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ABSTRACT To enhance the effectiveness and flexibility of the data alignment in the multi-view measure-
ment system, a measurement strategy based on pose estimation using deep learning is proposed. The object
pose is estimated and established through a single-shot pose estimation network. Then, the coarse alignment
of the data acquired from different views is performed using the estimated 6D pose. The ICP algorithm is
utilized for global refinement. Different shapes are used to verify the effectiveness, robustness, and flexibility
of the deep learning-based multi-view measurement strategy. Furthermore, error comparisons of data fusion
using markers and deep learning are implemented. The translation error of pose estimation is 1.8-5 mm,
and the angle error can reach 0.5-1 degree. The difference between the marker-based and proposed data
alignment method is only 0.02 mm. The proposed method can achieve comparable data alignment accuracy
with the marker-based method. Moreover, it increases the flexibility and convenience of the data alignment
and provides an improved way for existing marker- and shape-based multi-view measurement systems.

INDEX TERMS Multi-view structured light measurement, pose estimation, deep learning, data alignment.

I. INTRODUCTION
With the increasing requirements for the entire shape mea-
surement of complex objects, there is a growing research
interest in multi-view structured light measurement (MSLM)
technology [1], [2], [3]. Generally, an MSLM system, con-
taining a projector and a single camera, can reconstruct a
certain range of object surfaces, obtaining a high-density
point cloud. However, due to the presence of cross occlusions,
extended measurement depth, and limited imaging field of
view (FOV), only a part of the object can be measured at
a time. Therefore, to reconstruct the overall shape, MSLM
followed by data registration affords a direct and effective
approach [4], [5]. Typically, two sequential steps, including
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rough rigid transformation and global refinement, are con-
sidered a common strategy for such an alignment process.
The Iterative Closest Point (ICP) algorithm is widely utilized
in the global optimization process owing to its high preci-
sion and low time computation [6]. However, the effective-
ness and accuracy of the ICP algorithm mainly rely on the
rough registration result. Therefore, in the MSLM system,
the determination of the initial transformationmatrix between
two measurement coordinate systems becomes the basic and
crucial problem. This paper researches an MSLM system,
proposing deep learning-based viewpoint estimation from a
single image for initial point cloud registration.

The related work is divided into two categories: (1) coarse
alignment mode in multi-view measurements. (2) deep
learning-based point cloud registration. The first category
introduces different modes of coarse alignment in the
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existing multi-view measurement system. The second cate-
gory reviews the deep learning-based point cloud registration
for multi-view measurement.

A. COARSE ALIGNMENT MODE IN MULTI-VIEW
MEASUREMENTS
The approaches of the coarse alignment vary from the
tracking-based [7], [8], [9], [10], [11], [12], marker-based
[13], [14] and shape-based [15], [16], [17] modes. Specif-
ically, the tracking-based technique is the combination of
the global tracking system such as monocular vision [9],
stereovision [11], laser tracker [12], etc., and the scanning
device such as the laser scanner, structured light system, etc.
In such systems, the target with identifiable and measurable
markers moves in the working volume of the tracking system,
contributing to data transferring and global alignment. The
tracking-based mode enhances the flexibility of multi-view
reconstruction. However, the transformation between differ-
ent perspectives is estimated by the position and location
of the markers attached to the target. The data registration
will be discontinuous if the markers on the target cannot be
recognized from certain views. The marker-based multi-view
measurement methods focus on the detection of the fiducial
markers that are distributed on overlapping views. Typically,
different marker types such as coded markers [17], circle
markers [14], ArUco [18], etc. are designed to enhance the
identifiability of different measurement ranges. Therefore,
it is necessary to attach the markers to the object’s surface
and detect them at the early stage. As a result, the registration
will be discontinuous or suspended when the common mark-
ers in different perspectives cannot be extracted correctly.
Additionally, the marker density influences the accuracy and
integrity of the 3-D reconstruction. The shape-based methods
align the point clouds in different views based on the geo-
metrical and topological features of the overlapping areas.
The rich information and the invariant features under different
imaging environments are the essential conditions of shape
description and feature matching. However, weak textures
and poor features are unable to provide matching information
for data alignment. Especially for flat or uniform curvature
geometries, such a shape-based technique is no longer prac-
tically appropriate. It can be concluded that the marker- and
shape-based methods rely on the features, eighter designed
markers or inherent features, on measurement objects, and
the tracking-based methods need stable markers attached to
the tracking targets. The data measured from different views
are registered preliminarily with recognizable features in the
overlapping areas. Additional optical elements, such as mir-
rors, can increase the one-shot measurement range [19], but
the actual implementation is not flexible and limited by the
object size [20], [21].

