof of (a). Also, we can build a required ($k+2$)-DPC joining S_{i} and $T_{i} \cup\left\{u, v^{\prime}\right\}$ for some v^{\prime} in the same way if there is a neighbor of v on the $s_{b}-v$ path different from the immediate predecessor of v, or if there is a neighbor of v on the s_{j}-path, $j \neq b$, different from s_{j}. It remains to consider the case when the sets of neighbors of u and v in
$G_{i}-F_{i}$ are $\left(S_{i} \backslash\left\{s_{a}\right\}\right) \cup\{x\}$ and $\left(S_{i} \backslash\left\{s_{b}\right\}\right) \cup\{y\}$, where x and y respectively are the immediate predecessors of u and v, and F_{i} consists of common neighbors of u and v and possibly an extra edge (u, v). It suffices to merge the $s_{a}-u$ and $s_{b}-v$ paths into a cycle through the edges $\left(u, s_{b}\right)$ and $\left(v, s_{a}\right)$, and then extract two paths, $s_{a}-u^{\prime}$ and $s_{b}-v^{\prime}$ paths, from the cycle for some $\left\{u^{\prime}, v^{\prime}\right\}$ different from $\{u, v\}$. This is possible because the cycle contains five or more vertices, i.e., $x \neq s_{a}$ or $y \neq s_{b}$. (Suppose $x=s_{a}$ and $y=s_{b}$ for a contradiction. If $(u, v) \notin F_{i}$, then the neighbor sets of u and v in G_{i} are both equal to $S_{i} \cup F_{i}$, meaning u and v have $2 m-2 \geq 4$ common neighbors, which contradicts Lemma Lemma 5(e). If $(u, v) \in F_{i}$, then u and v have $2 m-3 \geq 3$ common neighbors, which also contradicts Lemma 6) Secondly, suppose $T_{i} \subseteq S_{i}$. There is a Hamiltonian cycle C in $G_{i}-\left(F_{i} \cup T_{i}\right)$, which passes through both s_{1} and s_{2}. Similar to the proof of (a), we can extract $s_{1}-u$ and $s_{2}-v$ paths that cover all vertices of C for some vertices u, v. The two paths and $\left|T_{i}\right|$ one-vertex paths together form a generalized $(k+2)$-DPC joining S_{i} and $T_{i} \cup\{u, v\}$. Also, the $s_{1}-u^{\prime}$ and $s_{2}-v^{\prime}$ paths extracted from C for some $\left\{u^{\prime}, v^{\prime}\right\}$ different from $\{u, v\}$ can be used to build a generalized $(k+2)$-DPC joining S_{i} and $T_{i} \cup\left\{u^{\prime}, v^{\prime}\right\}$. Note that cycle C has a length of at least $\left|V\left(G_{i}\right)\right|-\left(\left|F_{i}\right|+k\right) \geq 3^{m-1}-(2 m-4) \geq 7$ for $m \geq 3$; thus, $\left\{u^{\prime}, v^{\prime}\right\}$ exists. This completes the entire proof.

III. CHAIN OF TORUS-LIKE GRAPHS

Let G be an m-dimensional torus-like graph built from d components G_{0}, \ldots, G_{d-1}, where each G_{i} is an ($m-1$)-dimensional torus-like graph. The subgraph of G in which consecutive components, say G_{0}, \ldots, G_{r}, are connected by the edges between G_{i} and G_{i+1} for $i \in\{0, \ldots$, $r-1\}$ forms a chain of torus-like graphs, and will be denoted by $G_{0} \oplus \cdots \oplus G_{r}$ or simply by $G_{0, r}$. The chain $G_{0} \oplus \cdots \oplus G_{r}$ is obtained from G by removing components G_{r+1}, \ldots, G_{d-1} if $r \in\{0, \ldots, d-2\}$, or by removing all edges connecting G_{d-1} and G_{0} if $r=d-1$. The Hamiltonian properties of a chain of torus-like graphs were studied in [12], as shown below.

Lemma 9: (see [12]) Let $G_{i}, i \in\{0, \ldots, r\}$, be an ($m-1$)-dimensional torus-like graph of the same order, $m \geq 3$, such that G_{i} is $(2 m-5)$-fault Hamiltonian-connected, ($2 m-4$)-fault Hamiltonian, and unpaired 2-disjoint path coverable. Then, the graph H defined as $G_{0} \oplus \cdots \oplus G_{r}, r \geq 1$, is $(2 m-4)$-fault Hamiltonian-connected and $(2 m-3)$-fault Hamiltonian.

In this section, we show that chain $H:=G_{0} \oplus \cdots \oplus G_{r}$, $r \geq 1$, has a good disjoint-path-cover property if every component G_{i} has. Let $S=\left\{s_{1}, \ldots, s_{k}\right\}$ and $T=\left\{t_{1}, \ldots, t_{k}\right\}$ be the source and sink sets given in chain H, respectively. We denote by S_{i} and T_{i} the sets of sources and sinks contained in G_{i}, respectively, that is, $S_{i}=S \cap V\left(G_{i}\right)$ and $T_{i}=T \cap V\left(G_{i}\right)$; $S_{i, j}$ and $T_{i, j}$ denote the source and sink sets contained in $G_{i, j}$. Let $k_{i}=\min \left\{\left|S_{i}\right|,\left|T_{i}\right|\right\}$ and $k_{i, j}=\min \left\{\left|S_{i, j}\right|,\left|T_{i, j}\right|\right\}$. In addition, F denotes a set of faults, faulty vertices and/or edges, so that $F \subseteq V(G) \cup E(G)$. Let F_{i} and $F_{i, j}$ denote the fault sets of G_{i} and $G_{i, j}$, respectively. Also, let $f=|F|$,
$f_{i}=\left|F_{i}\right|$ and $f_{i, j}=\left|F_{i, j}\right|$. We assume w.l.o.g. that

$$
\begin{align*}
k_{0} & >k_{r}, \\
\text { or } k_{0} & =k_{r} \text { and } f_{0}>f_{r}, \\
\text { or } k_{0} & =k_{r} \text { and } f_{0}=f_{r} \text { and }\left|S_{0} \cup T_{0}\right| \geq\left|S_{r} \cup T_{r}\right| . \tag{1}
\end{align*}
$$

The source and sink sets are interchangeable, so we can further assume

$$
\begin{equation*}
\left|S_{0}\right| \geq\left|T_{0}\right| . \tag{2}
\end{equation*}
$$

Note that chain H is composed of a subchain H^{\prime} defined as $G_{0} \oplus \cdots \oplus G_{r-1}$, possibly G_{0} if $r=1$, and a single component G_{r}. Thus, we have $S=S_{0, r-1} \cup S_{r}, T=$ $T_{0, r-1} \cup T_{r}$, and $k_{0, r-1}+k_{r}+k_{r-1, r}^{\prime}=k$, where $k_{r-1, r}^{\prime}=$ $\max \left\{\left|S_{0, r-1}\right|,\left|T_{0, r-1}\right|\right\}-k_{0, r-1}=\max \left\{\left|S_{r}\right|,\left|T_{r}\right|\right\}-k_{r}$. In addition, the fault set of H is $F=F_{0, r-1} \cup F_{r} \cup F_{r-1, r}^{\prime}$, where $F_{i, i+1}^{\prime}$ denotes the set of edge faults bridging G_{i} and G_{i+1}.

Theorem 1: Let $G_{i}, i \in\{0, \ldots, r\}$, be an $(m-1)$ dimensional torus-like graph of the same order, $m \geq 3$, such that G_{i} is f-fault unpaired k-disjoint path coverable for any f and $k \geq 2$ subject to $f+k \leq 2 m-4$ and moreover, G_{i} is ($2 m-5$)-fault Hamiltonian-connected and ($2 m-4$)-fault Hamiltonian. Suppose we are given disjoint sets S and T of sources and sinks, and a fault set F in chain H defined as $G_{0} \oplus \cdots \oplus G_{r}, r \geq 1$, such that $k \geq 2$ and $f+k \leq 2 m-3$. Then, there exists an unpaired k-DPC joining S and T in $H-F$ except for the case when $k=2 m-3, S \subseteq V\left(G_{0}\right)$ and $T \subseteq V\left(G_{r}\right)$. For the exceptional configuration, there exist vertex subsets $\left\{u_{1}, u_{2}\right\}$ of G_{0} and $\left\{v_{1}, v_{2}\right\}$ of G_{r} such that a generalized ($2 m-2$)-DPC joining $S \cup\left\{v_{j}\right\}$ and $T \cup\left\{u_{i}\right\}$ exists for every pair $i, j \in\{1,2\}$.

Proof: An unpaired k-DPC with respect to fault set F can be obtained from an unpaired k-DPC with respect to a virtual fault set $F \cup F^{\prime}$, where F^{\prime} is a set of arbitrary $(2 m-3)-(f+k)$ fault-free edges. Consequently, we can assume that

$$
\begin{equation*}
f+k=2 m-3 . \tag{3}
\end{equation*}
$$

The proof proceeds by induction on r. Suppose $r=1$ for the base step, where $H=G_{0} \oplus G_{1}, H^{\prime}=G_{0}, k=k_{0}+k_{1}+k_{0,1}^{\prime}$, $\left|S_{0}\right| \geq\left|T_{0}\right|$, and $\left|S_{1}\right| \leq\left|T_{1}\right|$. Cases 1a, 1b, and 1c below deal with the base step of $r=1$; the inductive step of $r \geq 2$ is addressed later in Cases 2a and 2b.

