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ABSTRACT One of the key problems in parallel processing is finding disjoint paths in the underlying graph
of an interconnection network. The disjoint path cover of a graph is a set of pairwise vertex-disjoint paths
that altogether cover every vertex of the graph. Given disjoint source and sink sets, S = {s1, . . . , sk} and
T = {t1, . . . , tk}, in graph G, an unpaired many-to-many k-disjoint path cover joining S and T is a disjoint
path cover {P1, . . . ,Pk}, in which each pathPi runs from source si to some sink tj. In this paper, we reveal that
a nonbipartite torus-like graph, if built from lower dimensional torus-like graphs that have good disjoint-path-
cover properties of the unpaired type, retains such a good property. As a result, anm-dimensional nonbipartite
torus, m ≥ 2, with at most f vertex and/or edge faults has an unpaired many-to-many k-disjoint path cover
joining arbitrary disjoint sets S and T of size k each, subject to k ≥ 1 and f + k ≤ 2m − 2. The bound of
2m− 2 on f + k is nearly optimal.

INDEX TERMS Disjoint path, path cover, path partition, torus, toroidal grid, interconnection network.

I. INTRODUCTION
Interconnection networks play a crucial role in the
performance of a supercomputing system. Given the internal
processor and memory structures in each node, a distributed-
memory architecture is primarily characterized by the net-
work used to interconnect the nodes [1]. One of the central
issues in the study of interconnection networks is finding
parallel paths, which are naturally related to routing among
nodes and the fault tolerance of the network [2], [3]. An inter-
connection network is frequently modeled as a graph, in
which the vertices and edges represent nodes and links,
respectively. Parallel paths correspond to the disjoint paths
of the underlying graph.

The problems of building disjoint paths in a graph have
received significant attention in the literature. Refer to, for
example, [4], [5], [6], [7], and [8] for details. It is often
important to find disjoint paths that collectively pass through
all vertices. The disjoint path cover of a graph is a set of
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vertex-disjoint paths that altogether cover every vertex of
the graph. Disjoint path cover problems are applicable in
many areas such as software testing, database design, and
code optimization [6], [9]. In addition, the problem is related
to applications in which full utilization of network nodes is
important [10].

LetG be a finite, simple undirected graph, where its vertex
and edge sets are denoted by V (G) and E(G), respectively.
A path from s to t is a sequence 〈u1, . . . , ul〉 of distinct
vertices of G such that u1 = s, ul = t , and (ui, ui+1) ∈ E(G)
for all i ∈ {1, . . . , l − 1}. If l ≥ 3 and (ul, u1) ∈ E(G), then
the sequence is called a cycle. An s–t path refers to a path that
runs from s to t; an s-path refers to a path starting at vertex s.
The path cover of graphG is a set of paths inG such that every
vertex ofG is contained in at least one path. The disjoint path
cover (DPC) of G is a path cover in which every vertex of G
is covered by exactly one path. This study is concerned with a
disjoint path cover in which each path runs from a prescribed
source to a prescribed sink.

Given disjoint subsets S = {s1, . . . , sk} and T =

{t1, . . . , tk} of V (G) for a positive integer k , a many-to-many
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k-disjoint path cover is a DPC composed of k paths that
collectively join S and T . If each source si ∈ S must be
joined to a specific sink ti ∈ T , the many-to-many k-DPC
is called paired, and it is unpaired if no such constraint is
imposed. As is intuitively clear, we call the vertices in S and
T sources and sinks, respectively, which together form a set
of terminals.
Definition 1 (see [11]): A graph G is called f -fault paired

(resp. unpaired) k-disjoint path coverable if f +2k ≤ |V (G)|
and G has a paired (resp. unpaired) k-DPC joining arbitrary
disjoint set S of k sources and set T of k sinks in G − F for
any fault set F ⊆ V (G) ∪ E(G) with |F | ≤ f .
Among the interconnection networks proposed in the lit-

erature, torus is one of the widely recognized networks. An
m-dimensional torus is defined as a Cartesian product of
m cycles, Cd1 × · · · × Cdm , where Cdj represents a cycle
of length dj ≥ 3 for j ∈ {1, . . . ,m}. Given two graphs,
G0 and G1, of the same order and a bijection φ from V (G0)
toV (G1), we denote byG0⊕φG1 the graphwhose vertex set is
V (G0)∪V (G1) and edge set isE(G0)∪E(G1)∪{(v, φ(v)) : v ∈
V (G0)}. To simplify the notation, we often omit the bijection
φ from ⊕φ . Given d graphs G0, . . . ,Gd−1 of the same order
n, if we apply the graph constructor ⊕ to each pair Gi and
G(i+1) mod d for i ∈ {0, . . . , d − 1}, then we obtain a graph
with nd vertices. This graph is said to be obtained through
the cycle-based recursive construction.
Definition 2 (see [12]): An m-dimensional torus-like

graph, m ≥ 1, is a graph obtained through the cycle-based
recursive construction from (m − 1)-dimensional torus-like
graphs G0, . . . ,Gd−1, d ≥ 3, of the same order, where the
0-dimensional torus-like graph is a one-vertex graph K1.
Here, the graphs G0, . . . ,Gd−1 are called the components

of the torus-like graph. Figure 1 shows examples of torus-
like graphs. Each vertex v in componentGi has two neighbors
outside Gi: one in G(i+1) mod d , denoted by v+, and the other
in G(i−1) mod d , denoted by v−. Contracting the components
of the torus-like graph into single vertices results in a cycle
Cd of length d .
Disjoint path cover problems have been studied for var-

ious classes of graphs, including recent studies on dense
graphs [13], cube of connected graphs [14], balanced hyper-
cubes [15], [16], hypercube-like networks [17], [18], recur-
sive circulants [19], directed graphs [20], k-ary n-cubes [21],
and torus networks [22]. In particular, the paired disjoint
path cover problem for torus-like graphs was investigated
in [12] for a nonbipartite case and in [23] for a bipartite case.
In addition, a study on unpaired disjoint path covers of a
bipartite k-ary n-cube, which is a special form of torus, can
be found in [24].

In this study, we investigate the unpaired disjoint path cover
problem for nonbipartite torus-like graphs, following the
approach taken in [12] for the paired DPC problem.We reveal
that a torus-like graph has a good disjoint-path-cover property
of the unpaired type if every component of the graph has good
disjoint-path-cover and Hamiltonian properties. Specifically,
we prove that anm-dimensional nonbipartite torus-like graph,

FIGURE 1. Examples of 2-dimensional nonbipartite torus-like graphs,
where an intra-component edge is indicated by a thick edge.

m ≥ 3, composed of d components G0, . . . ,Gd−1 is f -fault
unpaired k-disjoint path coverable for any f and k ≥ 2 subject
to f + k ≤ 2m − 2 if each component Gi is f -fault unpaired
k-disjoint path coverable for any f and k ≥ 2 subject to f +
k ≤ 2m− 4 and moreover, Gi is (2m− 5)-fault Hamiltonian-
connected and (2m− 4)-fault Hamiltonian.

As a result, we obtain that an m-dimensional nonbipartite
torus, m ≥ 2, is f -fault unpaired k-disjoint path coverable
for any f and k ≥ 1 subject to f + k ≤ 2m − 2. To the
best of our knowledge, no studies on unpaired disjoint path
covers in a nonbipartite torus or in a nonbipartite torus-like
graph can be found in the literature. Moreover, the bound
of 2m − 2 on f + k is nearly optimal, specifically, one
less than the bound, δ(G)− 1, of the necessary condition
shown in Lemma 1 below, where κ(G) and δ(G) denote the
connectivity and degree of graph G, respectively. Note that
the degree of the m-dimensional torus is 2m.
Lemma 1: (see [11]) Let G be an f -fault unpaired k-disjoint

path coverable graph, where k ≥ 2. Then, f + k ≤ κ(G).
Furthermore, if G has f +2k+1 or more vertices, then f +k ≤
δ(G)− 1.

II. PRELIMINARIES
The disjoint path cover problems of a graph are closely related
to the Hamiltonian properties, as well as the vertex connectiv-
ity, of the graph. For example, an unpaired 1-DPC joining two
vertices is the Hamiltonian path that connects them. A path
that visits each vertex exactly once is aHamiltonian path, and
a cycle that visits each vertex exactly once is a Hamiltonian
cycle. A graph is traceable if a Hamiltonian path exists, a
graph is Hamiltonian if a Hamiltonian cycle exists, and a
graph isHamiltonian-connected if every two distinct vertices
are joined by a Hamiltonian path. The Hamiltonian properties
of the torus networks are as follows:
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Lemma 2: (see [12], [25]) Every m-dimensional nonbipar-
tite torus, m ≥ 2, is (2m − 3)-fault Hamiltonian-connected
and (2m− 2)-fault Hamiltonian.