B. DEEP LEARNING-BASED POINT CLOUD REGISTRATION
Recent years have seen the development of the deep learning-
based data registration method in optical measurement. The
rapid development of deep learning technology has enabled

new approaches in structured light measurement in terms
of robust phase unwrapping, high-speed profilometry, sensor
fusion, and others [1], [22]. The advantages of deep learning
methods, including environment-independent, illumination
immunity, and superior performance for high-dimensional,
high-complexity problems, improve the stability and reli-
ability of optical measurements that are certainly depen-
dent on a stable measurement environment. The data from
different perspectives can be easily fused by substituting
the above-mentioned marker- and shape-based methods with
deep learning where the pose of the acquisition system under
each measurement perspective is estimated with a priori
knowledge. Chang et al. proposed a registration architecture
for relative pose estimating and 3-D point cloud registration
based on Convolutional Neural Networks (CNN) [23]. How-
ever, the pose of the current viewpoint is estimated through
the reconstructed point cloud, resulting in the increasing
complexity and larger computation of network training. Fur-
thermore, if 3D data is available, the measurement pose
can be preliminarily obtained by registering with the CAD
model, making the deep learning method unnecessary in such
applications. Jack et al. [24] proposed a learn-based free-
form deformation (FFD) method for 3D reconstruction from
a single image. The network can be used to produce arbitrar-
ily dense point clouds with fine-grained geometry. Different
from estimating the pose with reconstruction, determining the
object pose from one single image will significantly improve
the accuracy and efficiency. Detecting 3D objects and esti-
mating their 6D pose from one view image has been investi-
gated in many works such as DPOD [26], YOLO6D [27], etc.
The excellent performance in pose estimation of various
shapes in an occlusion environment indicates its potential and
valuable application in multi-view transformation establish-
ment. Additionally, the learning-based approach has a better
ability in managing geometric operations, such as calculating
the camera pose [28] or the transformation parameters [29].
Therefore, it can be concluded that the learning-basedmethod
can improve the flexibility and efficiency of the data reg-
istration in multi-view measurement. Also, it is meaningful
to develop a learning-based multi-view optical measurement
system.

It can be inferred from the above research that the data
registration in the multi-view structured light measurement
system relies on the attached markers or the surface features,
weakening the system’s flexibility and efficiency. To establish
and validate a general multi-view data registration approach
without additional features, we propose pose estimation for
measurement view determination and data alignment based
on a deep learning network. The novelty and contribution are
listed as follows. (a)We investigate a pose estimation network
combined with the ICP algorithm. The additional markers or
rich surface features are not required in the proposed method,
contributing to the flexibility and easy implementation for
multi-view measurement. (b) We provide experimental veri-
fication for the proposed measurement system, focusing on
the accuracy and effectiveness of the pose estimation and
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the global data registration. The major contribution is that
we eliminate the dependence on the markers or features in
the multi-view structured light measurement, replacing the
traditional marker- or feature-based pose estimation method
with a deep learning-based method and devoting to a more
flexible data registration for the multi-view structured light
measurement system.

The remainder of the paper is organized as follows.
Section II states the principle of the proposed strategy, includ-
ing the network preparation and training details and the data
alignment procedure. Section III presents the experiments
and discussions about pose estimation and data registration.
The accuracy analysis is provided. Section IV ends the paper
with conclusions.

II. PRINCIPLE AND METHOD
A. PROPOSED LEARNING-BASED STRATEGY
Figure. 1 indicates the principle of the proposed MSLM
strategy. As shown in Figure.1, the Single Shot Pose network
based on the YOLO model and PnP algorithm is utilized for
pose estimation. Then, the object pose relative to themeasure-
ment coordinate system is established via the learning-based
pose estimation. Lastly, the corresponding 3-D measured
data from different perspectives are aligned with the esti-
mated pose. The precise fusion is achieved through the ICP
algorithm.

FIGURE 1. The proposed strategy of multi-view structured light
measurement.

To improve the measurement efficiency of the MSLM sys-
tem, the single-shot 2D object detector YOLO was employed
to predict the projections of the 3D bounding box corners in
the image. YOLO is end-to-end trainable and precise without
any a posteriori refinement. It also has an impressive perfor-
mance of fast detection. In addition, since the object pose is
estimated with the image coordinates and the corresponding
spatial coordinates, the symmetry of the object shape is not
restricted strictly. Based on the above advantages, we inte-
grated the YOLO network program into the MSLM system,
achieving efficient and fast data alignment. Specifically, the

YOLOv3mode is utilized and improved to estimate the 8 pro-
jected corners of the 3D bounding box of themeasured object.

B. POSE ESTIMATION NETWORK
The basic idea of pose estimation using deep learning is
as follows. (1) The imaging points of the three-dimensional
bounding box corners of themeasured object are identified by
the YOLO network. (2) The pose of the object is solved by the
PNP algorithm. This method can quickly solve the pose from
a single image with high accuracy. Figure. 2 is the overall
diagram of pose estimation.