Case 1a: $k_{1} \geq 1$ or $f_{0} \leq f-1(r=1)$. First, we introduce a basic procedure for building an unpaired k-DPC in this case.
Procedure Find-UDPC-A $\left(S, T, F, G_{0} \oplus G_{1}\right)$
$/ * k_{1} \geq 1$ or $f_{0} \leq f-1$. See Figure 3. */
1: Pick up $k_{0,1}^{\prime}$ free edges between G_{0} and G_{1}. Let X_{i} denote the set of endvertices of the free edges in $G_{i}, i \in\{0,1\}$.
2: Build an unpaired ($k_{0}+k_{0,1}^{\prime}$)-DPC joining S_{0} and $T_{0} \cup$ X_{0} in $G_{0}-F_{0}$.
3: Case when $k_{1}+k_{0,1}^{\prime} \geq 1$:
a: Build an unpaired ($k_{1}+k_{0,1}^{\prime}$)-DPC joining $S_{1} \cup X_{1}$ and T_{1} in $G_{1}-F_{1}$.
b: Merge the two DPCs through the $k_{0,1}^{\prime}$ free edges.

(a) Case when $k_{1}+k_{0}^{\prime \prime}{ }_{1} \geq 1$.

(b) Case when $k_{1}+k_{0}^{\prime}{ }_{1}=0$.

FIGURE 3. Illustrations of procedure Find-UDPC-A.

4: Case when $k_{1}+k_{0,1}^{\prime}=0$:
a: Pick up an edge (x, y) on a path in the DPC of G_{0} such that $x^{+},\left(x, x^{+}\right), y^{+}$, and $\left(y, y^{+}\right)$are all faultfree.
b: Replace the edge (x, y) with a Hamiltonian $x^{+}-y^{+}$ path of $G_{1}-F_{1}$.

Claim 1: When $k_{1} \geq 1$ or $f_{0} \leq f-1$, Procedure Find-UDPC-A builds an unpaired k-DPC in $G_{0} \oplus G_{1}-F$.

Proof. The $k_{0,1}^{\prime}$ free edges of Step 1 exist, because there are $\left|V\left(G_{0}\right)\right|$ candidate edges whereas at most $f+2 k$ of them could be blocked (by f faults and $2 k$ terminals), for which $\left|V\left(G_{0}\right)\right|-$ $(f+2 k) \geq 3^{m-1}-(f+k)-k \geq 3^{m-1}-(2 m-3)-(2 m-3) \geq$ $2 m-3 \geq k \geq k_{0,1}^{\prime}$ for $m \geq 3$. The unpaired ($k_{0}+k_{0,1}^{\prime}$)-DPC of Step 2 exists by the hypothesis of the theorem, because $f_{0}+\left(k_{0}+k_{0,1}^{\prime}\right)=f_{0}+\left(k-k_{1}\right) \leq f+k-1=2 m-4$. Also, the unpaired ($k_{1}+k_{0,1}^{\prime}$)-DPC of Step 3 exists because $f_{1}+\left(k_{1}+k_{0,1}^{\prime}\right)=f_{1}+\left(k-k_{0}\right) \leq f+k-1=2 m-4$. Finally, the Hamiltonian path of Step 4 exists because $f_{1} \leq$ $f=2 m-3-k \leq 2 m-5$. Thus, this claim is proven.

Case 1b: $k_{1}=0, f_{0}=f$, and $k_{0} \geq 1$ or $f_{0} \geq 1(r=1)$. There are two basic procedures in this case, Find-UDPC-B and Find-UDPC-C, depending on whether $k_{0}=k$ or not.
Procedure Find-UDPC-B $\left(S, T, F, G_{0} \oplus G_{1}\right)$
$/ * k_{1}=0, f_{0}=f$, and $k_{0}=k$. See Figure 4. */
1: Build an unpaired ($k_{0}-1$)-DPC joining $S_{0} \backslash\left\{s_{1}\right\}$ and $T_{0} \backslash\left\{t_{1}\right\}$ in $G_{0}-F_{0}$, where s_{1} and t_{1} are regarded as nonterminals temporarily.
2: Case when there exists a path P_{i} in the DPC that passes through both s_{1} and t_{1}, say $P_{i}=\left\langle s_{i}, P_{x}, x, P_{1}, y, P_{y}, t_{\sigma_{i}}\right\rangle$ for some $s_{1}-t_{1}$ path P_{1} :
a: Divide P_{i} into three path segments $\left\langle s_{i}, P_{x}, x\right\rangle, P_{1}$, $\left\langle y, P_{y}, t_{\sigma_{i}}\right\rangle$.
b: Combine $\left\langle s_{i}, P_{x}, x\right\rangle$ with $\left\langle y, P_{y}, t_{\sigma_{i}}\right\rangle$ through a Hamiltonian $x^{+}-y^{+}$path of G_{1}.

(a) Case when there is a single DPC path that passes through s_{1} and t_{1}.

(b) Case when two DPC paths collectively pass through s_{1} and t_{1}.

FIGURE 4. Illustrations of procedure Find-UDPC-B.

3: Case when P_{i} and $P_{j}, j \neq i$, in the DPC pass through s_{1} and t_{1}, respectively, say $P_{i}=\left\langle s_{i}, P_{x}, x, s_{1}, P_{a}, t_{\sigma_{i}}\right\rangle$ and $P_{j}=\left\langle s_{j}, P_{b}, t_{1}, y, P_{y}, t_{\sigma_{j}}\right\rangle:$
a: Divide P_{i} into two path segments $\left\langle s_{i}, P_{x}, x\right\rangle$ and $\left\langle s_{1}, P_{a}, t_{\sigma_{i}}\right\rangle$. Also, divide P_{j} into $\left\langle s_{j}, P_{b}, t_{1}\right\rangle$ and $\left\langle y, P_{y}, t_{\sigma_{j}}\right\rangle$.
b: Combine $\left\langle s_{i}, P_{x}, x\right\rangle$ with $\left\langle y, P_{y}, t_{\sigma_{j}}\right\rangle$ through a Hamiltonian $x^{+}-y^{+}$path of G_{1}.
Claim 2: When $k_{1}=0, f_{0}=f$, and $k_{0}=k$, Procedure Find-UDPC-B builds an unpaired k-DPC in $G_{0} \oplus G_{1}-F$.

Proof. The unpaired $\left(k_{0}-1\right)$-DPC of Step 1 exists by the hypothesis of the theorem, because $f_{0}+\left(k_{0}-1\right)=f+k-1=$ $2 m-4$. The Hamiltonian paths of Steps 2(b) and 3(b) also exist because $f_{1}=0$, proving this claim.

In the remainder of Case 1 b , we assume $k_{0}<k$, implying $k_{0,1}^{\prime}=k-k_{0} \geq 1$.
Procedure Find-UDPC-C $\left(S, T, F, G_{0} \oplus G_{1}\right)$
$/^{*} k_{1}=0, f_{0}=f$, and $k_{0}<k$. See Figure 5. */
1: Pick up $k_{0,1}^{\prime}-1$ free edges between G_{0} and G_{1}. Let X_{i} be the set of endvertices of the free edges in $G_{i}, i \in\{0,1\}$.
: Build a generalized k-DPC in $G_{0}-F_{0}$ joining S_{0} and $T_{0} \cup X_{0} \cup\{u\}$ for some vertex $u \in V\left(G_{0}\right)$ such that u^{+}is not a sink if $k_{0,1}^{\prime}=1$.
Build a generalized $k_{0,1}^{\prime}-$ DPC joining $X_{1} \cup\left\{u^{+}\right\}$and T_{1} in G_{1}.
4: Merge the two DPCs through the free edges and edge $\left(u, u^{+}\right)$.
Claim 3: When $k_{1}=0, f_{0}=f$, and $k_{0}<k$, Procedure Find-UDPC-C builds an unpaired k-DPC in $G_{0} \oplus G_{1}-F$.

Proof. The existence of $k_{0,1}^{\prime}-1$ free edges in Step 1 can be shown in the same way as the proof of Claim 1. The generalized k-DPC of Step 2 exists by Lemma 8, because $f_{0}+(k-1)=f+k-1=2 m-4$. Also, the generalized DPC of Step 3 exists by Lemma 7,

FIGURE 5. Illustrations of procedure Find-UDPC-C.
because $0+k_{0,1}^{\prime}=(f+k)-\left(f_{0}+k_{0}\right) \leq f+k-1=2 m-4$. Note that if $k_{0,1}^{\prime}=1$, the generalized $k_{0,1}^{\prime}-$ DPC of Step 3 is a Hamiltonian path of G_{1} that joins u^{+}and the unique sink in G_{1}. Thus, this claim is proven.

Case 1c: $k_{0,1}^{\prime}=k$ and $f=0(r=1)$. Notice that this is the exceptional configuration of the theorem, where $k=2 m-3$, $S \subseteq V\left(G_{0}\right)$ and $T \subseteq V\left(G_{r}\right)$. A generalized ($2 m-2$)-DPC joining $S \cup\left\{v_{j}\right\}$ and $T \cup\left\{u_{i}\right\}$ can be built as follows: (i) Pick up $2 m-4$ free edges bridging G_{0} and G_{1}. Let X_{i} denote the set of endvertices of the free edges in $G_{i}, i \in\{0,1\}$. (ii) There exists a subset $\left\{u_{1}, u_{2}\right\}$ of vertices in G_{0} such that G_{0} has a generalized $(2 m-3)$-DPC joining S and $X_{0} \cup\left\{u_{i}\right\}$ for each u_{i} by Lemma 8(a). (iii) Also, there exists a subset $\left\{v_{1}, v_{2}\right\}$ of vertices in G_{1} such that G_{1} has a generalized $(2 m-3)$-DPC joining $X_{1} \cup\left\{v_{j}\right\}$ and T for each v_{j} again by Lemma 8(a). (iv) It suffices to combine the DPC of G_{0} joining S and $X_{0} \cup\left\{u_{i}\right\}$ with the DPC of G_{1} joining $X_{1} \cup\left\{v_{j}\right\}$ and T through the free edges.