As mentioned above, studies on unpaired DPCs of a non-
bipartite torus cannot be found in the literature. However,
we can see from Lemma 2 that anm-dimensional nonbipartite
torus,m ≥ 2, is (2m−3)-fault unpaired 1-disjoint path cover-
able. In addition, we can refer to the studies on paired DPCs
because a paired k-DPC joining S and T is, by definition,
an unpaired k-DPC joining the two. Some studies on paired
disjoint path covers in a nonbipartite torus can be summarized
as follows:
Lemma 3: (Kronenthal et al. [26] and Park [27]) A

2-dimensional nonbipartite torus is paired 2-disjoint path
coverable.
Lemma 4: Let G be an m-dimensional nonbipartite torus

Cd1 × · · · × Cdm , where m ≥ 2.
(a) G is f -fault paired k-disjoint path coverable for any f

and k ≥ 2 subject to f + 2k ≤ 2m (Park [12]).
(b) If m ≥ 3 and at most one dj is even, G is (2m−3)-edge-

fault paired 2-disjoint path coverable (Li et al. [22]).
Lemma 3 leads to that a 2-dimensional nonbipartite torus

is unpaired 2-disjoint path coverable. However, not every
2-dimensional nonbipartite torus is unpaired 3-disjoint path
coverable nor 1-fault unpaired 2-disjoint path coverable. For
example, consider the 4×5 torus shown in Figure 1(a), which
has 20 vertices, half of them are colored green and the other
half are colored white. Except for the four edges, two joining
pairs of green vertices and two joining pairs of white vertices,
all other edges join two vertices with different colors. It can
be seen that an unpaired 3-DPC joining S and T cannot exist
if S and T both contain white vertices only. Also, an unpaired
2-DPC joining S and T of two white vertices cannot exist if
a white vertex is faulty, or if an edge joining a pair of green
vertices is faulty.

Let us now consider some topological properties of a torus-
like graph, which were discovered in [12].
Lemma 5:(see [12]) Let G be an m-dimensional torus-like

graph composed of d components G0, . . . ,Gd−1. (a) G is a
regular graph of degree 2m, which has at least 3m vertices.
(b) The connectivity of G is 2m. (c) The diameter of G
is no more than b d2 c plus the maximum diameter over all
components. (d) G has no triangle (cycle of length three) if
d ≥ 4 and everyGi has no triangle. (e) There are at most three
common neighbors for any pair of vertices in G. Moreover,
if d ≥ 4 and any pair of vertices in each component have at
most two common neighbors, then any pair of vertices in G
have at most two common neighbors.
Lemma 6: There is at most one common neighbor for two

adjacent vertices in a torus-like graph.
Proof: The proof is by induction on the dimension m of

a torus-like graph. Suppose two vertices u and v are adjacent.
It is obvious that the two have at most one common neighbor
if m = 1. Let m ≥ 2 for the inductive step. If (u, v) is an edge
of some component Gi, then there is at most one common
neighbor belonging toGi by the induction hypothesis. If (u, v)

is an inter-component edge, then there is at most one common
neighbor in a component other than the components to which
u or v belongs, proving the lemma.
It is useful to extend the notion of an unpaired k-disjoint

path cover on not necessarily disjoint sets, S and T , of sources
and sinks in a way that a vertex that belongs to both sets is
considered as a valid, one-vertex path. Note that a disjoint
path cover joining disjoint terminal sets contains no one-
vertex path. A generalized k-disjoint path cover [28] joining
S and T in graph G is defined as a set of k disjoint paths of G
composed of
• |S ∩ T | one-vertex paths for terminals in S ∩ T , and
• k−|S∩T | paths that form an unpaired (k−|S∩T |)-DPC
joining S \ (S ∩ T ) and T \ (S ∩ T ) in G− (S ∩ T ).

Lemma 7: Let Gi be an (m − 1)-dimensional torus-like
graph that is f -fault unpaired k-disjoint path coverable for
any f and k ≥ 1 subject to f+k ≤ 2m−4, wherem ≥ 3. Then,
there exists a generalized k-DPC joining arbitrary distinct set
Si of k sources and set Ti of k sinks for any fault set Fi with
|Fi| ≤ f subject to f + k ≤ 2m− 4.

Proof: Given distinct terminal sets Si and Ti of size k
each in Gi, along with a fault set Fi such that |Fi| ≤ f and
f +k ≤ 2m−4, we are to build a generalized k-DPC joining Si
and Ti inGi−Fi. A vertex in Si∩Ti can be seen as a one-vertex
path, which runs from a vertex in Si to itself also in Ti. So,
it suffices to build an unpaired (k−f ′)-DPC joining Si\F ′ and
Ti \F ′ inGi− (Fi∪F ′) where F ′ = Si∩Ti and f ′ = |F ′|. The
unpaired (k− f ′)-DPC exists by the hypothesis of the lemma,
because k− f ′ ≥ 1 and (f + f ′)+ (k− f ′) = f + k ≤ 2m−4.
Thus, the lemma is proven.
Lemma 8: Let Gi be an (m − 1)-dimensional torus-like

graph, m ≥ 3, such that Gi is f -fault unpaired k-disjoint path
coverable for any f and k ≥ 2 subject to f + k ≤ 2m− 4 and
moreover, Gi is (2m − 5)-fault Hamiltonian-connected and
(2m − 4)-fault Hamiltonian. Suppose we are given a fault
set Fi, arbitrary sets Si of k ′ sources and Ti of k sinks in Gi,
where |Fi| + k ≤ 2m − 4 and k ′ = k + 1 or k + 2. (a) If
k ′ = k + 1, then there is a vertex u such that Si and Ti ∪ {u}
are joined by a generalized (k + 1)-DPC of Gi − Fi. Also,
there is another vertex u′ than u such that Si and Ti ∪ {u′} are
joined by a generalized (k+1)-DPC. (b) If k ′ = k+2, there is
a vertex subset {u, v} such that Si and Ti∪{u, v} are joined by
a generalized (k + 2)-DPC of Gi − Fi. Also, there is a vertex
subset {u′, v′} other than {u, v} such that Si and Ti ∪ {u′, v′}
are joined by a generalized (k + 2)-DPC.

Proof: Let Si = {s1, . . . , sk ′} and Ti = {t1, . . . , tk}.
We assumew.l.o.g. s1 /∈ Ti if k ′ = k+1 and s1, s2 /∈ Ti if k ′ =
k+2. For the proof of (a), let k ′ = k+1. Firstly, suppose Ti *
Si. Then, there exists a generalized k-DPC joining Si\{s1} and
Ti in Gi − Fi by Lemma 7 and the hypothesis of this lemma.
A path in the DPC, say the sa–ta′ path, passes through s1 as
an intermediate vertex. Dividing the sa–ta′ path, represented
as (sa, . . . , u, s1, . . . , ta′ ), into two path segments, (sa, . . . , u)
and (s1, . . . , ta′ ), results in a generalized (k+1)-DPC joining
Si and Ti ∪{u}, as required. We now show that another vertex
u′ 6= u exists.
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FIGURE 2. Illustrations of the proof of lemma 8.

There exists a neighbor, x, of u such that x and (u, x) are
both fault-free, x is different from any source in Si \ {sa} and
also different from the predecessor of u in the sa–u path. This
is because there are δ(Gi) candidates for x in Gi whereas at
most |Fi| + |Si \ {sa}| + 1 of them could be blocked (by |Fi|
faults, |Si \ {sa}| sources other than sa, and the predecessor
of u), for which |Fi|+|Si\{sa}|+1 = |Fi|+k+1 ≤ 2m−3 <
2m − 2 = δ(Gi). As shown in Figure 2(a), if x lies on the
sa–u path and is different from the immediate predecessor of
u, representing the sa–u path as (sa, . . . , x, x ′, . . . , u) where
x ′ is the immediate successor of x, it suffices to replace the
sa–u path with a sa–x ′ path (sa, . . . , x, u . . . , x ′). If x lies
on the sj–tj′ path and x 6= sj, representing the sj–tj′ path as
(sj, . . . , x ′, x, . . . , tj′ ) where x ′ is the immediate predecessor
of x, it suffices to divide the sj–tj′ path into two path segments
(sj, . . . , x ′) and (x, . . . , tj′ ) and then redefine (sj, . . . , x ′) as
a new sj-path and (sa, . . . , u, x, . . . , tj′ ) as a new sa-path.
Secondly, suppose Ti ⊆ Si. There exists a Hamiltonian cycle
C in Gi− (Fi∪Ti), from which we can extract a Hamiltonian
path of the graph that runs from s1 to some vertex u. The
Hamiltonian path and |Ti| one-vertex paths together form a
generalized (k + 1)-DPC joining Si and Ti ∪ {u}. We can also
extract a Hamiltonian s1–u′ path from C for some u′ 6= u by
traversing C in reverse order, meaning there is a generalized
(k + 1)-DPC joining Si and Ti ∪ {u′}.
For the proof of (b), let k ′ = k+2. Firstly, suppose Ti * Si.