As shown in Figure. 2, the network directly recognizes
the pixel coordinates of the bounding box corners. The loss
function L is defined as

L = λp
9∑
i=1

||pi − p̃i||2 + λconf Lconf (1)

where p and p̃ denote the true corners and predicted corners,
respectively. ‖·‖2 is the L-2 norm operator whose physical
meaning is to calculate the Euclidean distance between two
vectors. λp = 1 denotes the weight of corner errors. λconf is
the credibility weight. Lconf is the loss function of credibility.
The number of the 3D bounding box and the centroid is
9 in total. The Euclidean distance is also used to solve the
deviation between the projection of the centroid of the target
object on the image and the predicted projection coordinates.
If the deviation distance is D and the distance threshold is
defined as d , the credibility function is defined as.

Lconf =

 exp
(
1−

D
dth

)
, D < dth

0, otherwise
(2)

According to the network, the image is divided into cells
during training. If the centroid projection point locates in the
cell, λconf = 5, otherwise, λconf = 0.1.

The input of the network is the original image and the
output is the target pose. At the same time, the corner image
coordinates of the target object bounding box, the length and
width of the 2D bounding box, and the target category can be
additionally obtained. If there is only one tested object, the
category value is set to 1. According to Figure. 2, the truth
input and output data should be prepared before training. The
details are as follows.

Firstly, a large number of images containing the coded
markers and objects are captured from different views. The
mask images can be obtained simultaneously by setting the
background of the simulation scene to be empty. In practice,
the mask images are processed manually. Secondly, for each
image, the target markers are detected and a global coordinate
system is established with the image coordinates and the
corresponding spatial coordinates. If the image points of the
coded markers are noted as mi(ui, vi) and the corresponding
spatial coordinates are noted as Mi(Xi,Yi,Zi). According to
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FIGURE 2. Pose estimation based on YOLO network.

the camera imaging model,

s

 uivi
1

 =
 r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3



Xi
Yi
Zi
1

 (3)

where R =

 r11 r12 r13
r21 r22 r23
r31 r32 r33

, t =
 t1t2
t3

.
Expand Eq.(3) and eliminate s, ui =

r11Xi+r12Yi+r13Zi+t1
r31Xi+r32Yi+r33Zi+t3

and vi =
r21Xi+r22Yi+r23Zi+t2
r31Xi+r32Yi+r33Zi+t3

can be obtained. If the pose
matrix is T (R, t)3×4 = [r1, r2, r3]T where rj denotes the
transposed vector of jth row (j = 1, 2, 3) of T , (3) can be
expressed as, {

rT1 Mi − rT3 Miui = 0
rT2 Mi − rT3 Mivi = 0

(4)

Then, the linear equations are established by using the
image coordinates recognized by coding points and their
corresponding spatial three-dimensional coordinates.

MT
0 0 −u0MT

0

0 MT
0 −v0MT

0

M M M

MT
8 0 −u8MT

8

0 MT
8 −v8MT

8


 r1r2
r3

 = 0 (5)

The coefficient matrix is decomposed by the singular value
decomposition method to obtain the least square solution
of T . A series of the true pose Ti (Ri, ti), where Ri, ti denote
the rotation matrix and translation vector at i-th view, are
obtained at this step, respectively.

Thirdly, for i-th view, 8 corners, noting Pij(xij, yij, zij),
j = 1, 2, . . . , 8, of the 3-D bounding box and the centroid
Pi0(x0, y0, z0) are projected onto the image with the camera
matrix K using the equation 6.

sijpij = KTiPij, j = 1, . . . , 8 (6)

where sij is the scale factor, pij is the image point. The
2-D bounding box is obtained by fitting the 8 projected image
points pi to a minimum bounding rectangle. The normalized
image points, the length, and the width of the 2-D bounding
box are saved as the label files for the training. In total,
21 parameters are obtained for each capturing view. Accord-
ing to the network structure, the input is the original image
and the outputs are the 21 parameters. Finally, the training is
performed using the prepared label files.

Each iteration of the network generates eight corner coor-
dinates of the bounding box. The pose is estimated by using
equations (3)∼ (5). Then, the corner of the theoretical spatial
bounding box is re-projected onto the image to calculate the
value of the loss function and adjust the weight of the net-
work. The estimation accuracy of the pose is determined by
translation accuracy and rotation accuracy which are defined
as follows.

ET =
1
N

N∑
i=1

‖Tie − Ti0‖2

EA =
1
N

N∑
i=1

‖Aie − Ai0‖2 (7)

where: Tie and Ti0 represent the estimated translation vec-
tor and the corresponding real translation vector after the
i-th iteration, respectively. Aie, Ai0 represents the estimated
Euler angle and the corresponding real Euler angle after the
i-th iteration respectively; N is the number of test sets.