Hereafter, suppose $r \geq 2$ for the inductive step, where H^{\prime}, defined as $G_{0} \oplus \cdots \oplus G_{r-1}$, is made of two or more components. Chain H^{\prime} always contains a terminal by the assumption (1), whereas G_{r} may not contain a terminal.

Case 2a: G_{r} contains no terminals ($r \geq 2$). The induction hypothesis can be applied to chain H^{\prime} to build an unpaired k-DPC joining S and T in $H^{\prime}-F_{0, r-1}$ unless S and T form the exceptional configuration of the theorem.
Procedure Find-UDPC-D $\left(S, T, F, G_{0} \oplus \cdots \oplus G_{r}\right)$ /* $G_{r}, r \geq 2$, contains no terminals. See Figure 6. */
1: Build an unpaired k-DPC joining S and T in $H^{\prime}-F_{0, r-1}$.
2: Pick up an edge $(x, y) \in E\left(G_{r-1}\right)$ on a path in the k-DPC such that $x^{+},\left(x, x^{+}\right), y^{+},\left(y, y^{+}\right)$are all fault-free.
3: Replace the edge (x, y) with a Hamiltonian $x^{+}-y^{+}$path of $G_{r}-F_{r}$.
Claim 4: When $G_{r}, r \geq 2$, contains no terminals, Procedure Find-UDPC-D builds an unpaired k-DPC in $H-F$ unless $k=2 m-3, S \subseteq V\left(G_{0}\right)$ and $T \subseteq V\left(G_{r-1}\right)$.

FIGURE 6. Illustrations of procedure Find-UDPC-D.

Proof. The unpaired k-DPC of Step 1 exists, by the induction hypothesis, unless $k=2 m-3, S \subseteq V\left(G_{0}\right)$ and $T \subseteq$ $V\left(G_{r-1}\right)$. The Hamiltonian path of Step 3 exists because $f_{r} \leq$ $f=(2 m-3)-k \leq 2 m-5$. Therefore, it suffices to show that the edge (x, y) of Step 2 exists. The paths in the k-DPC collectively pass through at least $\left|V\left(G_{r-1}\right) \backslash F_{r-1}\right|-2 k \geq 3^{m-1}-$ $f_{r-1}-2 k$ vertices of G_{r-1} as intermediate vertices (excluding the terminals). So, there are at least $\left[\frac{1}{2}\left(3^{m-1}-f_{r-1}-2 k\right)\right]$ candidate edges for (x, y), whereas at most $2\left(f_{r}+f_{r-1, r}^{\prime}\right)$ of them could be blocked (two for each fault in $\left.F_{r} \cup F_{r-1, r}^{\prime}\right)$, for which $\left[\frac{1}{2}\left(3^{m-1}-f_{r-1}-2 k\right)\right]$ -$2\left(f_{r}+f_{r-1, r}^{\prime}\right) \geq\left[\frac{1}{2}\left(3^{m-1}-2(f+k)-2 f\right)\right] \geq$ $\left[\frac{1}{2}\left(3^{m-1}-2(2 m-3)-2(2 m-5)\right)\right] \geq 1$ for $m \geq 3$. Thus, the edge (x, y) exists, thereby proving the claim.

We are to build an unpaired k-DPC for the remaining case where $k=2 m-3, S \subseteq V\left(G_{0}\right)$ and $T \subseteq V\left(G_{r-1}\right)$, utilizing a generalized $(2 m-3)$-DPC of a component shown in Lemma 8(a). Note that $f=0$ by the assumption (3). If we pick up $2 m-4$ edges $\left\{\left(y_{i}, y_{i}^{+}\right): i=1, \ldots, 2 m-4\right\}$ bridging G_{0} and G_{1} and build a generalized $(2 m-3)$-DPC joining S and $\left\{y_{1}, \ldots, y_{2 m-3}\right\}$ for some vertex $y_{2 m-3} \in V\left(G_{0}\right)$, then we can extend the $2 m-3$ paths, each of which runs from a source, to vertices in G_{1} through the edges $\left(y_{i}, y_{i}^{+}\right)$, $i \in\{1, \ldots, 2 m-3\}$. Repeating this process $r-1$ times, we can extend the $2 m-3$ paths to the vertices in G_{r-1}. Let the paths be $s_{1}-s_{1}^{\prime}, \ldots, s_{2 m-3}-s_{2 m-3}^{\prime}$ paths for some $S^{\prime}:=$ $\left\{s_{1}^{\prime}, \ldots, s_{2 m-3}^{\prime}\right\} \subseteq V\left(G_{r-1}\right)$. We can assume $\left|S^{\prime} \cap T\right| \leq 1$, because when picking up $2 m-4$ edges between G_{r-2} and G_{r-1}, we only need to select those whose endvertices are different from the sinks. It remains to build a generalized $(2 m-3)$-DPC joining S^{\prime} and T in $G_{r-1} \oplus G_{r}$. Procedure Find-UDPC-B can be recycled for our purpose, except that G_{r-1} and G_{r} respectively are used instead of G_{0} and G_{1}, and that if $\left|S^{\prime} \cap T\right|=1$, then $S^{\prime} \cap T$ is regarded as a fault set temporarily and $S^{\prime} \backslash\left(S^{\prime} \cap T\right)$ and $T \backslash\left(S^{\prime} \cap T\right)$ are used instead of S^{\prime} and T, respectively.

Case 2b: G_{r} contains a terminal ($r \geq 2$). In this case, G_{0} contains a fault, or contains a terminal, even a source by the assumptions (1) and (2). That is, $f_{0} \geq 1$ or $\left|S_{0}\right| \geq 1$. Recall that $S=S_{0, r-1} \cup S_{r}$ and $T=T_{0, r-1} \cup T_{r}$. Furthermore, $k=k_{0, r-1}+k_{r}+k_{r-1, r}^{\prime}$, where $k_{r-1, r}^{\prime}$ is equal to the

FIGURE 7. Illustrations of procedure Find-UDPC-E.
difference between $\left|S_{0, r-1}\right|$ and $\left|T_{0, r-1}\right|$ and also equal to the difference between $\left|S_{r}\right|$ and $\left|T_{r}\right|$. Note that $\left|T_{r}\right| \geq\left|S_{r}\right|$ does not always hold.
Procedure Find-UDPC-E $\left(S, T, F, G_{0} \oplus \cdots \oplus G_{r}\right)$
$/ * G_{r}, r \geq 2$, contains a terminal. See Figure 7. */
1: Pick up $k_{r-1, r}^{\prime}$ free edges between G_{r-1} and G_{r}. The sets of endvertices of the free edges in G_{r-1} and G_{r}, respectively, are denoted by X_{r-1} and X_{r}.
2: Build an unpaired $\left(k_{0, r-1}+k_{r-1, r}^{\prime}\right)$-DPC in $H^{\prime}-F_{0, r-1}$ joining $S_{0, r-1}$ and $T_{0, r-1} \cup X_{r-1}$ if $\left|S_{0, r-1}\right| \geq\left|T_{0, r-1}\right|$; otherwise, build an unpaired ($k_{0, r-1}+k_{r-1, r}^{\prime}$)-DPC joining $S_{0, r-1} \cup X_{r-1}$ and $T_{0, r-1}$.
3: Build an unpaired $\left(k_{r}+k_{r-1, r}^{\prime}\right)$-DPC in $G_{r}-F_{r}$ joining S_{r} and $T_{r} \cup X_{r}$ if $\left|S_{r}\right| \geq\left|T_{r}\right|$; otherwise, build an unpaired $\left(k_{r}+k_{r-1, r}^{\prime}\right)$-DPC joining $S_{r} \cup X_{r}$ and T_{r}.
4: Combine the two DPCs through the free edges.
Claim 5: When $G_{r}, r \geq 2$, contains a terminal, Procedure Find-UDPC-E builds an unpaired k-DPC in $H-F$ unless $k=2 m-3, S \subseteq V\left(G_{0}\right)$ and $T \subseteq V\left(G_{r-1}\right) \cup V\left(G_{r}\right)$.