Then, there exists a generalized k-DPC joining Si \ {s1, s2}
and Ti inGi−Fi. So, we can build a generalized (k + 2)-DPC
joining Si and Ti∪{u, v} for some vertices u and v by dividing
each of the paths in the DPC that passes through s1 and/or
s2 into path segments, similar to the proof of (a). Let sa–u and
sb–v paths denote the paths in the generalized (k + 2)-DPC
that run to u and v, respectively. If there is a neighbor of u
on the sa–u path different from the immediate predecessor
of u, or if there is a neighbor of u on the sj-path, j 6= a,
different from sj, we can build a generalized (k + 2)-DPC
joining Si and Ti ∪ {u′, v} for some vertex u′ in the same
manner as the proof of (a). Also, we can build a required
(k + 2)-DPC joining Si and Ti ∪ {u, v′} for some v′ in the
same way if there is a neighbor of v on the sb–v path different
from the immediate predecessor of v, or if there is a neighbor
of v on the sj-path, j 6= b, different from sj. It remains to
consider the case when the sets of neighbors of u and v in

Gi − Fi are (Si \ {sa}) ∪ {x} and (Si \ {sb}) ∪ {y}, where x
and y respectively are the immediate predecessors of u and v,
and Fi consists of common neighbors of u and v and possibly
an extra edge (u, v). It suffices to merge the sa–u and sb–v
paths into a cycle through the edges (u, sb) and (v, sa), and
then extract two paths, sa–u′ and sb–v′ paths, from the cycle
for some {u′, v′} different from {u, v}. This is possible because
the cycle contains five or more vertices, i.e., x 6= sa or y 6= sb.
(Suppose x = sa and y = sb for a contradiction. If (u, v) /∈ Fi,
then the neighbor sets of u and v inGi are both equal to Si∪Fi,
meaning u and v have 2m−2 ≥ 4 common neighbors, which
contradicts Lemma Lemma 5(e). If (u, v) ∈ Fi, then u and v
have 2m− 3 ≥ 3 common neighbors, which also contradicts
Lemma 6) Secondly, suppose Ti ⊆ Si. There is a Hamiltonian
cycleC inGi−(Fi∪Ti), which passes through both s1 and s2.
Similar to the proof of (a), we can extract s1–u and s2–v paths
that cover all vertices of C for some vertices u, v. The two
paths and |Ti| one-vertex paths together form a generalized
(k + 2)-DPC joining Si and Ti ∪ {u, v}. Also, the s1–u′ and
s2–v′ paths extracted from C for some {u′, v′} different from
{u, v} can be used to build a generalized (k + 2)-DPC joining
Si and Ti ∪ {u′, v′}. Note that cycle C has a length of at least
|V (Gi)| − (|Fi| + k) ≥ 3m−1− (2m− 4) ≥ 7 for m ≥ 3; thus,
{u′, v′} exists. This completes the entire proof.

III. CHAIN OF TORUS-LIKE GRAPHS
Let G be an m-dimensional torus-like graph built from
d components G0, . . . ,Gd−1, where each Gi is an
(m− 1)-dimensional torus-like graph. The subgraph of G
in which consecutive components, say G0, . . . ,Gr , are con-
nected by the edges between Gi and Gi+1 for i ∈ {0, . . . ,
r−1} forms a chain of torus-like graphs, and will be denoted
byG0⊕· · ·⊕Gr or simply byG0,r . The chainG0⊕· · ·⊕Gr is
obtained from G by removing components Gr+1, . . . ,Gd−1
if r ∈ {0, . . . , d − 2}, or by removing all edges connecting
Gd−1 and G0 if r = d − 1. The Hamiltonian properties of
a chain of torus-like graphs were studied in [12], as shown
below.
Lemma 9: (see [12]) Let Gi, i ∈ {0, . . . , r}, be an

(m− 1)-dimensional torus-like graph of the same order,
m ≥ 3, such that Gi is (2m−5)-fault Hamiltonian-connected,
(2m − 4)-fault Hamiltonian, and unpaired 2-disjoint path
coverable. Then, the graph H defined as G0⊕· · ·⊕Gr , r ≥ 1,
is (2m− 4)-fault Hamiltonian-connected and (2m− 3)-fault
Hamiltonian.

In this section, we show that chain H := G0 ⊕ · · · ⊕ Gr ,
r ≥ 1, has a good disjoint-path-cover property if every
componentGi has. Let S = {s1, . . . , sk} and T = {t1, . . . , tk}
be the source and sink sets given in chain H , respectively.
We denote by Si and Ti the sets of sources and sinks contained
inGi, respectively, that is, Si = S∩V (Gi) and Ti = T∩V (Gi);
Si,j and Ti,j denote the source and sink sets contained in
Gi,j. Let ki = min{|Si|, |Ti|} and ki,j = min{|Si,j|, |Ti,j|}.
In addition, F denotes a set of faults, faulty vertices and/or
edges, so that F ⊆ V (G) ∪ E(G). Let Fi and Fi,j denote
the fault sets of Gi and Gi,j, respectively. Also, let f = |F |,
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fi = |Fi| and fi,j = |Fi.j|. We assume w.l.o.g. that

k0 > kr ,

or k0 = kr and f0 > fr ,

or k0 = kr and f0 = fr and |S0 ∪ T0| ≥ |Sr ∪ Tr |. (1)

The source and sink sets are interchangeable, so we can
further assume

|S0| ≥ |T0|. (2)

Note that chain H is composed of a subchain H ′ defined
as G0 ⊕ · · · ⊕ Gr−1, possibly G0 if r = 1, and a single
component Gr . Thus, we have S = S0,r−1 ∪ Sr , T =
T0,r−1 ∪ Tr , and k0,r−1 + kr + k ′r−1,r = k , where k ′r−1,r =
max{|S0,r−1|, |T0,r−1|} − k0,r−1 = max{|Sr |, |Tr |} − kr .
In addition, the fault set of H is F = F0,r−1 ∪ Fr ∪ F ′r−1,r ,
where F ′i,i+1 denotes the set of edge faults bridging Gi and
Gi+1.
Theorem 1: Let Gi, i ∈ {0, . . . , r}, be an (m − 1)-

dimensional torus-like graph of the same order, m ≥ 3, such
that Gi is f -fault unpaired k-disjoint path coverable for any
f and k ≥ 2 subject to f + k ≤ 2m − 4 and moreover, Gi
is (2m− 5)-fault Hamiltonian-connected and (2m− 4)-fault
Hamiltonian. Suppose we are given disjoint sets S and T of
sources and sinks, and a fault set F in chain H defined as
G0 ⊕ · · · ⊕ Gr , r ≥ 1, such that k ≥ 2 and f + k ≤ 2m− 3.
Then, there exists an unpaired k-DPC joining S and T in
H −F except for the case when k = 2m− 3, S ⊆ V (G0) and
T ⊆ V (Gr ). For the exceptional configuration, there exist
vertex subsets {u1, u2} of G0 and {v1, v2} of Gr such that a
generalized (2m−2)-DPC joining S∪{vj} and T ∪{ui} exists
for every pair i, j ∈ {1, 2}.

Proof: An unpaired k-DPC with respect to fault set
F can be obtained from an unpaired k-DPC with respect
to a virtual fault set F ∪ F ′, where F ′ is a set of arbitrary
(2m − 3) − (f + k) fault-free edges. Consequently, we can
assume that

f + k = 2m− 3. (3)

The proof proceeds by induction on r . Suppose r = 1 for the
base step, whereH = G0⊕G1,H ′ = G0, k = k0+k1+k ′0,1,
|S0| ≥ |T0|, and |S1| ≤ |T1|. Cases 1a, 1b, and 1c below deal
with the base step of r = 1; the inductive step of r ≥ 2 is
addressed later in Cases 2a and 2b.
Case 1a: k1 ≥ 1 or f0 ≤ f −1 (r = 1). First, we introduce a

basic procedure for building an unpaired k-DPC in this case.
Procedure Find-UDPC-A(S, T , F , G0 ⊕ G1)
/* k1 ≥ 1 or f0 ≤ f − 1. See Figure 3. */
1: Pick up k ′0,1 free edges betweenG0 andG1. Let Xi denote

the set of endvertices of the free edges in Gi, i ∈ {0, 1}.
2: Build an unpaired (k0 + k ′0,1)-DPC joining S0 and T0 ∪
X0 in G0 − F0.

3: Case when k1 + k ′0,1 ≥ 1:
a: Build an unpaired (k1+k ′0,1)-DPC joining S1∪X1 and

T1 in G1 − F1.
b: Merge the two DPCs through the k ′0,1 free edges.

FIGURE 3. Illustrations of procedure Find-UDPC-A.

4: Case when k1 + k ′0,1 = 0:

a: Pick up an edge (x, y) on a path in the DPC of G0
such that x+, (x, x+), y+, and (y, y+) are all fault-
free.

b: Replace the edge (x, y) with a Hamiltonian x+–y+

path of G1 − F1.