C. MULTI-VIEW DATA REGISTRATION
In the i-th view measurement, the 8 corners’ image points
pi and the object pose Ti relative to the camera coordinate
system are estimated from a given image with the trained
network. If the measurement data at i-th and j-th view areMi
andMj, respectively,Mj can be transformed to the coordinate
system ofMi through

M ′j = MjT
−1
i Tj (8)
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TABLE 1. Average 2D re-projection error comparison (Pixels).

Since Mi and M ′j are under the same coordinate system,
the initial registration and the global point cloud fusion can
be achieved by putting them together, i.e. M = {Mi,M ′j }.
Typically, to align the multi-view point clouds, M0 is con-
sidered as the initial point cloud, the global point cloud can
be obtained through M = {M0,M ′1, . . . ,M

′
j , . . .}, where M

′
j

is the transformed point cloud of Mj at j-th measurement
perspective, calculated with Eq.(8). Then the ICP algorithm
is employed to refine the global registration result.

III. EXPERIMENT AND DISCUSSION
A. PERFORMANCE OF POSE ESTIMATION NETWORK
The public data set LineMod [30] is utilized to test the overall
performance of the network. LineMod is a de facto standard
benchmark for 6D pose estimation of textureless objects.
13 objects with more than 15000 images are assigned with
ground-truth rotation and translation parameters. In addition,
the 3D mesh files are also available in LineMod. To verify
the performance of the YOLO-based pose estimation net-
work, several existing pose estimation networks [

] are compared. The 2D
re-projection error and the visualization of the pose estima-
tion are shown in Table 1 and Figure.3.

The re-projection error is calculated with the ground-truth
corners and the re-projected corners. According to the imag-
ing process (Eq.3), the reprojected image points are based on
the camera parameters and the pose parameters. Therefore,
the re-projection error can be a comprehensive evaluation
indicator. As shown in Table 1, the average re-projection error
of different objects has different values. The YOLO-based
method has the smallest reprojection error 3.66 pixels, indi-
cating the good performance of pose estimation.

The visualization results are shown in Figure.3. It can be
seen from Figure.3 that the projected bounding box covers
the objects even in complex environments.

FIGURE 3. Example results on the LineMod dataset.

FIGURE 4. Experimental results.

The computational efficiency is also compared. The results
are shown in Table 2.

As indicated in Table 2, the YOLO-based network runs
more than 5 times faster than the existing approaches.
The refinement process is never needed. Moreover, the
YOLO-based method can research real-time performance,
which contributes to the high efficiency of theMLSM system.
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FIGURE 5. More case presentations of the object pose estimation. (a) sphere. (b) pyramid. (c) pillars. (d) elbow. Noting that the red lines are drawn
according to the ground-truth 3-D bounding box, the green lines and points are drawn based on the estimated pose. The artifacts are from MMT,
University of Nottingham [34].

TABLE 2. The comparison of runtime.

B. DATA ACQUISITION AND POSE ESTIMATION ANALYSIS
OF MSLM SYSTEM
An experimental platform is built to verify the effectiveness
of multi-view structured light measurement based on pose
estimation. As shown in Figure.4 (a), the hardware includes a
commercial projector (NEC np43+) and an industrial camera
(DMK 31BU03). The resolution of the camera is 1024× 768
pixels. Figure.4 (b)-(e) shows the network training results of
the prediction results.

As indicated in Figure.4 (a), the structured light measure-
ment system consists of a single camera and an off-the-shelf
optical projector. A 3-D printing part is considered the target
measurement object. Figure.4 (b) shows the training loss and
the testing accuracy, where the training loss is defined as
the weighted distance offset between the true and estimated
image points, and the testing accuracy is considered as the
percentage of the number of points whose offset is less
than 5 pixels to the total number of estimated points. The
training loss drops rapidly and the testing accuracy keeps
100% with the iterations increasing. It can be confirmed
from Figure.4 (b) that the network reaches a high preci-
sion for the object pose estimation. As can be seen from
Figure.4 (c) that the total translation error of the three direc-
tions is less than 5 mm and the total rotation error is less than
1 degree. This satisfies the accuracy requirement of the initial
data registration. Figure.4 (d) presents the marker detection
and the 3-D and 2-D bounding box determination for true
pose calculation from one perspective. Figure.4 (e) visual-
izes the projection model, the estimated 3-D bounding box,
and the centroid of the measured object under the view of
Figure.4 (e). It can be seen that the projection fits the object
well considering the offset of the corners and centroid is less
than 5 pixels. More pose estimation results for more shapes
are shown in Figure.5.

TABLE 3. Error computation of pose estimation.