Proof. The $k_{r-1, r}^{\prime}$ free edges of Step 1 exist for the same reason as the free edges exist in Step 1 of Procedure Find-UDPC-A. The unpaired $\left(k_{0, r-1}+k_{r-1, r}^{\prime}\right)$-DPC of Step 2 exists unless $k=2 m-3, S \subseteq V\left(G_{0}\right)$ and $T \subseteq V\left(G_{r-1}\right) \cup V\left(G_{r}\right)$, by the induction hypothesis. In addition, the unpaired $\left(k_{r}+\right.$ $\left.k_{r-1, r}^{\prime}\right)$-DPC of Step 3 exists because $f_{r}+\left(k_{r}+k_{r-1, r}^{\prime}\right) \leq$ $f+k-1=2 m-4$. (Supposing $f_{r}+\left(k_{r}+k_{r-1, r}^{\prime}\right) \geq f+k$, i.e., $f_{r}=f$ and $k_{r}+k_{r-1, r}^{\prime}=k$, leads to $k_{0}=k_{r}=0$ and $k_{r-1, r}^{\prime}=k$ by the assumption (1), meaning $f_{0}=f_{r}=0$ and $f=0$. It follows from the assumptions (1), (2) and (3) that $k=2 m-3, S \subseteq V\left(G_{0}\right)$ and $T \subseteq V\left(G_{r}\right)$, which is the exceptional case of this claim.) Thus, this claim is proven. \square

It remains to consider the exceptional case of Claim 5, where $k=2 m-3, S \subseteq V\left(G_{0}\right)$, and $T \subseteq V\left(G_{r-1}\right) \cup V\left(G_{r}\right)$. Firstly, suppose $T \nsubseteq V\left(G_{r}\right)$. In the same way as the proof of

Case 2a for the case when $k=2 m-3, S \subseteq V\left(G_{0}\right)$ and $T \subseteq$ $V\left(G_{r-1}\right)$, we can build $2 m-3$ paths each of which runs from a source to a vertex in G_{r-1}, denoted by $s_{1}-s_{1}^{\prime}, \ldots, s_{2 m-3-}$ $s_{2 m-3}^{\prime}$ paths for some set $S^{\prime}:=\left\{s_{1}^{\prime}, \ldots, s_{2 m-3}^{\prime}\right\} \subseteq V\left(G_{r-1}\right)$ such that $\left|S^{\prime} \cap T_{r-1}\right| \leq 1$. It is sufficient to build a generalized ($2 m-3$)-DPC joining S^{\prime} and T in $G_{r-1} \oplus G_{r}$ by recycling Procedure Find-UDPC-C for the fault set $F^{\prime}:=S^{\prime} \cap T_{r-1}$ and terminal sets $S^{\prime} \backslash F^{\prime}$ and $T \backslash F^{\prime}$.

Finally, suppose $T \subseteq V\left(G_{r}\right)$, that is, $k=2 m-3$, $S \subseteq V\left(G_{0}\right)$ and $T \subseteq V\left(G_{r}\right)$, which forms the exceptional configuration of this theorem. Similar to Case 1c, a required DPC can be built as follows: (i) Pick up $2 m-4$ free edges bridging G_{0} and G_{1}. Let X_{i} denote the set of endvertices of the free edges in $G_{i}, i \in\{0,1\}$. (ii) Pick up $2 m-4$ free edges bridging G_{r-1} and G_{r}. Let Y_{i} denote the set of endvertices of the free edges in $G_{i}, i \in\{r-1, r\}$. It can be assumed that $X_{1} \neq Y_{r-1}$ if $r=2$. (iii) Build a generalized ($2 m-4$)-DPC in $G_{1, r-1}$ joining X_{1} and Y_{r-1}, which exists by Lemma 7 (if $r=2$) and by the induction hypothesis (if $r \geq 3$). (iv) Build a generalized $(2 m-3)$-DPC in G_{0} joining S and $X_{0} \cup\left\{u_{i}\right\}$ for each u_{i} in some subset $\left\{u_{1}, u_{2}\right\}$. (v) Build a generalized $(2 m-3)$-DPC in G_{r} joining $X_{1} \cup\left\{v_{j}\right\}$ and T for each v_{j} in some subset $\left\{v_{1}, v_{2}\right\}$. (vi) Merge the three DPCs, the DPC of $G_{1, r-1}$, the DPC of G_{0}, and the DPC of G_{r}, through the free edges. This completes the entire proof of Theorem 1.

Corollary 1: Let H be a chain $G_{0} \oplus \cdots \oplus G_{r}$ of $(m-1)$ dimensional torus-like graphs, where $m \geq 3$ and $r \geq 1$, such that each G_{i} is f-fault unpaired k-disjoint path coverable for any f and $k \geq 2$ subject to $f+k \leq 2 m-4$ and moreover, G_{i} is $(2 m-5)$-fault Hamiltonian-connected and $(2 m-4)$-fault Hamiltonian. Given distinct sets S, T of sources and sinks and a fault set F in the chain H such that $k \geq 2$ and $f+k \leq$ $2 m-3$, there exists a generalized $k-D P C$ joining S and T in $H-F$ except for the case when $k=2 m-3, S \subseteq V\left(G_{0}\right)$ and $T \subseteq V\left(G_{r}\right)$.

Proof: For $F^{\prime}=S \cap T$ and $f^{\prime}=\left|F^{\prime}\right|$, a generalized k-DPC joining S and T in $H-F$ can be easily built from an unpaired $\left(k-f^{\prime}\right)$-DPC joining $S \backslash F^{\prime}$ and $T \backslash F^{\prime}$ in $H-\left(F \cup F^{\prime}\right)$.

Remark 1: In the exceptional configuration of Theorem 1 where $k=2 m-3, S \subseteq V\left(G_{0}\right)$ and $T \subseteq V\left(G_{r}\right)$, it is not known whether or not an unpaired $(2 m-3)$-DPC joining S and T exists in H.

IV. UNPAIRED DISJOINT PATH COVERS IN TORUS-LIKE GRAPHS

Let G be an m-dimensional nonbipartite torus-like graph, $m \geq 3$, composed of d components G_{0}, \ldots, G_{d-1}, where each component G_{i} is an $(m-1)$-dimensional torus-like graph. In this section, we demonstrate that the torus-like graph G has a good disjoint-path-cover property if every component G_{i} has good Hamiltonian and disjoint-path-cover properties. Specifically, we provide a constructive proof of the theorem presented below, according to which we can design an algorithm for building an unpaired k-disjoint path cover in a torus-like graph with faulty elements.

Theorem 2: Let G be an m-dimensional nonbipartite toruslike graph, $m \geq 3$, composed of d components G_{0}, \ldots, G_{d-1} such that each G_{i} is f-fault unpaired k-disjoint path coverable for any f and $k \geq 2$ subject to $f+k \leq 2 m-4$ and moreover, G_{i} is $(2 m-5)$-fault Hamiltonian-connected and $(2 m-4)$ fault Hamiltonian. Then, G is f-fault unpaired k-disjoint path coverable for any f and $k \geq 2$ subject to $f+k \leq 2 m-2$.

Proof: For the proof, assume that we are given disjoint terminal sets $S=\left\{s_{1}, \ldots, s_{k}\right\}$ and $T=\left\{t_{1}, \ldots, t_{k}\right\}$ in G, along with a fault set F such that

$$
\begin{equation*}
f+k=2 m-2 \tag{4}
\end{equation*}
$$

If the fault set F contains an inter-component edge, say an edge bridging G_{d-1} and G_{0}, then our problem of building an unpaired k-DPC joining S and T in $G-F$ is reduced to a problem of building an unpaired k-DPC joining S and T in the chain $G_{0} \oplus \cdots \oplus G_{d-1}$, the spanning subgraph of G with all the edges between G_{0} and G_{d-1} being deleted. The required k-DPC in the chain exists, by Theorem 1 , unless $k=2 m-3$, the sources are all contained in one of two components G_{0} and G_{d-1} and the sinks are all contained in the other component, because the chain contains $f-1$ or less faulty elements. For the exceptional case where $k=2 m-3$, $S \subseteq V\left(G_{0}\right)$ and $T \subseteq V\left(G_{d-1}\right)$, we first pick up $2 m-4$ faultfree edges between G_{0} and G_{d-1}, and let X_{i} denote the set of endvertices of the picked edges in G_{i}, where $i \in\{0, d-1\}$. Then, there is a generalized $(2 m-3)$-DPC in G_{0} joining S and $X_{0} \cup\{u\}$ for some vertex u by Lemma 8(a); also, there is a generalized $(2 m-3)$-DPC in G_{d-1} joining $X_{d-1} \cup\{v\}$ and T for some vertex v with $v^{-} \neq u^{+}$again by Lemma 8(a). It suffices to merge the two DPCs through the $2 m-4$ edges, and then connect u^{+}and v^{-}via a Hamiltonian path of a chain $G_{1, d-2}$, possibly made of a single component.

Hereafter in this proof, we assume that there is no intercomponent edge fault, leading to $f=f_{0}+\cdots+f_{d-1}$. Also, we assume that for each $i \in\{1, \ldots, d-1\}$,

$$
\begin{align*}
f_{0} & >f_{i} \\
\text { or } f_{0} & =f_{i} \text { and } k_{0}>k_{i}, \\
\text { or } f_{0} & =f_{i} \text { and } k_{0}=k_{i} \text { and }\left|S_{0} \cup T_{0}\right| \geq\left|S_{i} \cup T_{i}\right| . \tag{5}
\end{align*}
$$

We can further assume

$$
\begin{equation*}
\left|S_{0}\right| \geq\left|T_{0}\right| \tag{6}
\end{equation*}
$$

because the source and sink sets are interchangeable. There are four cases according to the distribution of faults and terminals.