Claim 1: When k1 ≥ 1 or f0 ≤ f − 1, Procedure Find-
UDPC-A builds an unpaired k-DPC in G0 ⊕ G1 − F .
Proof. The k ′0,1 free edges of Step 1 exist, because there are
|V (G0)| candidate edges whereas at most f +2k of them could
be blocked (by f faults and 2k terminals), for which |V (G0)|−
(f +2k) ≥ 3m−1−(f +k)−k ≥ 3m−1−(2m−3)−(2m−3) ≥
2m− 3 ≥ k ≥ k ′0,1 for m ≥ 3. The unpaired (k0 + k ′0,1)-DPC
of Step 2 exists by the hypothesis of the theorem, because
f0 + (k0 + k ′0,1) = f0 + (k − k1) ≤ f + k − 1 = 2m − 4.
Also, the unpaired (k1 + k ′0,1)-DPC of Step 3 exists because
f1 + (k1 + k ′0,1) = f1 + (k − k0) ≤ f + k − 1 = 2m − 4.
Finally, the Hamiltonian path of Step 4 exists because f1 ≤
f = 2m− 3− k ≤ 2m− 5. Thus, this claim is proven. �
Case 1b: k1 = 0, f0 = f , and k0 ≥ 1 or f0 ≥ 1 (r = 1).

There are two basic procedures in this case, Find-UDPC-B
and Find-UDPC-C, depending on whether k0 = k or not.
Procedure Find-UDPC-B(S, T , F , G0 ⊕ G1)
/* k1 = 0, f0 = f , and k0 = k . See Figure 4. */
1: Build an unpaired (k0 − 1)-DPC joining S0 \ {s1} and
T0 \ {t1} in G0 − F0, where s1 and t1 are regarded as
nonterminals temporarily.

2: Case when there exists a path Pi in the DPC that passes
through both s1 and t1, say Pi = 〈si,Px , x,P1, y,Py, tσi〉
for some s1–t1 path P1:

a: Divide Pi into three path segments 〈si,Px , x〉, P1,
〈y,Py, tσi〉.

b: Combine 〈si,Px , x〉 with 〈y,Py, tσi〉 through a
Hamiltonian x+–y+ path of G1.
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FIGURE 4. Illustrations of procedure Find-UDPC-B.

3: Case when Pi and Pj, j 6= i, in the DPC pass through
s1 and t1, respectively, sayPi = 〈si,Px , x, s1,Pa, tσi〉 and
Pj = 〈sj,Pb, t1, y,Py, tσj〉:
a: Divide Pi into two path segments 〈si,Px , x〉 and
〈s1,Pa, tσi〉. Also, divide Pj into 〈sj,Pb, t1〉 and
〈y,Py, tσj〉.

b: Combine 〈si,Px , x〉 with 〈y,Py, tσj〉 through a
Hamiltonian x+–y+ path of G1.

Claim 2: When k1 = 0, f0 = f , and k0 = k , Procedure
Find-UDPC-B builds an unpaired k-DPC in G0 ⊕ G1 − F .
Proof. The unpaired (k0 − 1)-DPC of Step 1 exists by the

hypothesis of the theorem, because f0+(k0−1) = f +k−1 =
2m − 4. The Hamiltonian paths of Steps 2(b) and 3(b) also
exist because f1 = 0, proving this claim. �
In the remainder of Case 1b, we assume k0 < k , implying

k ′0,1 = k − k0 ≥ 1.
Procedure Find-UDPC-C(S, T , F , G0 ⊕ G1)
/* k1 = 0, f0 = f , and k0 < k . See Figure 5. */
1: Pick up k ′0,1−1 free edges betweenG0 andG1. Let Xi be

the set of endvertices of the free edges in Gi, i ∈ {0, 1}.
2: Build a generalized k-DPC in G0 − F0 joining S0 and
T0 ∪ X0 ∪ {u} for some vertex u ∈ V (G0) such that u+ is
not a sink if k ′0,1 = 1.

3: Build a generalized k ′0,1-DPC joining X1∪{u+} and T1 in
G1.

4: Merge the two DPCs through the free edges and edge
(u, u+).

Claim 3: When k1 = 0, f0 = f , and k0 < k , Procedure
Find-UDPC-C builds an unpaired k-DPC in G0 ⊕ G1 − F .
Proof. The existence of k ′0,1 − 1 free edges in Step 1

can be shown in the same way as the proof of Claim 1.
The generalized k-DPC of Step 2 exists by Lemma 8,
because f0 + (k − 1) = f + k − 1 = 2m − 4.
Also, the generalized DPC of Step 3 exists by Lemma 7,

FIGURE 5. Illustrations of procedure Find-UDPC-C.

because 0+ k ′0,1 = (f + k)− (f0+ k0) ≤ f + k−1 = 2m−4.
Note that if k ′0,1 = 1, the generalized k ′0,1-DPC of Step 3 is a
Hamiltonian path of G1 that joins u+ and the unique sink in
G1. Thus, this claim is proven. �
Case 1c: k ′0,1 = k and f = 0 (r = 1).Notice that this is the

exceptional configuration of the theorem, where k = 2m−3,
S ⊆ V (G0) and T ⊆ V (Gr ). A generalized (2m − 2)-DPC
joining S ∪ {vj} and T ∪ {ui} can be built as follows: (i) Pick
up 2m − 4 free edges bridging G0 and G1. Let Xi denote the
set of endvertices of the free edges inGi, i ∈ {0, 1}. (ii) There
exists a subset {u1, u2} of vertices in G0 such that G0 has a
generalized (2m − 3)-DPC joining S and X0 ∪ {ui} for each
ui by Lemma 8(a). (iii) Also, there exists a subset {v1, v2} of
vertices in G1 such that G1 has a generalized (2m − 3)-DPC
joining X1 ∪ {vj} and T for each vj again by Lemma 8(a). (iv)
It suffices to combine the DPC of G0 joining S and X0 ∪ {ui}
with the DPC of G1 joining X1 ∪ {vj} and T through the free
edges.

Hereafter, suppose r ≥ 2 for the inductive step, where
H ′, defined as G0 ⊕ · · · ⊕ Gr−1, is made of two or more
components. Chain H ′ always contains a terminal by the
assumption (1), whereas Gr may not contain a terminal.
Case 2a: Gr contains no terminals (r ≥ 2). The induction

hypothesis can be applied to chain H ′ to build an unpaired
k-DPC joining S and T in H ′ − F0,r−1 unless S and T form
the exceptional configuration of the theorem.
Procedure Find-UDPC-D(S, T , F , G0 ⊕ · · · ⊕ Gr )
/* Gr , r ≥ 2, contains no terminals. See Figure 6. */
1: Build an unpaired k-DPC joining S and T inH ′−F0,r−1.
2: Pick up an edge (x, y) ∈ E(Gr−1) on a path in the k-DPC

such that x+, (x, x+), y+, (y, y+) are all fault-free.
3: Replace the edge (x, y) with a Hamiltonian x+–y+ path

of Gr − Fr .
Claim 4: When Gr , r ≥ 2, contains no terminals, Pro-

cedure Find-UDPC-D builds an unpaired k-DPC in H − F
unless k = 2m− 3, S ⊆ V (G0) and T ⊆ V (Gr−1).
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FIGURE 6. Illustrations of procedure Find-UDPC-D.

Proof. The unpaired k-DPC of Step 1 exists, by the induc-
tion hypothesis, unless k = 2m − 3, S ⊆ V (G0) and T ⊆
V (Gr−1). The Hamiltonian path of Step 3 exists because fr ≤
f = (2m−3)−k ≤ 2m−5. Therefore, it suffices to show that
the edge (x, y) of Step 2 exists. The paths in the k-DPC collec-
tively pass through at least |V (Gr−1) \Fr−1| − 2k ≥ 3m−1−
fr−1−2k vertices ofGr−1 as intermediate vertices (excluding

the terminals). So, there are at least
⌈
1
2

(
3m−1 − fr−1 − 2k

)⌉
candidate edges for (x, y), whereas at most 2

(
fr + f ′r−1,r

)
of them could be blocked (two for each fault in
Fr ∪ F ′r−1,r ), for which

⌈
1
2

(
3m−1 − fr−1 − 2k

)⌉
−

2
(
fr + f ′r−1,r

)
≥

⌈
1
2

(
3m−1 − 2(f + k)− 2f

)⌉
≥⌈

1
2

(
3m−1 − 2(2m− 3)− 2(2m− 5)

)⌉
≥ 1 for m ≥ 3. Thus,

the edge (x, y) exists, thereby proving the claim. �
We are to build an unpaired k-DPC for the remaining case

where k = 2m − 3, S ⊆ V (G0) and T ⊆ V (Gr−1),
utilizing a generalized (2m− 3)-DPC of a component shown
in Lemma 8(a). Note that f = 0 by the assumption (3). If we
pick up 2m− 4 edges {(yi, y