Figure.5 indicates that, from different perspectives, the
estimated pose keeps consistent with the true one. The arti-
facts, including the sphere, pyramid, pillar, and elbow, show
the robustness and effectiveness of the network inmulti-shape
pose estimation. In Figure.5, each object needs network train-
ing for pose estimation, so the pose estimation method takes
a lot of time in the early training stage compared with the
marker-based registration. However, because it does not need
to paste marker points, and there are no requirements for the
placement pose, the pose estimation method is more flexible
and convenient. The corresponding pose estimation error is
shown in Table 3.

FIGURE 6. Structured light reconstruction based on the proposed system.
(a) Projection image; (b) wrapping phase; (c) absolute phase; (d) 3D point
cloud.

As can be seen from Figure.5 and Table 3 that the
pixel errors, which are determined by the gap between the
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FIGURE 7. Point cloud alignment using estimated pose. (a) (d) Projection images in two views; (b) (e) pose
estimation results; (c) (f) point clouds in two views; (g) data splicing result; (h) zoom-in view of box in (g).

FIGURE 8. Data registration with the estimated pose. (a) (d)Two-view registration of pillars and recess, with
deep learning-based pose estimation; (b) (e)global refinement using ICP algorithm based on rough rigid
transformation; (c) (f) error distributions of the final registration of fused data in (b), (e) and CAD model,
where the error is determined by the point-to-model distance.

estimated 8 corners and the true corners, vary from 0.846 pix-
els to 3.216 pixels, proving the high-precision of the network
in 3D target detection. Furthermore, the errors of the esti-
mated pose (translation and rotation) are determined through
the Euclidean distance of the estimation and the ground truth.
It can be seen that the translation errors range from 1.8 mm to
5.2mm and the angle errors distribute around 0.5-1.0 degrees.
Such results are acceptable in single-shot-pose estimation.
The precise estimation contributes to the following data
registration.

C. POINT CLOUD REGISTRATION IN MSLM
Figure. 6 shows the process of single-view reconstruction
using the built structured light measurement system.

It can be seen in Figure. 6(c) that a part of the three-
dimensional data is obtained from the current measurement
view. Namely, the complete surfacemorphology of the sphere
cannot be obtained from a single perspective, Further, three-
dimensional measurement is carried out from another per-
spective. Meanwhile, the target poses in two perspectives are
estimated from the collected images and are then utilized for
data coarse alignment. The results are shown in Figure. 7.

Figure. 7 (a) and (d) show the structure light measure-
ment in two views, respectively. Figure. 7 (c) and (f) are
the corresponding 3D point clouds, respectively. Figure. 7 (b)
and (e) show the pose estimation results of the two views.
Figure. 7 (g)(h) show the results of point cloud alignment
using the estimated pose, indicating the acceptable results and
the effectiveness of the proposed strategy.
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FIGURE 9. Experiments of multi-view measurement with the proposed strategy. (a)(g)are the 1st view pose estimation
results, respectively. (b)(h)are the measured point clouds under the 1st view, respectively. (c) and (i) are the 3rd view
pose estimation results, respectively. (d)(j)are the measured point clouds 3rd view, respectively. (e) (k) are the
multi-view data registration with the estimated pose, respectively. (f)(l) are the error distributions of the final
registration with ICP.

D. EVALUATION OF REGISTRATION ACCURACY
More objects are tested to validate the effectiveness and
accuracy of the point cloud registration results. The refined
point cloud is compared with the theoretical digital model to
compute the overall measurement error. The results are shown
in Figure. 8.

Figure. 8 shows the data registration with the estimated
pose measurement and error evaluation results. Figure.8 (a) is
a rough alignment result with the estimated pose. Figure.8 (b)
shows the global refinement using the ICP algorithm. The
point cloud in Figure.8 (b) is registered with the theo-
retical CAD model to evaluate the registration accuracy.
Figure.8 (c) indicates the error distribution of the two view
alignments. As shown in Figure.8 (c), using the estimated
pose, the maximum and minimum registration errors are
−0.184 mm and 0.203 mm, respectively. The average error is
0.063 mm and the standard deviation is 0.07 mm. Figure.8(d)
is a rough alignment of the recess using the estimated
pose. The fine registration and error distribution are shown
in Figure.8 (e) and (f), respectively, indicating the effective-
ness of multi-view data alignment using deep learning.
Figure.8 (a) and Figure.8 (d) are the results of direct align-
ment using the estimated pose, which does not depend on
the real value of feature points. Due to the deviation of the

estimated pose under multiple views, the data deviation of the
final point clouds is the comprehensive deviation of the pose
estimation and the measurement. The control mark points are
used to fuse the point clouds of the two views, and the average
error results are shown in Table 4.

Table 4 compares the errors of data registration results
using the proposed method and the marker-based method.
It can be seen that the deviation of the average error is about
0.02 mm, and the error number obtained by the estimation
method is also close to the marker-based stitching results,
which verifies the comparability between the MSLM based
on deep learning and the existing feature-based measurement
method. Under our existing configuration, the average pose
estimation time of a single image is 0.05 s, and the detec-
tion and matching optimization time of two view marker
points is 0.08 s. Further, It takes 1.6 s for15 views of the
data rough alignment. Comparatively, the average reduction
time of a single image is 0.056 s when using the pose
estimation method. Therefore, the advantages of the direct
pose estimation method will be more obvious in more view
measurements.