Case 1: $f_{i}+k_{i}+k_{i}^{\prime} \leq f+k-2$ and $f_{i}+k_{i} \geq 1$ for some $i \in\{0, \ldots, d-1\}$. We first present a basic procedure for building an unpaired k-DPC in G that relies on a generalized $\left(k_{i}+k_{i}^{\prime}\right)$-DPC of G_{i} and a generalized $\left(k-k_{i}\right)$-DPC of $H:=$ $G-G_{i}$. The procedure is applicable in most cases, leaving two exceptional cases that will be dealt with separately. For the sake of simplicity, let us assume $\left|S_{i}\right| \geq\left|T_{i}\right|$; we further assume w.l.o.g. $S-S_{i} \nsubseteq V\left(G_{i+1}\right)$ or $T-T_{i} \nsubseteq V\left(G_{i-1}\right)$ in

FIGURE 8. Illustrations of procedure Find-UDPC-F.
order to block the possibility of the exceptional configuration of Theorem 1 in H.
Procedure Find-UDPC-F (S, T, F, G)
$/^{*} f_{i}+k_{i}+k_{i}^{\prime} \leq f+k-2$ and $f_{i}+k_{i} \geq 1$. See Figure 8. */
1: For a set A of k_{i}^{\prime} sources in G_{i}, let $A_{1}=\left\{s_{j} \in A: s_{j}^{+}\right.$ is a nonterminal and $s_{j}^{+},\left(s_{j}, s_{j}^{+}\right)$are both fault-free $\}$and $A_{2}=A \backslash A_{1}$.
2: Case when $A_{1} \neq S_{i}$, i.e., $k_{i}+\left|A_{2}\right| \geq 1$:
a: Pick up $\left|A_{2}\right|$ free edges between G_{i} and G_{i+1}. Let X_{j} denote the set of endvertices of the free edges in G_{j}, $j \in\{i, i+1\}$, and let $B_{1}=\left\{s_{j}^{+}: s_{j} \in A_{1}\right\}$.
b: Build a generalized $\left(k_{i}+k_{i}^{\prime}\right)$-DPC in $G_{i}-F_{i}$ joining S_{i} and $T_{i} \cup A_{1} \cup X_{i}$.
3: Case when $A_{1}=S_{i}$, i.e., $k_{i}=0$ and $A_{2}=\emptyset$:
a: Pick up a single free edge $\left(x, x^{+}\right)$between G_{i} and G_{i+1}. For a source $s_{1} \in A_{1}$, let $A_{1}^{\prime}=A_{1} \backslash\left\{s_{1}\right\}$ and $B_{1}=\left\{s_{j}^{+}: s_{j} \in A_{1}^{\prime}\right\}$.
b : Build a generalized $\left(k_{i}+k_{i}^{\prime}\right)$-DPC in $G_{i}-F_{i}$ joining S_{i} and $A_{1}^{\prime} \cup X_{i}$.
4: Build an unpaired $\left(k-k_{i}\right)$-DPC in $H-F_{i+1, i-1}$ joining $S_{i+1, i-1} \cup\left(B_{1} \cup X_{i+1}\right)$ and $T_{i+1, i-1}$.
5: Combine the two DPCs through the free edges and $\left\{\left(s_{j}, s_{j}^{+}\right): s_{j}^{+} \in B_{1}\right\}$.
Claim 6: When $f_{i}+k_{i}+k_{i}^{\prime} \leq f+k-2$ and $f_{i}+k_{i} \geq 1$, Procedure Find-UDPC-F builds an unpaired k-DPC in $G-F$ unless (i) $k_{i}+k_{i}^{\prime}=0$ or (ii) $k_{i}=k$.

Proof. Suppose that $k_{i}+k_{i}^{\prime} \geq 1$ and $k_{i}<k$. The $\left|A_{2}\right|$ free edges of Step 2(a) exist because $\left|V\left(G_{i}\right)\right|-\left(f+2 k-\left|A_{2}\right|\right) \geq$ $3^{m-1}-(f+k)-k+\left|A_{2}\right| \geq 3^{m-1}-(2 m-2)-(2 m-2)+\left|A_{2}\right|>$ $\left|A_{2}\right|$ for $m \geq 3$. The free edge of Step 3(a) also exists for a similar reason that $\left|V\left(G_{i}\right)\right|-(f+2 k) \geq 1$. The generalized $\left(k_{i}+k_{i}^{\prime}\right)$-DPCs of Steps 2(b) and 3(b) exist by Lemma 7,
because $f_{i}+\left(k_{i}+k_{i}^{\prime}\right) \leq f+k-2=2 m-4$. Finally, the $\left(k-k_{i}\right)$-DPC of Step 4 exists by Theorem 1, because $f_{i+1, i-1}+\left(k-k_{i}\right)=\left(f-f_{i}\right)+\left(k-k_{i}\right)=f+k-\left(f_{i}+k_{i}\right) \leq f+$ $k-1=2 m-3$. Therefore, the claim is proven.

We now address the exceptional case (i) of Claim 6 where $k_{i}+k_{i}^{\prime}=0$ (and $f_{i} \geq 1$). If $k \geq 3$ or $f_{i}<f$, meaning $f_{i} \leq 2 m-5$, then it suffices to build an unpaired k-DPC joining S and T in $H-F_{i+1, i-1}$, which exists according to Theorem 1, and then replace an edge $(x, y) \in E\left(G_{i+1}\right)$ on a path in the DPC such that $x^{-}, y^{-} \notin F$ with a Hamiltonian $x^{-}-y^{-}$path of $G_{i}-F_{i}$. Now, suppose that $k=2$ and $f_{i}=f$ ($=2 m-4$). If G_{i+1} or G_{i-1}, say G_{i+1}, contains no terminal, we can build a required 2-DPC analogously from an unpaired 2-DPC of $G_{i+2, i-1}$ and a Hamiltonian path of $G_{i, i+1}-F_{i}$. Note that $G_{i, i+1}-F_{i}$ is Hamiltonian-connected by Lemma 9. If G_{i+1} contains a single terminal, say s_{1}, then for some free edge $\left(x, x^{+}\right)$bridging G_{i+1} and G_{i+2}, it suffices to build a Hamiltonian $s_{1}-x$ path in $G_{i, i+1}-F_{i}$ and an unpaired 2-DPC joining $\left\{x^{+}, s_{2}\right\}$ and $\left\{t_{1}, t_{2}\right\}$ in $G_{i+2, i-1}$, and then merge them into a required 2-DPC. Finally, if G_{1} contains two terminals, say s_{1} and s_{2}, then for some edge $(x, y) \in E\left(G_{i+1}\right)$ on a Hamiltonian $s_{1}-s_{2}$ path of $G_{i, i+1}-F_{i}$ such that both x^{+} and y^{+}are nonterminals, it suffices to combine an unpaired 2-DPC of $G_{i+2, i-1}$ with the $s_{1}-x$ and $s_{2}-y$ paths properly. For the exceptional case (ii) of Claim 6 where $k_{i}=k$, it suffices to build an unpaired k-DPC joining S and T in $G_{i}-F_{i}$, which exists because $f_{i}+k=f_{i}+k_{i}+k_{i}^{\prime} \leq f+k-2=2 m-4$, and replace an edge (x, y) on a path in the DPC such that $x^{+}, y^{+} \notin F$ with a Hamiltonian $x^{+}-y^{+}$path of $H-F_{i+1, i-1}$.

Case 2: $f_{0} \leq f-1$. If $f_{0} \leq f-2$, then $f \geq 2$ and $f_{0} \geq 1$ by the assumption (5); hence, the case $f_{0} \leq f-2$ is reduced to Case 1 for $i=0$. Similarly, the case $f_{0}=f-1$ is also reduced to Case 1 for $i=0$ unless $k_{0}+k_{0}^{\prime}=k$. So, it remains to consider the case where $f_{0}=f-1$ and $k_{0}+k_{0}^{\prime}=k$. Let G_{p} be the component other than G_{0} that contains a fault, that is, $f_{p}=1$ and $f_{j}=0$ for all $j \neq 0, p$. If $f_{p} \leq f-2$ or if $f_{p}=f-1$ and $k_{p}+k_{p}^{\prime}<k$, then the remaining case is also reduced to Case 1 for $i=p$. Thus, we further assume that $f_{p}=f-1$ and $k_{p}+k_{p}^{\prime}=k$, meaning $f_{0}=f_{p}=1, f=2, k=$ $2 m-4, S \subseteq V\left(G_{0}\right)$ and $T \subseteq V\left(G_{p}\right)$. Assuming w.l.o.g. $p \neq 1$, it suffices to extract the $s_{j}-x_{j}$ paths for $j \in\{1, \ldots, k\}$ from a Hamiltonian cycle $\left(s_{1}, \ldots, x_{1}, s_{2}, \ldots, x_{2}, \ldots, s_{k}, \ldots, x_{k}\right)$ of $G_{0}-F_{0}$, and then combine them with a unpaired k-DPC joining $\left\{x_{1}^{+}, \ldots, x_{k}^{+}\right\}$and T in $G_{1, d-1}-F_{p}$ through the edges $\left(x_{j}, x_{j}^{+}\right)$for $j \in\{1, \ldots, k\}$.