+

i ) : i = 1, . . . , 2m− 4} bridging
G0 and G1 and build a generalized (2m − 3)-DPC joining
S and {y1, . . . , y2m−3} for some vertex y2m−3 ∈ V (G0),
then we can extend the 2m − 3 paths, each of which runs
from a source, to vertices in G1 through the edges (yi, y

+

i ),
i ∈ {1, . . . , 2m − 3}. Repeating this process r − 1 times,
we can extend the 2m − 3 paths to the vertices in Gr−1. Let
the paths be s1–s′1, . . ., s2m−3–s

′

2m−3 paths for some S ′ :=
{s′1, . . . , s

′

2m−3} ⊆ V (Gr−1). We can assume |S ′ ∩ T | ≤ 1,
because when picking up 2m − 4 edges between Gr−2 and
Gr−1, we only need to select those whose endvertices are
different from the sinks. It remains to build a generalized
(2m − 3)-DPC joining S ′ and T in Gr−1 ⊕ Gr . Procedure
Find-UDPC-B can be recycled for our purpose, except that
Gr−1 and Gr respectively are used instead of G0 and G1, and
that if |S ′ ∩ T | = 1, then S ′ ∩ T is regarded as a fault set
temporarily and S ′ \ (S ′∩T ) and T \ (S ′∩T ) are used instead
of S ′ and T , respectively.
Case 2b: Gr contains a terminal (r ≥ 2). In this case,

G0 contains a fault, or contains a terminal, even a source by
the assumptions (1) and (2). That is, f0 ≥ 1 or |S0| ≥ 1. Recall
that S = S0,r−1 ∪ Sr and T = T0,r−1 ∪ Tr . Furthermore,
k = k0,r−1 + kr + k ′r−1,r , where k

′

r−1,r is equal to the

FIGURE 7. Illustrations of procedure Find-UDPC-E.

difference between |S0,r−1| and |T0,r−1| and also equal to the
difference between |Sr | and |Tr |. Note that |Tr | ≥ |Sr | does
not always hold.
Procedure Find-UDPC-E(S, T , F , G0 ⊕ · · · ⊕ Gr )
/* Gr , r ≥ 2, contains a terminal. See Figure 7. */
1: Pick up k ′r−1,r free edges between Gr−1 and Gr . The

sets of endvertices of the free edges in Gr−1 and Gr ,
respectively, are denoted by Xr−1 and Xr .

2: Build an unpaired (k0,r−1 + k ′r−1,r )-DPC in H ′ − F0,r−1
joining S0,r−1 and T0,r−1 ∪ Xr−1 if |S0,r−1| ≥ |T0,r−1|;
otherwise, build an unpaired (k0,r−1+ k ′r−1,r )-DPC join-
ing S0,r−1 ∪ Xr−1 and T0,r−1.

3: Build an unpaired (kr + k ′r−1,r )-DPC in Gr − Fr joining
Sr and Tr∪Xr if |Sr | ≥ |Tr |; otherwise, build an unpaired
(kr + k ′r−1,r )-DPC joining Sr ∪ Xr and Tr .

4: Combine the two DPCs through the free edges.
Claim 5: When Gr , r ≥ 2, contains a terminal, Procedure

Find-UDPC-E builds an unpaired k-DPC in H − F unless
k = 2m− 3, S ⊆ V (G0) and T ⊆ V (Gr−1) ∪ V (Gr ).
Proof. The k ′r−1,r free edges of Step 1 exist for the same

reason as the free edges exist in Step 1 of Procedure Find-
UDPC-A. The unpaired (k0,r−1+k ′r−1,r )-DPC of Step 2 exists
unless k = 2m− 3, S ⊆ V (G0) and T ⊆ V (Gr−1) ∪ V (Gr ),
by the induction hypothesis. In addition, the unpaired (kr +
k ′r−1,r )-DPC of Step 3 exists because fr + (kr + k ′r−1,r ) ≤
f + k − 1 = 2m− 4. (Supposing fr + (kr + k ′r−1,r ) ≥ f + k ,
i.e., fr = f and kr + k ′r−1,r = k , leads to k0 = kr = 0 and
k ′r−1,r = k by the assumption (1), meaning f0 = fr = 0 and
f = 0. It follows from the assumptions (1), (2) and (3) that
k = 2m − 3, S ⊆ V (G0) and T ⊆ V (Gr ), which is the
exceptional case of this claim.) Thus, this claim is proven. �
It remains to consider the exceptional case of Claim 5,

where k = 2m− 3, S ⊆ V (G0), and T ⊆ V (Gr−1) ∪ V (Gr ).
Firstly, suppose T * V (Gr ). In the same way as the proof of
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Case 2a for the case when k = 2m− 3, S ⊆ V (G0) and T ⊆
V (Gr−1), we can build 2m−3 paths each of which runs from
a source to a vertex in Gr−1, denoted by s1–s′1, . . ., s2m−3–
s′2m−3 paths for some set S ′ := {s′1, . . . , s

′

2m−3} ⊆ V (Gr−1)
such that |S ′∩Tr−1| ≤ 1. It is sufficient to build a generalized
(2m − 3)-DPC joining S ′ and T in Gr−1 ⊕ Gr by recycling
Procedure Find-UDPC-C for the fault set F ′ := S ′∩Tr−1 and
terminal sets S ′ \ F ′ and T \ F ′.

Finally, suppose T ⊆ V (Gr ), that is, k = 2m − 3,
S ⊆ V (G0) and T ⊆ V (Gr ), which forms the exceptional
configuration of this theorem. Similar to Case 1c, a required
DPC can be built as follows: (i) Pick up 2m − 4 free edges
bridging G0 and G1. Let Xi denote the set of endvertices of
the free edges in Gi, i ∈ {0, 1}. (ii) Pick up 2m− 4 free edges
bridging Gr−1 and Gr . Let Yi denote the set of endvertices of
the free edges in Gi, i ∈ {r − 1, r}. It can be assumed that
X1 6= Yr−1 if r = 2. (iii) Build a generalized (2m − 4)-DPC
in G1,r−1 joining X1 and Yr−1, which exists by Lemma 7 (if
r = 2) and by the induction hypothesis (if r ≥ 3). (iv) Build
a generalized (2m − 3)-DPC in G0 joining S and X0 ∪ {ui}
for each ui in some subset {u1, u2}. (v) Build a generalized
(2m − 3)-DPC in Gr joining X1 ∪ {vj} and T for each vj in
some subset {v1, v2}. (vi) Merge the three DPCs, the DPC of
G1,r−1, the DPC of G0, and the DPC of Gr , through the free
edges. This completes the entire proof of Theorem 1.
Corollary 1: Let H be a chain G0 ⊕ · · · ⊕ Gr of (m − 1)-

dimensional torus-like graphs, where m ≥ 3 and r ≥ 1, such
that each Gi is f -fault unpaired k-disjoint path coverable for
any f and k ≥ 2 subject to f + k ≤ 2m− 4 and moreover, Gi
is (2m− 5)-fault Hamiltonian-connected and (2m− 4)-fault
Hamiltonian. Given distinct sets S, T of sources and sinks
and a fault set F in the chain H such that k ≥ 2 and f + k ≤
2m− 3, there exists a generalized k-DPC joining S and T in
H −F except for the case when k = 2m− 3, S ⊆ V (G0) and
T ⊆ V (Gr ).

Proof: For F ′ = S ∩ T and f ′ = |F ′|, a generalized
k-DPC joining S and T in H − F can be easily built from
an unpaired (k − f ′)-DPC joining S \ F ′ and T \ F ′ in
H − (F ∪ F ′).
Remark 1: In the exceptional configuration of Theorem 1

where k = 2m − 3, S ⊆ V (G0) and T ⊆ V (Gr ), it is not
known whether or not an unpaired (2m − 3)-DPC joining S
and T exists in H .

IV. UNPAIRED DISJOINT PATH COVERS IN TORUS-LIKE
GRAPHS
Let G be an m-dimensional nonbipartite torus-like graph,
m ≥ 3, composed of d components G0, . . . ,Gd−1, where
each component Gi is an (m − 1)-dimensional torus-like
graph. In this section, we demonstrate that the torus-like
graph G has a good disjoint-path-cover property if every
component Gi has good Hamiltonian and disjoint-path-cover
properties. Specifically, we provide a constructive proof of
the theorem presented below, according to which we can
design an algorithm for building an unpaired k-disjoint path
cover in a torus-like graph with faulty elements.

Theorem 2: Let G be an m-dimensional nonbipartite torus-
like graph, m ≥ 3, composed of d components G0, . . . ,Gd−1
such that eachGi is f -fault unpaired k-disjoint path coverable
for any f and k ≥ 2 subject to f + k ≤ 2m− 4 and moreover,
Gi is (2m − 5)-fault Hamiltonian-connected and (2m − 4)-
fault Hamiltonian. Then, G is f -fault unpaired k-disjoint path
coverable for any f and k ≥ 2 subject to f + k ≤ 2m− 2.