Figure.9 shows more experimental results with the pro-
posed measurement strategy. The model are both from
the public dataset LineMod [30]. Figure.9(a)(c)(g)(i) are the
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TABLE 4. Error comparison of data fusion using markers and deep
learning.

TABLE 5. Accuracy evaluation and comparison.

pose estimation results, which can be compared with the
marker-based pose estimation results to evaluate the accuracy.
Figure.9(b)(d)(h)(j) are the single-view point cloud.
Figure.9 (e)(k) are the data registration results with the esti-
mated poses. It can be seen that the alignment results are
fine even though the two views do not have a common area.
Concretely, Figure.9(b) and (d) are the front and black view
of a cat model. The point clouds have few common areas.
Therefore, it is hard to register the point clouds with the
common feature. However, as shown in Figure.9(e), the two-
point cloud can be aligned in good condition, indicating the
effectiveness of the proposed strategy. To verify the final
measurement accuracy, we further compare the measured
point cloud with the CAD model and draw the error dis-
tribution. As indicated in Figure.9(d)(l), the global error is
low and the average error is 0.068 mm and 0.076 mm. The
results show that the accuracy of the multi-view point clouds
registration with the estimated pose is relatively high and can
meet the measurement acquirement of the structured light
measurement system.

We further carried out the accuracy evaluation with the
existing pose estimation network and the public dataset
LineMod [30]. The main idea of our single-shot pose
estimation network is the combination of the key point extrac-
tion and the PnP algorithm. Brachmann, SSD, and BB8,
which all pose estimation networks with a single image,
are selected for accuracy comparison. The accuracy is also
described with the standard deviation of the final registration
error. The results are shown in Table 5.

It can be seen from Table 5, the standard deviation of
the proposed strategy with the YOLO network is relatively
lower than others. Combining Tables 1 and 2, the pose esti-
mation accuracy and the processing time of the proposed
strategy are also better than the others. The main advantage
is we do not need marker points to create a common feature
but also achieve complete data registration with a relatively
high speed for the multi-view structured light measurement
system.

IV. CONCLUSION
A multi-view structured light measurement method integrat-
ing deep learning pose estimation is proposed. The 6D pose
of the measured object under the current measurement per-
spective is directly estimated by the pose estimation network.
Compared with the traditional methods based on an aux-
iliary turntable, marker- and tracking-based measurement,
the proposed method has good convenience and flexibility.
Compared with the alignment method based on feature recog-
nition, the proposed method has wider applicability. The
average error of the proposed strategy is 0.02 mm, which
is close to marker-based multi-view alignment. More impor-
tantly, this method can be applied to some special application
scenarios, such as in-situ measurement of parts that are not
allowed to paste superfluous objects. However, compared
with the marker point stitching method, the proposed method
is dependent on early training information. In addition, the
proposed method needs to upgrade the pose estimation net-
work for the target reconstruction that cannot contain all
objects in a single view. Further study will focus on the
multi-view measurement of large-scale objects using deep
learning-based pose estimation.

REFERENCES
[1] A. G. Marrugo, F. Gao, and S. Zhang, ‘‘State-of-the-art active optical

techniques for three-dimensional surface metrology: A review [invited],’’
J. Opt. Soc. Amer. A, Opt. Image Sci., vol. 37, no. 9, pp. B60–B77,
Sep. 2020.

[2] S. Zhang, ‘‘High-speed 3D shape measurement with structured light meth-
ods: A review,’’ Opt. Lasers Eng., vol. 106, pp. 119–131, Jul. 2018.

[3] H. Cui, T. Jiang, X. Cheng, W. Tian, and W. Liao, ‘‘A general gamma
nonlinearity compensation method for structured light measurement with
off-the-shelf projector based on unique multi-step phase-shift technology,’’
J. Mod. Opt., vol. 66, no. 15, pp. 1579–1589, Sep. 2019.

[4] S. Barone, A. Paoli, and A. V. Razionale, ‘‘Shape measurement by a multi-
view methodology based on the remote tracking of a 3D optical scanner,’’
Opt. Lasers Eng., vol. 50, no. 3, pp. 380–390, Mar. 2012.

[5] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and
M. J. Marín-Jiménez, ‘‘Simultaneous reconstruction and calibration
for multi-view structured light scanning,’’ J. Vis. Commun. Image
Represent., vol. 39, pp. 120–131, Aug. 2016.

[6] P. J. Besl and N. D. McKay, ‘‘A method for registration of 3-D shapes,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 14, no. 2, pp. 239–256,
Feb. 1992.