Case 3: $f_{0}=f \geq 1$, or $f_{0}=f=0$ and $k_{0} \geq 1$. This case is reduced to Case 1 for $i=0$ if $k_{0}+k_{0}^{\prime} \leq k-2$, because $f_{0}=f$ and $f_{0}+k_{0} \geq 1$. Thus, it is sufficient to handle the remaining case where $k_{0}+k_{0}^{\prime} \geq k-1$. Firstly, suppose $k_{0}+k_{0}^{\prime}=k$, meaning $S \subseteq V\left(G_{0}\right)$. If $0 \leq k_{0} \leq k-2$, then assuming w.l.o.g. that not all sinks in $G_{1, d-1}$ belong to G_{d-1}, i.e., $T_{1, d-1} \nsubseteq V\left(G_{d-1}\right)$ to avoid the exceptional configuration of Theorem 1, we can build a required k-DPC in the following manner: (i) Pick up $(k-2)-k_{0}$ free edges between G_{0} and G_{1}. Let X_{i} denote the set of endvertices of the free edges in G_{i} for $i \in\{0,1\}$. (ii) Build a generalized
k-DPC in $G_{0}-F_{0}$ joining S and $T_{0} \cup X_{0} \cup\{u, v\}$ for some vertices $u, v \in V\left(G_{0}\right)$ such that $\left\{u^{+}, v^{+}\right\} \neq T_{1, d-1}$, using Lemma 8(b). (iii) Combine the k-DPC of G_{0} with a generalized $\left(k-k_{0}\right)$-DPC joining $X_{1} \cup\left\{u^{+}, v^{+}\right\}$and $T_{1, d-1}$ in $G_{1, d-1}$. The existence of $(k-2)-k_{0}$ free edges is due to $\left|V\left(G_{0}\right)\right|-(f+2 k) \geq 3^{m-1}-(f+k)-k \geq 3^{m-1}-$ $(2 m-2)-(2 m-2) \geq 2 m-5 \geq(k-2)-k_{0}$ for $m \geq 3$. Note that $(k-2)-k_{0} \leq\left\{\begin{array}{l}(2 m-3-2)-0=2 m-5 \text { if } f_{0} \geq 1, \\ (2 m-2-2)-1=2 m-5 \text { if } k_{0} \geq 1 .\end{array}\right.$

If $k_{0}=k-1$, there is a single sink, say t_{k}, outside G_{0}. Assuming w.l.o.g. G_{1} has no terminals, we first build an unpaired $(k-1)$-DPC in $G_{0} \oplus G_{1}-F_{0}$ joining $S \backslash\left\{s_{1}\right\}$ and T_{0}. By dividing a path in the $(k-1)$-DPC that passes through s_{1} into two path segments, we can build a generalized k-DPC joining S and $T_{0} \cup\{u\}$ for some vertex u. The path in the DPC that runs to u is denoted as the $s_{a}-u$ path. Let u^{\prime} be the neighbor of u in $G_{2, d-1}$. (The neighbor u^{\prime} will be u^{-}if u belongs to $G_{0} ; u^{\prime}$ will be u^{+}if u belongs to G_{1}.) If $u^{\prime} \neq t_{k}$, it suffices to combine the $s_{a}-u$ path with a Hamiltonian $u^{\prime}-t_{k}$ path of $G_{2, d-1}$; if $u^{\prime}=t_{k}$, it suffices to extend the $s_{a}-u$ path to u^{\prime} by one and then replace an edge (x, y) on a path in the generalized k-DPC such that $x, y \neq u$ with a Hamiltonian $x^{\prime}-y^{\prime}$ path of $G_{2, d-1}-\left\{t_{k}\right\}$, where x^{\prime} and y^{\prime} are the neighbors of x and y in $G_{2, d-1}$, respectively.

Similar to the case where $k_{0}=k-1$, we can build a required k-DPC when $k_{0}=k$. However, instead of building an unpaired $(k-1)$-DPC joining $S \backslash\left\{s_{1}\right\}$ and T_{0}, we build an unpaired $(k-1)$-DPC in $G_{0} \oplus G_{1}-F_{0}$ joining $S \backslash\left\{s_{1}\right\}$ and $T \backslash\left\{t_{1}\right\}$, from which we build a generalized $(k+1)$-DPC joining $S \cup\{u\}$ and $T \cup\{v\}$ for some vertices u and v. Let the $s_{a}-v$ path denote the path in the DPC that runs to v, and let the $u-t_{b}$ path denote the path that runs from u. The $s_{a}-v$ and $u-t_{b}$ paths are merged into an $s_{a}-t_{b}$ path; the vertices of $G_{2, d-1}$ are covered by the $s_{a}-t_{b}$ path or some other path in the generalized $(k+1)$-DPC depending on whether the neighbors u^{\prime} and v^{\prime} of u and v in $G_{2, d-1}$ are distinct or not.

Secondly, suppose $k_{0}+k_{0}^{\prime}=k-1$. Let $S_{0}=\left\{s_{1}, \ldots, s_{k-1}\right\}$ and s_{k} belong to $G_{1, d-1}$. Similar to the previous case where $k_{0}+k_{0}^{\prime}=k$, an unpaired k-DPC joining S and T can be built. If $k_{0} \leq k-2$, then assuming w.l.o.g. that not all sinks in $G_{1, d-1}$ belong to G_{d-1}, we build a required k-DPC as described below: (i) Pick up $(k-2)-k_{0}$ free edges bridging G_{0} and G_{1}. Let X_{i} denote the set of endvertices of the free edges in $G_{i}, i \in\{0,1\}$. (ii) Build a generalized $(k-1)$-DPC in $G_{0}-F_{0}$ joining S_{0} and $T_{0} \cup X_{0} \cup\{u\}$ for some vertex u with $u^{+} \neq s_{k}$, using Lemma 8(a). (iii) It suffices to build a generalized $\left(k-k_{0}\right)$-DPC in $G_{1, d-1}$ joining $\left\{s_{k}, u^{+}\right\} \cup X_{1}$ and $T_{1, d-1}$ and merge the two DPCs.

Let $k_{0}=k-1$ and $T_{0}=\left\{t_{1}, \ldots, t_{k-1}\right\}$ now. If G_{1} has no terminals, it suffices to build an unpaired $(k-1)$-DPC in $G_{0} \oplus$ G_{1} joining S_{0} and T_{0} and then build a Hamiltonian $s_{k}-t_{k}$ path in $G_{2, d-1}$. If G_{d-1} has no terminals, a required k-DPC can be built symmetrically. Finally, we assume that s_{k} and t_{k} belong to G_{1} and G_{d-1}, respectively. From an unpaired ($k-1$)-DPC joining S_{0} and T_{0} in $G_{0} \oplus G_{1}$, we can build a generalized
k-DPC joining S and $T_{0} \cup\{u\}$ for some vertex $u \in V\left(G_{0}\right) \cup$ $V\left(G_{1}\right)$. For a neighbor u^{\prime} of u in $G_{2, d-1}$, it suffices to combine a path in the DPC running to u with a Hamiltonian $u^{\prime}-t_{k}$ path of $G_{2, d-1}$ if $u^{\prime} \neq t_{k}$; if $u^{\prime}=t_{k}$, it suffices to extend the path running to u by one to t_{k} and then replace an edge (x, y) on a path in the DPC such that $x, y \neq u$ with a Hamiltonian $x^{\prime}-y^{\prime}$ path of $G_{2, d-1}-\left\{t_{k}\right\}$, where x^{\prime} and y^{\prime} are the neighbors of x and y in $G_{2, d-1}$, respectively.

Case 4: $f=0$ and $k_{0}=0$. The assumption (4) leads to $k=2 m-2$. In particular, the assumption (5) states that no component has both a source and a sink, and that G_{0} has no fewer terminals than other components, that is, $k_{i}=0$ and $k_{0}^{\prime} \geq k_{i}^{\prime}$ for all $i \in\{0, \ldots, d-1\}$. There are two subcases depending on whether $k_{0}^{\prime}<k$ or not.

Case 4.1: $k_{0}^{\prime}<k$. Every component contains fewer than k terminals; therefore, the number of components in G is at least four, i.e., $d \geq 4$ in this subcase. There exists a chain $H:=$ $G_{p, q}$ such that (i) one of G_{p} and G_{q} contains a source and the other contains a sink, and (ii) every component other than G_{p} and G_{q} in chain H contains no terminals. For simplicity, we assume G_{p} contains a source, G_{q} contains a sink, and $\left|S_{p}\right| \geq\left|T_{q}\right|$. We further assume $\left|S_{p}\right|$ is the maximum possible over all chains satisfying the above conditions (i) and (ii). Recall that $\left|S_{p}\right|=k_{p, q}+k_{p, q}^{\prime}$ and $\left|T_{q}\right|=k_{p, q}$.

Let H^{\prime} be the chain $G-G_{p, q}$, which is made of two or more components. Suppose we can pick up $k_{p, q}^{\prime}$ free edges between H and H^{\prime} in such a way that (i) there exists an unpaired $\left(k_{p, q}+k_{p, q}^{\prime}\right)$-DPC joining S_{p} and $T_{q} \cup X$ and (ii) there exists an unpaired $\left(k-k_{p, q}\right)$-DPC joining $\left(S \backslash S_{p}\right) \cup Y$ and $T \backslash T_{q}$, where X and Y are the sets of endvertices of the free edges in H and H^{\prime}, respectively. Then, we can build a required k-DPC just by merging the two DPCs through the free edges. The numbers $k_{p, q}+k_{p, q}^{\prime}$ and $k-k_{p, q}$ are both nonzero and less than k, so by Theorem 1 , it suffices to pick the free edges so that the S_{p} and $T_{q} \cup X$ pair in H and the $\left(S \backslash S_{p}\right) \cup Y$ and $T \backslash T_{q}$ pair in H^{\prime} both do not form the exceptional configurations of the theorem.

Claim 7: It is possible to pick up $k_{p, q}^{\prime}$ free edges between H and H^{\prime} to avoid the exceptional configuration of Theorem 1 unless $k_{p, q}=2 m-3$, that is, $\left|S_{p}\right|=\left|T_{q}\right|=k-1$.

Proof. Suppose $k_{p, q} \neq 2 m-3$. If $k_{p, q}^{\prime} \geq 2$, then it suffices to pick up $\left\lceil k_{p, q}^{\prime} / 2\right\rceil$ free edges between G_{p} and G_{p-1} and then pick up $\left\lfloor k_{p, q}^{\prime} / 2\right\rfloor$ frees between G_{q} and G_{q+1}. The free edges exist because $\left|V\left(G_{0}\right)\right|-(2 k-2) \geq 3^{m-1}-2(2 m-2)+2 \geq$ $2 m-3=k-1$ for $m \geq 3$. If $k_{p, q}^{\prime}=1$, it suffices to select a single free edge between G_{p} and G_{p-1}. The $\left(S \backslash S_{p}\right) \cup Y$ and $T \backslash T_{q}$ pair in H^{\prime} does not form an exceptional configuration. (Supposing otherwise means $\left|S_{p-1}\right|=k-2$ and $\left|T_{q-1}\right|=$ $k-1$, leading to $\left|S_{p}\right|=k-1$ and $\left|S_{p}\right|+\left|S_{p-1}\right|=2 k-3>k$ for $k=2 m-2 \geq 4$, which is a contradiction.) If $k_{p, q}^{\prime}=0$ and $k_{p, q}<2 m-3$, the S_{p} and T_{q} pair does not form an exceptional configuration; so does the $S \backslash S_{p}$ and $T \backslash T_{q}$ pair, as required, thereby proving the claim.