Proof: For the proof, assume that we are given disjoint
terminal sets S = {s1, . . . , sk} and T = {t1, . . . , tk} in G,
along with a fault set F such that

f + k = 2m− 2. (4)

If the fault set F contains an inter-component edge, say an
edge bridging Gd−1 and G0, then our problem of building
an unpaired k-DPC joining S and T in G − F is reduced to
a problem of building an unpaired k-DPC joining S and T
in the chain G0 ⊕ · · · ⊕ Gd−1, the spanning subgraph of G
with all the edges between G0 and Gd−1 being deleted. The
required k-DPC in the chain exists, by Theorem 1, unless
k = 2m − 3, the sources are all contained in one of two
components G0 and Gd−1 and the sinks are all contained in
the other component, because the chain contains f −1 or less
faulty elements. For the exceptional case where k = 2m− 3,
S ⊆ V (G0) and T ⊆ V (Gd−1), we first pick up 2m− 4 fault-
free edges between G0 and Gd−1, and let Xi denote the set of
endvertices of the picked edges in Gi, where i ∈ {0, d − 1}.
Then, there is a generalized (2m − 3)-DPC in G0 joining S
and X0 ∪ {u} for some vertex u by Lemma 8(a); also, there
is a generalized (2m − 3)-DPC in Gd−1 joining Xd−1 ∪ {v}
and T for some vertex v with v− 6= u+ again by Lemma 8(a).
It suffices to merge the two DPCs through the 2m− 4 edges,
and then connect u+ and v− via a Hamiltonian path of a chain
G1,d−2, possibly made of a single component.
Hereafter in this proof, we assume that there is no inter-

component edge fault, leading to f = f0 + · · · + fd−1. Also,
we assume that for each i ∈ {1, . . . , d − 1},

f0 > fi,

or f0 = fi and k0 > ki,

or f0 = fi and k0 = ki and |S0 ∪ T0| ≥ |Si ∪ Ti|. (5)

We can further assume

|S0| ≥ |T0|, (6)

because the source and sink sets are interchangeable. There
are four cases according to the distribution of faults and
terminals.
Case 1: fi + ki + k ′i ≤ f + k − 2 and fi + ki ≥ 1 for some

i ∈ {0, . . . , d − 1}. We first present a basic procedure for
building an unpaired k-DPC in G that relies on a generalized
(ki + k ′i )-DPC of Gi and a generalized (k − ki)-DPC of H :=
G − Gi. The procedure is applicable in most cases, leaving
two exceptional cases that will be dealt with separately. For
the sake of simplicity, let us assume |Si| ≥ |Ti|; we further
assume w.l.o.g. S − Si * V (Gi+1) or T − Ti * V (Gi−1) in
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FIGURE 8. Illustrations of procedure Find-UDPC-F.

order to block the possibility of the exceptional configuration
of Theorem 1 in H .
Procedure Find-UDPC-F(S, T , F , G)
/* fi + ki + k ′i ≤ f + k − 2 and fi + ki ≥ 1. See Figure 8. */
1: For a set A of k ′i sources in Gi, let A1 = {sj ∈ A : s+j

is a nonterminal and s+j , (sj, s
+

j ) are both fault-free} and
A2 = A \ A1.

2: Case when A1 6= Si, i.e., ki + |A2| ≥ 1:

a: Pick up |A2| free edges between Gi and Gi+1. Let Xj
denote the set of endvertices of the free edges in Gj,
j ∈ {i, i+ 1}, and let B1 = {s

+

j : sj ∈ A1}.
b: Build a generalized (ki+ k ′i )-DPC in Gi−Fi joining

Si and Ti ∪ A1 ∪ Xi.

3: Case when A1 = Si, i.e., ki = 0 and A2 = ∅:

a: Pick up a single free edge (x, x+) between Gi and
Gi+1. For a source s1 ∈ A1, let A′1 = A1 \ {s1} and
B1 = {s

+

j : sj ∈ A
′

1}.
b: Build a generalized (ki+ k ′i )-DPC in Gi−Fi joining

Si and A′1 ∪ Xi.

4: Build an unpaired (k − ki)-DPC in H − Fi+1,i−1 joining
Si+1,i−1 ∪ (B1 ∪ Xi+1) and Ti+1,i−1.

5: Combine the two DPCs through the free edges and
{(sj, s

+

j ) : s
+

j ∈ B1}.

Claim 6: When fi + ki + k ′i ≤ f + k − 2 and fi + ki ≥ 1,
Procedure Find-UDPC-F builds an unpaired k-DPC inG−F
unless (i) ki + k ′i = 0 or (ii) ki = k .
Proof. Suppose that ki + k ′i ≥ 1 and ki < k . The |A2| free

edges of Step 2(a) exist because |V (Gi)| − (f + 2k − |A2|) ≥
3m−1−(f +k)−k+|A2| ≥ 3m−1−(2m−2)−(2m−2)+|A2| >
|A2| for m ≥ 3. The free edge of Step 3(a) also exists for a
similar reason that |V (Gi)| − (f + 2k) ≥ 1. The generalized
(ki + k ′i )-DPCs of Steps 2(b) and 3(b) exist by Lemma 7,

because fi + (ki + k ′i ) ≤ f + k − 2 = 2m − 4. Finally,
the (k − ki)-DPC of Step 4 exists by Theorem 1, because
fi+1,i−1+(k−ki) = (f −fi)+(k−ki) = f +k−(fi+ki) ≤ f +
k − 1 = 2m− 3. Therefore, the claim is proven. �
We now address the exceptional case (i) of Claim 6 where

ki + k ′i = 0 (and fi ≥ 1). If k ≥ 3 or fi < f , meaning
fi ≤ 2m − 5, then it suffices to build an unpaired k-DPC
joining S and T in H − Fi+1,i−1, which exists according to
Theorem 1, and then replace an edge (x, y) ∈ E(Gi+1) on a
path in the DPC such that x−, y− /∈ F with a Hamiltonian
x−–y− path of Gi − Fi. Now, suppose that k = 2 and fi = f
(= 2m− 4). If Gi+1 or Gi−1, say Gi+1, contains no terminal,
we can build a required 2-DPC analogously from an unpaired
2-DPC of Gi+2,i−1 and a Hamiltonian path of Gi,i+1 − Fi.
Note that Gi,i+1−Fi is Hamiltonian-connected by Lemma 9.
If Gi+1 contains a single terminal, say s1, then for some free
edge (x, x+) bridging Gi+1 and Gi+2, it suffices to build a
Hamiltonian s1–x path in Gi,i+1−Fi and an unpaired 2-DPC
joining {x+, s2} and {t1, t2} in Gi+2,i−1, and then merge them
into a required 2-DPC. Finally, if G1 contains two terminals,
say s1 and s2, then for some edge (x, y) ∈ E(Gi+1) on a
Hamiltonian s1–s2 path of Gi,i+1 − Fi such that both x+

and y+ are nonterminals, it suffices to combine an unpaired
2-DPC ofGi+2,i−1 with the s1–x and s2–y paths properly. For
the exceptional case (ii) of Claim 6 where ki = k , it suffices
to build an unpaired k-DPC joining S and T inGi−Fi, which
exists because fi + k = fi + ki + k ′i ≤ f + k − 2 = 2m − 4,
and replace an edge (x, y) on a path in the DPC such that
x+, y+ /∈ F with a Hamiltonian x+–y+ path of H −Fi+1,i−1.
Case 2: f0 ≤ f − 1. If f0 ≤ f − 2, then f ≥ 2 and f0 ≥ 1 by

the assumption (5); hence, the case f0 ≤ f − 2 is reduced
to Case 1 for i = 0. Similarly, the case f0 = f − 1 is also
reduced to Case 1 for i = 0 unless k0+k ′0 = k . So, it remains
to consider the case where f0 = f − 1 and k0 + k ′0 = k . Let
Gp be the component other than G0 that contains a fault, that
is, fp = 1 and fj = 0 for all j 6= 0, p. If fp ≤ f − 2 or if
fp = f − 1 and kp + k ′p < k , then the remaining case is also
reduced to Case 1 for i = p. Thus, we further assume that
fp = f −1 and kp+ k ′p = k , meaning f0 = fp = 1, f = 2, k =
2m−4, S ⊆ V (G0) and T ⊆ V (Gp). Assumingw.l.o.g. p 6= 1,
it suffices to extract the sj–xj paths for j ∈ {1, . . . , k} from
a Hamiltonian cycle (s1, . . . , x1, s2, . . . , x2, . . . , sk , . . . , xk )
of G0 − F0, and then combine them with a unpaired k-DPC
joining {x+1 , . . . , x