[7] J. Shi and Z. Sun, ‘‘Large-scale three-dimensional measurement based
on LED marker tracking,’’ Vis. Comput., vol. 32, no. 2, pp. 179–190,
Feb. 2016.

[8] J. Shi, Z. Sun, and S. Bai, ‘‘3D reconstruction framework via combining
one 3D scanner and multiple stereo trackers,’’ Vis. Comput., vol. 34, no. 3,
pp. 377–389, Mar. 2018.

[9] T. Jiang, X. Cheng, H. Cui, and X. Li, ‘‘Combined shape measurement
based on locating and tracking of an optical scanner,’’ J. Instrum., vol. 14,
no. 1, Jan. 2019, Art. no. P01006.

[10] T. Jiang, H. Cui, and X. Cheng, ‘‘Accurate calibration for large-scale
tracking-based visual measurement system,’’ IEEE Trans. Instrum. Meas.,
vol. 70, pp. 1–11, 2021.

[11] J. Wang, B. Tao, Z. Gong, S. Yu, and Z. Yin, ‘‘A mobile robotic mea-
surement system for large-scale complex components based on optical
scanning and visual tracking,’’ Robot. Comput.-Integr. Manuf., vol. 67,
Feb. 2021, Art. no. 102010.

[12] Z. Zhou, W. Liu, Q. Wu, Y. Wang, B. Yu, Y. Yue, and J. Zhang, ‘‘A com-
bined measurement method for large-size aerospace components,’’ Sen-
sors, vol. 20, no. 17, p. 4843, Aug. 2020.

[13] J. Wang, B. Tao, Z. Gong, W. Yu, and Z. Yin, ‘‘A mobile robotic 3-D
measurement method based on point clouds alignment for large-scale
complex surfaces,’’ IEEE Trans. Instrum. Meas., vol. 70, pp. 1–11, 2021.

127726 VOLUME 10, 2022



T. Jiang et al.: Multi-View Structured Light Measurement Method Based on Pose Estimation Using Deep Learning

[14] S. Barone, A. Paoli, and A. V. Razionale, ‘‘Multiple alignments of range
maps by active stereo imaging and global marker framing,’’ Opt. Lasers
Eng., vol. 51, no. 2, pp. 116–127, Feb. 2013.

[15] W.-C. Chang and C.-H. Wu, ‘‘Candidate-based matching of 3-D point
cloudswith axially switching pose estimation,’’Vis. Comput., vol. 36, no. 3,
pp. 593–607, Mar. 2020.

[16] Z. Yao, Q. Zhao, X. Li, and Q. Bi, ‘‘Point cloud registration algorithm
based on curvature feature similarity,’’ Measurement, vol. 177, Jun. 2021,
Art. no. 109274.

[17] W. Liu, Z. Lan, Y. Zhang, Z. Zhang, H. Zhao, F. Ye, and X. Li, ‘‘Global
data registration technology based on dynamic coded points,’’ IEEE Trans.
Instrum. Meas., vol. 67, no. 2, pp. 394–405, Feb. 2018.

[18] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and
M. J. Marín-Jiménez, ‘‘Automatic generation and detection of highly
reliable fiducial markers under occlusion,’’ Pattern Recognit., vol. 47,
no. 6, pp. 2280–2292, 2014.

[19] P. Psota, H. Tang, K. Pooladvand, C. Furlong, J. J. Rosowski, J. T. Cheng,
and V. Lédl, ‘‘Multiple angle digital holography for the shape measure-
ment of the unpainted tympanic membrane,’’ Opt. Exp., vol. 28, no. 17,
pp. 24614–24628, 2020.

[20] L. Yu and B. Pan, ‘‘Single-camera stereo-digital image correlation with a
four-mirror adapter: Optimized design and validation,’’ Opt. Lasers Eng.,
vol. 87, pp. 120–128, Dec. 2016.

[21] J. Xu, P. Wang, Y. Yao, S. Liu, and G. Zhang, ‘‘3D multi-directional
sensor with pyramidmirror and structured light,’’Opt. Lasers Eng., vol. 93,
pp. 156–163, Jun. 2017.

[22] V. Villena-Martinez, S. Oprea, M. Saval-Calvo, J. Azorin-Lopez,
A. Fuster-Guillo, and R. B. Fisher, ‘‘When deep learning meets data align-
ment: A review on deep registration networks (DRNs),’’ Appl. Sci., vol. 10,
no. 21, p. 7524, Oct. 2020.

[23] W.-C. Chang and V.-T. Pham, ‘‘3-D point cloud registration using
convolutional neural networks,’’ Appl. Sci., vol. 9, no. 16, p. 3273,
Aug. 2019.