It remains to consider the case when $\left|S_{p}\right|=\left|T_{q}\right|=k-1$, where the pair of terminal sets S_{p} and T_{q} in H forms the
exceptional configuration of Theorem 1. Thus, there exists a generalized k-DPC in H joining $S_{p} \cup\left\{v_{j}\right\}$ and $T_{q} \cup\left\{u_{i}\right\}$ for some $u_{i} \in V\left(G_{p}\right)$ and $v_{j} \in V\left(G_{q}\right)$ such that u_{i}^{-}and v_{j}^{+}are both nonterminals. It suffices to combine the generalized DPC of H with an unpaired 2-DPC of H^{\prime} joining $\left(S \backslash S_{p}\right) \cup\left\{u_{i}^{-}\right\}$and $\left(T \backslash T_{q}\right) \cup\left\{v_{j}^{+}\right\}$through edges $\left(u_{i}, u_{i}^{-}\right)$and $\left(v_{j}, v_{j}^{+}\right)$.

Case 4.2: $k_{0}^{\prime}=k$. Component G_{0} contains k sources and $S_{0}=S$. We assume w.l.o.g. G_{1} has no fewer sinks than G_{d-1}, i.e., $\left|T_{1}\right| \geq\left|T_{d-1}\right|$. There are four possibilities depending on the number of sinks in G_{1}. Firstly, suppose $\left|T_{1}\right| \geq k-1$. A required k-DPC can be built as follows: (i) Pick up $k-2$ edges, not necessarily free edges, between G_{0} and G_{1}. Let X_{i} denote the set of endvertices of the picked edges in G_{i}, $i \in\{0,1\}$. (ii) If $\left|T_{1}\right|=k$, it suffices to build a generalized k-DPC in G_{1} joining $X_{1} \cup\{u, v\}$ and T_{1} for some vertices u and v, build a generalized k-DPC in G_{0} joining S_{0} and $X_{0} \cup\{x, y\}$ for some vertices x, y such that $\left\{x^{-}, y^{-}\right\} \neq\left\{u^{+}, v^{+}\right\}$, and then build a generalized 2-DPC in $G_{2, d-1}$ joining $\left\{x^{-}, y^{-}\right\}$ and $\left\{u^{+}, v^{+}\right\}$. (iii) If $\left|T_{1}\right|=k-1$, assuming w.l.o.g. $t_{k} \notin T_{1}$, it suffices to build a generalized $(k-1)$-DPC in G_{1} joining $X_{1} \cup\{u\}$ and T_{1} for some u with $u^{+} \neq t_{k}$, build a generalized k-DPC in G_{0} joining S_{0} and $X_{0} \cup\{x, y\}$ for some x, y such that $\left\{x^{-}, y^{-}\right\} \neq\left\{t_{k}, u^{+}\right\}$, and then build a generalized 2-DPC in $G_{2, d-1}$ joining $\left\{x^{-}, y^{-}\right\}$and $\left\{t_{k}, u^{+}\right\}$. The generalized DPCs exist owing to Lemma 8 and Corollary 1.

Secondly, suppose $2 \leq\left|T_{1}\right| \leq k-2$. We first pick up $(k-2)-\left|T_{1}\right|$ free edges between G_{0} and G_{d-1}. The free edges exist because $\left|V\left(G_{0}\right)\right|-(2 k-2) \geq 3^{m-1}-(4 m-6) \geq$ $2 m-4=k-2$ for $m \geq 3$. Let X_{i} denote the set of endvertices of Pthe free edges in $G_{i}, i \in\{0, d-1\}$. In addition, we pick up $\left|T_{1}\right|$ edges, not necessarily free edges, between G_{0} and G_{1} such that $Y_{0} \cap X_{0}=\emptyset$ and $Y_{1} \neq T_{1}$, where Y_{j} is the set of endvertices of the picked edges in $G_{j}, j \in\{0,1\}$. It is sufficient to merge the following three DPCs: a generalized k_{1}^{\prime}-DPC in G_{1} joining Y_{1} and T_{1}, a generalized k-DPC in G_{0} joining S and $X_{0} \cup Y_{0} \cup\{u, v\}$ for some vertices u, v with $\left\{u^{+}, v^{+}\right\} \neq T_{2, d-1}$, and a generalized $\left(k-k_{1}^{\prime}\right)$-DPC in $G_{2, d-1}$ joining $X_{d-1} \cup\left\{u^{+}, v^{+}\right\}$and $T_{2, d-1}$.

Thirdly, suppose $\left|T_{1}\right|=1$. It follows $\left|T_{d-1}\right| \leq 1$, meaning $d \geq 4$ because $k=2 m-2 \geq 4$. We pick up $k-2$ free edges, one edge between G_{0} and G_{d-1} and $k-3$ edges between G_{1} and G_{2}. Let X_{i} denote the set of endvertices of the free edges in $G_{i}, i \in\{0,1,2, d-1\}$. We can build a generalized k-DPC in $G_{0} \oplus G_{1}$ joining S and $T_{1} \cup X_{0} \cup X_{1} \cup\{u\}$ for some vertex u, from an unpaired $(k-1)$-DPC joining $S \backslash\left\{s_{1}\right\}$ and $T_{1} \cup X_{0} \cup X_{1}$, which exists by Theorem 1. It suffices to combine the generalized k-DPC with a generalized $(k-1)$ DPC in $G_{2, d-1}$ joining $X_{2} \cup X_{d-1} \cup\left\{u^{\prime}\right\}$ and $T_{2, d-1}$, where u^{\prime} is the neighbor of u contained in $G_{2, d-1}$.

Finally, suppose $\left|T_{1}\right|=0$, leading to $\left|T_{d-1}\right|=0$ and $d \geq 4$. If $\left|T_{p}\right|=k$ or $k-1$ for some $p \in\{2, \ldots, d-2\}$, assuming w.l.o.g. $\left|T_{i}\right|=0$ for all $i \in\{1, \ldots, p-1\}$, a required DPC can be built as follows: (i) Pick up $k-2$ free edges, one edge between G_{0} and G_{d-1} and $k-3$ edges between G_{0} and G_{1}, such that no two of them are adjacent. Let X_{i} denote the
set of endvertices of the free edges in $G_{i}, i \in\{0,1, d-1\}$. (ii) Build a generalized k-DPC in G_{0} joining S_{0} and $X_{0} \cup\{u, v\}$ for some vertices u, v. (iii) Pick up $k-2$ free edges, one edge between G_{p} and G_{p+1} and $k-3$ edges between G_{p} and G_{p-1}, such that no two of them are adjacent and moreover, Y_{p-1} and X_{1} are disjoint, Y_{p+1} and X_{d-1} are also disjoint, where Y_{j} denotes the set of endvertices of the free edges in $G_{j}, j \in\{p-1, p, p+1\}$. (iv) If $\left|T_{p}\right|=k$, there exists a generalized k-DPC in G_{p} joining $Y_{p} \cup\{x, y\}$ and T_{p} for some vertices x and y. Assuming w.l.o.g. $X_{1} \cup\left\{u^{+}\right\}, Y_{p-1} \cup\left\{x^{-}\right\}$ are distinct and $X_{d-1} \cup\left\{v^{-}\right\}, Y_{p+1} \cup\left\{y^{+}\right\}$are also distinct, it suffices to combine the DPCs of G_{0} and G_{p} with a generalized $(k-2)$-DPC in $G_{1, p-1}$ joining $X_{1} \cup\left\{u^{+}\right\}$and $Y_{p-1} \cup\left\{x^{-}\right\}$ and a generalized 2-DPC in $G_{p+1, d-1}$ joining $X_{d-1} \cup\left\{v^{-}\right\}$and $Y_{p+1} \cup\left\{y^{+}\right\}$. (v) If $\left|T_{p}\right|=k-1$, there exists a generalized $(k-1)$-DPC in G_{p} joining $Y_{p} \cup\{x\}$ and T_{p} for some vertex x. Assuming w.l.o.g. $t_{k} \notin T_{p}, X_{1} \cup\left\{u^{+}\right\}$and $Y_{p-1} \cup\left\{x^{-}\right\}$ are distinct, $X_{d-1} \cup\left\{v^{-}\right\}$and $Y_{p+1} \cup\left\{t_{k}\right\}$ are also distinct, it suffices to combine the DPCs of G_{0} and G_{p} with a generalized $(k-2)$-DPC in $G_{1, p-1}$ joining $X_{1} \cup\left\{u^{+}\right\}$and $Y_{p-1} \cup\left\{x^{-}\right\}$ and a generalized 2-DPC in $G_{p+1, d-1}$ joining $X_{d-1} \cup\left\{v^{-}\right\}$ and $Y_{p+1} \cup\left\{t_{k}\right\}$. Now, we assume $\left|T_{i}\right| \leq k-2$ for all $i \in\{1, \ldots, d-1\}$. The number of components d is 5 or more because G_{1} and G_{d-1} contain no sinks and not all sinks are contained in one component. Let p be an index such that $\left|T_{p}\right| \geq 1$ and $\left|T_{i}\right|=0$ for all $i \in\{1, \ldots, p-1\}$. Then, chains $G_{1, p}$ and $G_{p+1, d-1}$ are both made of two or more components. A required DPC can be built as follows: (i) Pick up $k-2$ free edges, $\left|T_{p}\right|$ edges between G_{0} and G_{1} and $(k-2)-\left|T_{p}\right|$ edges between G_{0} and G_{d-1}, such that no two of them are adjacent. Let X_{i} denote the set of endvertices of the free edges in G_{i}, $i \in\{0,1, d-1\}$. (ii) Build a generalized k-DPC in G_{0} joining S_{0} and $X_{0} \cup\{u, v\}$ for some vertices u, v. (iii) Build an unpaired $\left|T_{p}\right|$-DPC in $G_{1, p}$ joining X_{1} and T_{p}. (iv) Build a generalized $\left(k-\left|T_{p}\right|\right)$-DPC in $G_{p+1, d-1}$ joining $X_{d-1} \cup\left\{u^{-}, v^{-}\right\}$and $T \backslash T_{p}$. (v) Merge the three DPCs into a required k-DPC. This completes the entire proof.