+

k } and T inG1,d−1−Fp through the edges
(xj, x

+

j ) for j ∈ {1, . . . , k}.
Case 3: f0 = f ≥ 1, or f0 = f = 0 and k0 ≥ 1. This

case is reduced to Case 1 for i = 0 if k0 + k ′0 ≤ k − 2,
because f0 = f and f0+k0 ≥ 1. Thus, it is sufficient to handle
the remaining case where k0 + k ′0 ≥ k − 1. Firstly, suppose
k0 + k ′0 = k , meaning S ⊆ V (G0). If 0 ≤ k0 ≤ k − 2,
then assuming w.l.o.g. that not all sinks in G1,d−1 belong
to Gd−1, i.e., T1,d−1 * V (Gd−1) to avoid the exceptional
configuration of Theorem 1, we can build a required k-DPC
in the following manner: (i) Pick up (k − 2) − k0 free edges
between G0 and G1. Let Xi denote the set of endvertices of
the free edges in Gi for i ∈ {0, 1}. (ii) Build a generalized
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k-DPC in G0 − F0 joining S and T0 ∪ X0 ∪ {u, v} for
some vertices u, v ∈ V (G0) such that {u+, v+} 6= T1,d−1,
using Lemma 8(b). (iii) Combine the k-DPC of G0 with a
generalized (k − k0)-DPC joining X1 ∪ {u+, v+} and T1,d−1
in G1,d−1. The existence of (k − 2) − k0 free edges is due
to |V (G0)| − (f + 2k) ≥ 3m−1 − (f + k)−k ≥ 3m−1 −
(2m−2)− (2m−2) ≥ 2m−5 ≥ (k−2)−k0 form ≥ 3. Note

that (k−2)−k0 ≤
{
(2m− 3− 2)− 0 = 2m− 5 if f0 ≥ 1,
(2m− 2− 2)− 1 = 2m− 5 if k0 ≥ 1.

If k0 = k − 1, there is a single sink, say tk , outside G0.
Assuming w.l.o.g. G1 has no terminals, we first build an
unpaired (k − 1)-DPC in G0 ⊕ G1 − F0 joining S \ {s1} and
T0. By dividing a path in the (k−1)-DPC that passes through
s1 into two path segments, we can build a generalized k-DPC
joining S and T0 ∪ {u} for some vertex u. The path in the
DPC that runs to u is denoted as the sa–u path. Let u′ be
the neighbor of u in G2,d−1. (The neighbor u′ will be u− if
u belongs to G0; u′ will be u+ if u belongs to G1.) If u′ 6= tk ,
it suffices to combine the sa–u path with a Hamiltonian u′–tk
path of G2,d−1; if u′ = tk , it suffices to extend the sa–u path
to u′ by one and then replace an edge (x, y) on a path in the
generalized k-DPC such that x, y 6= u with a Hamiltonian
x ′–y′ path of G2,d−1−{tk}, where x ′ and y′ are the neighbors
of x and y in G2,d−1, respectively.

Similar to the case where k0 = k − 1, we can build a
required k-DPC when k0 = k . However, instead of building
an unpaired (k − 1)-DPC joining S \ {s1} and T0, we build
an unpaired (k − 1)-DPC in G0 ⊕ G1 − F0 joining S \ {s1}
and T \ {t1}, from which we build a generalized (k + 1)-DPC
joining S ∪ {u} and T ∪ {v} for some vertices u and v. Let
the sa–v path denote the path in the DPC that runs to v, and
let the u–tb path denote the path that runs from u. The sa–v
and u–tb paths are merged into an sa–tb path; the vertices of
G2,d−1 are covered by the sa–tb path or some other path in the
generalized (k+1)-DPC depending on whether the neighbors
u′ and v′ of u and v in G2,d−1 are distinct or not.
Secondly, suppose k0+k ′0 = k−1. Let S0 = {s1, . . . , sk−1}

and sk belong to G1,d−1. Similar to the previous case where
k0 + k ′0 = k , an unpaired k-DPC joining S and T can be
built. If k0 ≤ k − 2, then assuming w.l.o.g. that not all sinks
in G1,d−1 belong to Gd−1, we build a required k-DPC as
described below: (i) Pick up (k − 2)− k0 free edges bridging
G0 and G1. Let Xi denote the set of endvertices of the free
edges in Gi, i ∈ {0, 1}. (ii) Build a generalized (k − 1)-DPC
in G0 − F0 joining S0 and T0 ∪ X0 ∪ {u} for some vertex u
with u+ 6= sk , using Lemma 8(a). (iii) It suffices to build a
generalized (k−k0)-DPC inG1,d−1 joining {sk , u+}∪X1 and
T1,d−1 and merge the two DPCs.

Let k0 = k − 1 and T0 = {t1, . . . , tk−1} now. If G1 has no
terminals, it suffices to build an unpaired (k−1)-DPC inG0⊕

G1 joining S0 and T0 and then build a Hamiltonian sk–tk path
inG2,d−1. IfGd−1 has no terminals, a required k-DPC can be
built symmetrically. Finally, we assume that sk and tk belong
to G1 and Gd−1, respectively. From an unpaired (k−1)-DPC
joining S0 and T0 in G0 ⊕ G1, we can build a generalized

k-DPC joining S and T0 ∪ {u} for some vertex u ∈ V (G0) ∪
V (G1). For a neighbor u′ of u inG2,d−1, it suffices to combine
a path in the DPC running to u with a Hamiltonian u′–tk path
of G2,d−1 if u′ 6= tk ; if u′ = tk , it suffices to extend the path
running to u by one to tk and then replace an edge (x, y) on a
path in the DPC such that x, y 6= u with a Hamiltonian x ′–y′

path of G2,d−1 − {tk}, where x ′ and y′ are the neighbors of x
and y in G2,d−1, respectively.
Case 4: f = 0 and k0 = 0. The assumption (4) leads to

k = 2m − 2. In particular, the assumption (5) states that no
component has both a source and a sink, and that G0 has no
fewer terminals than other components, that is, ki = 0 and
k ′0 ≥ k ′i for all i ∈ {0, . . . , d − 1}. There are two subcases
depending on whether k ′0 < k or not.
Case 4.1: k ′0 < k. Every component contains fewer than k

terminals; therefore, the number of components inG is at least
four, i.e., d ≥ 4 in this subcase. There exists a chain H :=
Gp,q such that (i) one of Gp and Gq contains a source and
the other contains a sink, and (ii) every component other than
Gp and Gq in chain H contains no terminals. For simplicity,
we assume Gp contains a source, Gq contains a sink, and
|Sp| ≥ |Tq|. We further assume |Sp| is the maximum possible
over all chains satisfying the above conditions (i) and (ii).
Recall that |Sp| = kp,q + k ′p,q and |Tq| = kp,q.
LetH ′ be the chainG−Gp,q, which is made of two or more

components. Suppose we can pick up k ′p,q free edges between
H and H ′ in such a way that (i) there exists an unpaired
(kp,q + k ′p,q)-DPC joining Sp and Tq ∪ X and (ii) there exists
an unpaired (k − kp,q)-DPC joining (S \ Sp) ∪ Y and T \ Tq,
where X and Y are the sets of endvertices of the free edges in
H andH ′, respectively. Then, we can build a required k-DPC
just by merging the two DPCs through the free edges. The
numbers kp,q + k ′p,q and k − kp,q are both nonzero and less
than k , so by Theorem 1, it suffices to pick the free edges so
that the Sp and Tq∪X pair inH and the (S \Sp)∪Y and T \Tq
pair in H ′ both do not form the exceptional configurations of
the theorem.
Claim 7: It is possible to pick up k ′p,q free edges between

H andH ′ to avoid the exceptional configuration of Theorem 1
unless kp,q = 2m− 3, that is, |Sp| = |Tq| = k − 1.
Proof. Suppose kp,q 6= 2m− 3. If k ′p,q ≥ 2, then it suffices

to pick up dk ′p,q/2e free edges betweenGp andGp−1 and then
pick up bk ′p,q/2c frees between Gq and Gq+1. The free edges
exist because |V (G0)| − (2k − 2) ≥ 3m−1− 2(2m− 2)+ 2 ≥
2m− 3 = k − 1 for m ≥ 3. If k ′p,q = 1, it suffices to select a
single free edge between Gp and Gp−1. The (S \ Sp) ∪ Y and
T \Tq pair in H ′ does not form an exceptional configuration.
(Supposing otherwise means |Sp−1| = k − 2 and |Tq−1| =
k−1, leading to |Sp| = k−1 and |Sp|+ |Sp−1| = 2k−3 > k
for k = 2m−2 ≥ 4, which is a contradiction.) If k ′p,q = 0 and
kp,q < 2m−3, the Sp and Tq pair does not form an exceptional
configuration; so does the S \ Sp and T \ Tq pair, as required,
thereby proving the claim. �

It remains to consider the case when |Sp| = |Tq| = k − 1,
where the pair of terminal sets Sp and Tq in H forms the
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exceptional configuration of Theorem 1. Thus, there exists
a generalized k-DPC in H joining Sp ∪ {vj} and Tq ∪ {ui} for
some ui ∈ V (Gp) and vj ∈ V (Gq) such that u

−

i and v+j are both
nonterminals. It suffices to combine the generalized DPC of
H with an unpaired 2-DPC of H ′ joining (S \ Sp) ∪ {u