[24] D. Jack, J. K. Pontes, S. Sridharan, C. Fookes, S. Shirazi, F. Maire, and
A. Eriksson, ‘‘Learning free-form deformations for 3D object reconstruc-
tion,’’ in Proc. Asian Conf. Comput. Vis. Cham, Switzerland: Springer,
2018, pp. 317–333.

[25] G. D. Pais, S. Ramalingam, V. M. Govindu, J. C. Nascimento,
R. Chellappa, and P. Miraldo, ‘‘3DRegNet: A deep neural network for
3D point registration,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2020, pp. 7193–7203.

[26] S. Zakharov, I. Shugurov, and S. Ilic, ‘‘DPOD: 6D pose object detector and
refiner,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019,
pp. 1941–1950.

[27] B. Tekin, S. N. Sinha, and P. Fua, ‘‘Real-time seamless single shot 6D
object pose prediction,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., Jun. 2018, pp. 292–301.

[28] L. Ding and C. Feng, ‘‘DeepMapping: Unsupervised map estimation from
multiple point clouds,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2019, pp. 8650–8659.

[29] E. Gundogdu, V. Constantin, A. Seifoddini, M. Dang, M. Salzmann, and
P. Fua, ‘‘GarNet: A two-stream network for fast and accurate 3D cloth
draping,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019,
pp. 8739–8748.

[30] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski, K. Kono-
lige, and N. Navab, ‘‘Model based training, detection and pose esti-
mation of texture-less 3D objects in heavily cluttered scenes,’’ in
Proc. Asian Conf. Comput. Vis. Berlin, Germany: Springer, 2012,
pp. 548–562.

[31] E. Brachmann, F. Michel, A. Krull, M. Y. Yang, S. Gumhold, and
C. Rother, ‘‘Uncertainty-driven 6D pose estimation of objects and scenes
from a single RGB image,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2016, pp. 3364–3372.

[32] W.Kehl, F.Manhardt, F. Tombari, S. Ilic, andN.Navab, ‘‘SSD-6D:Making
RGB-based 3D detection and 6D pose estimation great again,’’ in Proc.
ICCV, Oct. 2017, pp. 1521–1529.

[33] M. Rad and V. Lepetit, ‘‘BB8: A scalable, accurate, robust to partial occlu-
sion method for predicting the 3D poses of challenging objects without
using depth,’’ in Proc. ICCV, Oct. 2017, pp. 3828–3836.

[34] J. Eastwood, D. Sims-Waterhouse, S. Piano, R. Weir, and R. Leach,
‘‘Autonomous close-range photogrammetry using machine learning,’’ in
Proc. ISMTII, 2019, pp. 1–6.

TAO JIANG received the bachelor’s degree in
mechanical engineering from the Xuzhou Uni-
versity of Technology, Xuzhou, China, in 2016,
and the Ph.D. degree in mechanical engineering
from the Nanjing University of Aeronautics and
Astronautics, Nanjing, China, in 2021. He is cur-
rently an Assistant Professor with Suqian Univer-
sity, Suqian, China. His current research interests
include vision-based measurement and robotic
vision.

KAITUO FANG received the bachelor’s and mas-
ter’s degrees in mechanical engineering from
Jiangnan University, Wuxi, China, in 2009 and
2012, respectively. He is currently a Lecturer
with Suqian University, Suqian, China. His current
research interests include electromechanical mea-
surement and control technology.

HAIFANG ZHAO received the master’s degree in
mechanical engineering from the China Univer-
sity of Mining and Technology, Xuzhou, China,
in 2012. Her current research interests include
computer 3D modeling and graphic processing.

GUOBIN CHEN (Graduate Student Member,
IEEE) was born in Hulun Buir, Inner Mongo-
lia, China, in 1987. He received the B.S., M.S.,
and Ph.D. degrees from the North University of
China, Taiyuan, China, in 2015. In 2015, he joined
the Suqian College, Suqian, China, as a Lecturer.
Since 2018, he has been working with the Peter
Grünberg Research Center, Nanjing University of
Posts and Telecommunications, Nanjing, China,
as a Postdoctoral Researcher. His current research

interests include magnetic field vectorial sensing and imaging from dc to
high frequency.

YANFENG WANG was born in Liaocheng, China,
in 1980. He received the M.S. degree in oper-
ations research and cybernetics and the Ph.D.
degree in control theory and control engineer-
ing from Northeastern University, in 2007 and
2013, respectively. From 2013 to 2022, he was
an Associate Professor at the School of Engineer-
ing, Huzhou University, Huzhou, Zhejiang, China.
He is currently a Full Professor with the School
of Mechanical and Electrical Engineering, Suqian

University, Suqian, China. Hewas supported by the National Natural Science
Funds of China and the Natural Science Funds of Zhejiang. He has authored
three books and more than 30 articles. His main research interests include
networked control systems, fault detection, and fault-tolerant control.

VOLUME 10, 2022 127727