Corollary 2: Let G be an m-dimensional torus-like graph, $m \geq 3$, that satisfies the preconditions of Theorem 2. Given distinct sets S and T of sources and sinks, and a fault set F in G such that $k \geq 2$ and $f+k \leq 2 m-2$, there exists a generalized $k-D P C$ joining S and T in $G-F$.

Combining Lemmas 2 and 3 with Theorem 2 leads to that:
Theorem 3: Every m-dimensional nonbipartite torus, $m \geq 2$, is f-fault unpaired k-disjoint path coverable for any f and $k \geq 1$ subject to $f+k \leq 2 m-2$.

V. CONCLUSION

In this paper, we have studied the unpaired disjoint path covers of a nonbipartite torus-like graph made of components with good Hamiltonian and disjoint-path-cover properties. Specifically, we proved that an m-dimensional nonbipartite torus-like graph, $m \geq 3$, composed of d components is f-fault unpaired k-disjoint path coverable for any f and $k \geq$ 2 subject to $f+k \leq 2 m-2$ if each component G_{i} is f-fault
unpaired k-disjoint path coverable for any f and $k \geq 2$ subject to $f+k \leq 2 m-4$ and moreover, G_{i} is $(2 m-5)$-fault Hamiltonian-connected and ($2 m-4$)-fault Hamiltonian. As a result, we know that an m-dimensional nonbipartite torus, $m \geq 2$, is f-fault unpaired k-disjoint path coverable for any f and $k \geq 1$ subject to $f+k \leq 2 m-2$. It is open to determine whether a three-dimensional or higher-dimensional nonbipartite torus admits an optimal construction of an unpaired disjoint path cover, that is, whether an m-dimensional nonbipartite torus, $m \geq 3$, is f-fault unpaired k-disjoint path coverable for any f and $k \geq 2$ subject to $f+k \leq 2 m-1$.

REFERENCES

[1] B. Parhami, Introduction to Parallel Processing: Algorithms and Architectures. Springer, 2006.
[2] L.-H. Hsu and C.-K. Lin, Graph Theory and Interconnection Networks. Boca Raton, FL, USA: CRC Press, 2008.
[3] J. A. McHugh, Algorithmic Graph Theory. Upper Saddle River, NJ, USA: Prentice-Hall, 1990.
[4] D. Torrieri, "Algorithms for finding an optimal set of short disjoint paths in a communication network," IEEE Trans. Commun., vol. 40, no. 11, pp. 1698-1702, Nov. 1992.
[5] P. D. Seymour, "Disjoint paths in graphs," Discrete Math., vol. 29, no. 3, pp. 293-309, 1980.
[6] S. C. Ntafos and S. L. Hakimi, "On path cover problems in digraphs and applications to program testing," IEEE Trans. Softw. Eng., vol. SE-5, no. 5, pp. 520-529, Sep. 1979.
[7] H. Liu, J. Lu, S. Zhang, and X. Zhong, "On the path cover number of connected quasi-claw-free graphs," IEEE Access, vol. 9, pp. 37086-37090, 2021.
[8] H. Ichida and K. Kaneko, "Set-to-set disjoint paths problem in Möbius cubes," IEEE Access, vol. 10, pp. 83075-83084, 2022.
[9] K. Asdre and S. D. Nikolopoulos, "The 1-Fixed-Endpoint path cover problem is polynomial on interval graphs," Algorithmica, vol. 58, no. 3, pp. 679-710, Nov. 2010.
[10] J.-H. Park, H.-C. Kim, and H.-S. Lim, "Many-to-many disjoint path covers in hypercube-like interconnection networks with faulty elements," IEEE Trans. Parallel Distrib. Syst., vol. 17, no. 3, pp. 227-240, Mar. 2006.
[11] J. H. Park, H. C. Kim, and H. S. Lim, "Many-to-many disjoint path covers in the presence of faulty elements," IEEE Trans. Comput., vol. 58, no. 4, pp. 528-540, Apr. 2009.
[12] J.-H. Park, "Torus-like graphs and their paired many-to-many disjoint path covers," Discrete Appl. Math., vol. 289, pp. 64-77, Jan. 2021.
[13] H.-S. Lim, H.-C. Kim, and J.-H. Park, "Ore-type degree conditions for disjoint path covers in simple graphs," Discrete Math., vol. 339, no. 2, pp. 770-779, Feb. 2016.
[14] J.-H. Park and I. Ihm, "A linear-time algorithm for finding a one-to-many 3-disjoint path cover in the cube of a connected graph," Inf. Process. Lett., vol. 142, pp. 57-63, Feb. 2019.
[15] H. Lü, "Paired many-to-many two-disjoint path cover of balanced hypercubes with faulty edges," J. Supercomput., vol. 75, no. 1, pp. 400-424, Jan. 2019.
[16] H. Lü and T. Wu, "Unpaired many-to-many disjoint path cover of balanced hypercubes," Int. J. Found. Comput. Sci., vol. 32, no. 8, pp. 943-956, 2021.
[17] S.-Y. Hsieh, C.-W. Lee, and C.-H. Huang, "Conditional edge-fault Hamiltonian-connectivity of restricted hypercube-like networks," Inf. Comput., vol. 251, pp. 314-334, Dec. 2016.
[18] R. Niu and M. Xu, "The unpaired many-to-many k-disjoint paths in bipartite hypercube-like networks," Theor. Comput. Sci., vol. 911, pp. 26-40, Apr. 2022.
[19] S.-Y. Kim and J.-H. Park, "Paired many-to-many disjoint path covers in recursive circulants $G\left(2^{m}, 4\right), "$ IEEE Trans. Comput., vol. 62, no. 12, pp. 2468-2475, Jun. 2013.
[20] H. Cao, B. Zhang, and Z. Zhou, "One-to-one disjoint path covers in digraphs," Theor. Comput. Sci., vol. 714, pp. 27-35, Mar. 2018.
[21] H.-C. Kim, S.-Y. Cho, and C.-S. Shin, "One-to-One disjoint cover of non-bipartite k-ary n-cube with faulty edges," J. KIISE, vol. 48, no. 12, pp. 1251-1273, Dec. 2021.
[22] J. Li, G. Wang, and L. Chen, "Paired 2-disjoint path covers of multidimensional torus networks with $2 n-3$ faulty edges," Theor. Comput. Sci., vol. 677, pp. 1-11, May 2017.
[23] J.-H. Park, "Paired 3-Disjoint path covers in bipartite torus-like graphs with edge faults," Int. J. Found. Comput. Sci., vol. 2022, pp. 1-13, Nov. 2022.
[24] J. Li, C. Melekian, S. Zuo, and E. Cheng, "Unpaired many-to-many disjoint path covers on bipartite k-ary n-cube networks with faulty elements," Int. J. Found. Comput. Sci., vol. 31, no. 3, pp. 371-383, Apr. 2020.
[25] H.-C. Kim and J.-H. Park, "Paths and cycles in d-dimensional tori with faults," in Proc. Workshop Algorithms Comput. (WAAC), 2001, pp. 67-74.
[26] B. G. Kronenthal and W. H. T. Wong, "Paired many-to-many disjoint path covers of hypertori," Discrete Appl. Math., vol. 218, pp. 14-20, Feb. 2017.
[27] J.-H. Park, "Many-to-many disjoint path covers in two-dimensional tori," J. KIISE: Comput. Syst. Theory, vol. 38, no. 1, pp. 42-48, 2011.
[28] J.-H. Park, "Unpaired many-to-many disjoint path covers in restricted hypercube-like graphs," Theor. Comput. Sci., vol. 617, pp. 45-64, Feb. 2016.

JUNG-HEUM PARK received the B.S. degree in computer science and statistics from Seoul National University, in 1985, and the M.S. and Ph.D. degrees in computer science from KAIST, South Korea, in 1987 and 1992, respectively. He joined IERI, KAIST, as a Postdoctoral Researcher, in 1992. From 1993 to 1996, he was a Senior Member of Research Staff at ETRI. In 1996, he joined the Department of Computer Science, Catholic University of Korea, as an Assistant Professor. He is currently a Professor with the School of Computer Science and Information Engineering. His research interests include design and analysis of algorithms, applied graph theory, and interconnection networks.

[^0]: The associate editor coordinating the review of this manuscript and approving it for publication was Eyuphan Bulut ${ }^{(\mathbb{D}}$.