−

i } and
(T \ Tq) ∪ {v

+

j } through edges (ui, u
−

i ) and (vj, v
+

j ).
Case 4.2: k ′0 = k. Component G0 contains k sources and

S0 = S. We assume w.l.o.g.G1 has no fewer sinks thanGd−1,
i.e., |T1| ≥ |Td−1|. There are four possibilities depending on
the number of sinks in G1. Firstly, suppose |T1| ≥ k − 1.
A required k-DPC can be built as follows: (i) Pick up
k − 2 edges, not necessarily free edges, between G0 and G1.
Let Xi denote the set of endvertices of the picked edges in Gi,
i ∈ {0, 1}. (ii) If |T1| = k , it suffices to build a generalized
k-DPC inG1 joiningX1∪{u, v} and T1 for some vertices u and
v, build a generalized k-DPC in G0 joining S0 and X0 ∪ {x, y}
for some vertices x, y such that {x−, y−} 6= {u+, v+}, and
then build a generalized 2-DPC in G2,d−1 joining {x−, y−}
and {u+, v+}. (iii) If |T1| = k − 1, assuming w.l.o.g. tk /∈ T1,
it suffices to build a generalized (k − 1)-DPC in G1 joining
X1 ∪ {u} and T1 for some u with u+ 6= tk , build a generalized
k-DPC inG0 joining S0 and X0∪{x, y} for some x, y such that
{x−, y−} 6= {tk , u+}, and then build a generalized 2-DPC in
G2,d−1 joining {x−, y−} and {tk , u+}. The generalized DPCs
exist owing to Lemma 8 and Corollary 1.

Secondly, suppose 2 ≤ |T1| ≤ k − 2. We first pick up
(k − 2) − |T1| free edges between G0 and Gd−1. The free
edges exist because |V (G0)|− (2k−2) ≥ 3m−1− (4m−6) ≥
2m−4 = k−2 form ≥ 3. Let Xi denote the set of endvertices
of Pthe free edges in Gi, i ∈ {0, d − 1}. In addition, we pick
up |T1| edges, not necessarily free edges, between G0 and
G1 such that Y0 ∩ X0 = ∅ and Y1 6= T1, where Yj is the
set of endvertices of the picked edges in Gj, j ∈ {0, 1}. It is
sufficient to merge the following three DPCs: a generalized
k ′1-DPC in G1 joining Y1 and T1, a generalized k-DPC in
G0 joining S and X0 ∪ Y0 ∪ {u, v} for some vertices u, v with
{u+, v+} 6= T2,d−1, and a generalized (k−k ′1)-DPC inG2,d−1
joining Xd−1 ∪ {u+, v+} and T2,d−1.
Thirdly, suppose |T1| = 1. It follows |Td−1| ≤ 1, meaning

d ≥ 4 because k = 2m−2 ≥ 4. We pick up k−2 free edges,
one edge between G0 and Gd−1 and k − 3 edges between
G1 and G2. Let Xi denote the set of endvertices of the free
edges in Gi, i ∈ {0, 1, 2, d − 1}. We can build a generalized
k-DPC in G0 ⊕ G1 joining S and T1 ∪ X0 ∪ X1 ∪ {u} for
some vertex u, from an unpaired (k−1)-DPC joining S \ {s1}
and T1 ∪ X0 ∪ X1, which exists by Theorem 1. It suffices to
combine the generalized k-DPC with a generalized (k − 1)-
DPC in G2,d−1 joining X2 ∪ Xd−1 ∪ {u′} and T2,d−1, where
u′ is the neighbor of u contained in G2,d−1.
Finally, suppose |T1| = 0, leading to |Td−1| = 0 and

d ≥ 4. If |Tp| = k or k − 1 for some p ∈ {2, . . . , d − 2},
assumingw.l.o.g. |Ti| = 0 for all i ∈ {1, . . . , p−1}, a required
DPC can be built as follows: (i) Pick up k− 2 free edges, one
edge between G0 and Gd−1 and k − 3 edges between G0 and
G1, such that no two of them are adjacent. Let Xi denote the

set of endvertices of the free edges in Gi, i ∈ {0, 1, d − 1}.
(ii) Build a generalized k-DPC inG0 joining S0 andX0∪{u, v}
for some vertices u, v. (iii) Pick up k − 2 free edges, one
edge between Gp and Gp+1 and k − 3 edges between Gp and
Gp−1, such that no two of them are adjacent and moreover,
Yp−1 and X1 are disjoint, Yp+1 and Xd−1 are also disjoint,
where Yj denotes the set of endvertices of the free edges in
Gj, j ∈ {p − 1, p, p + 1}. (iv) If |Tp| = k , there exists a
generalized k-DPC in Gp joining Yp ∪ {x, y} and Tp for some
vertices x and y. Assuming w.l.o.g. X1 ∪ {u+}, Yp−1 ∪ {x−}
are distinct and Xd−1 ∪ {v−}, Yp+1 ∪ {y+} are also distinct, it
suffices to combine the DPCs ofG0 andGp with a generalized
(k − 2)-DPC in G1,p−1 joining X1 ∪ {u+} and Yp−1 ∪ {x−}
and a generalized 2-DPC inGp+1,d−1 joiningXd−1∪{v−} and
Yp+1 ∪ {y+}. (v) If |Tp| = k − 1, there exists a generalized
(k − 1)-DPC in Gp joining Yp ∪ {x} and Tp for some vertex
x. Assuming w.l.o.g. tk /∈ Tp, X1 ∪ {u+} and Yp−1 ∪ {x−}
are distinct, Xd−1 ∪ {v−} and Yp+1 ∪ {tk} are also distinct, it
suffices to combine the DPCs ofG0 andGp with a generalized
(k − 2)-DPC in G1,p−1 joining X1 ∪ {u+} and Yp−1 ∪ {x−}
and a generalized 2-DPC in Gp+1,d−1 joining Xd−1 ∪ {v−}
and Yp+1 ∪ {tk}. Now, we assume |Ti| ≤ k − 2 for all
i ∈ {1, . . . , d − 1}. The number of components d is 5 or
more because G1 and Gd−1 contain no sinks and not all sinks
are contained in one component. Let p be an index such that
|Tp| ≥ 1 and |Ti| = 0 for all i ∈ {1, . . . , p− 1}. Then, chains
G1,p andGp+1,d−1 are bothmade of two ormore components.
A required DPC can be built as follows: (i) Pick up k−2 free
edges, |Tp| edges betweenG0 andG1 and (k−2)−|Tp| edges
betweenG0 andGd−1, such that no two of them are adjacent.
Let Xi denote the set of endvertices of the free edges in Gi,
i ∈ {0, 1, d−1}. (ii) Build a generalized k-DPC inG0 joining
S0 andX0∪{u, v} for some vertices u, v. (iii) Build an unpaired
|Tp|-DPC in G1,p joining X1 and Tp. (iv) Build a generalized
(k − |Tp|)-DPC in Gp+1,d−1 joining Xd−1 ∪ {u−, v−} and
T \Tp. (v) Merge the three DPCs into a required k-DPC. This
completes the entire proof.
Corollary 2: Let G be an m-dimensional torus-like graph,

m ≥ 3, that satisfies the preconditions of Theorem 2. Given
distinct sets S and T of sources and sinks, and a fault set F
in G such that k ≥ 2 and f + k ≤ 2m − 2, there exists a
generalized k-DPC joining S and T in G− F.
Combining Lemmas 2 and 3 with Theorem 2 leads to that:
Theorem 3: Every m-dimensional nonbipartite torus,

m ≥ 2, is f -fault unpaired k-disjoint path coverable for any
f and k ≥ 1 subject to f + k ≤ 2m− 2.

V. CONCLUSION
In this paper, we have studied the unpaired disjoint path
covers of a nonbipartite torus-like graph made of components
with good Hamiltonian and disjoint-path-cover properties.
Specifically, we proved that an m-dimensional nonbipartite
torus-like graph, m ≥ 3, composed of d components is
f -fault unpaired k-disjoint path coverable for any f and k ≥
2 subject to f + k ≤ 2m− 2 if each component Gi is f -fault
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unpaired k-disjoint path coverable for any f and k ≥ 2 subject
to f + k ≤ 2m − 4 and moreover, Gi is (2m − 5)-fault
Hamiltonian-connected and (2m−4)-fault Hamiltonian. As a
result, we know that an m-dimensional nonbipartite torus,
m ≥ 2, is f -fault unpaired k-disjoint path coverable for any f
and k ≥ 1 subject to f + k ≤ 2m− 2. It is open to determine
whether a three-dimensional or higher-dimensional nonbi-
partite torus admits an optimal construction of an unpaired
disjoint path cover, that is, whether an m-dimensional non-
bipartite torus, m ≥ 3, is f -fault unpaired k-disjoint path
coverable for any f and k ≥ 2 subject to f + k ≤ 2m− 1.
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