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ABSTRACT Currently, mobile robots are developing rapidly and are finding numerous applications in the
industry. However, several problems remain related to their practical use, such as the need for expensive
hardware and high power consumption levels. In this study, we build a low-cost indoor mobile robot platform
that does not include a LiDAR or a GPU. Then, we design an autonomous navigation architecture that
guarantees real-time performance on our platform with an RGB-D camera and a low-end off-the-shelf
single board computer. The overall system includes SLAM, global path planning, ground segmentation,
and motion planning. The proposed ground segmentation approach extracts a traversability map from raw
depth images for the safe driving of low-body mobile robots. We apply both rule-based and learning-based
navigation policies using the traversability map. Running sensor data processing and other autonomous
driving components simultaneously, our navigation policies perform rapidly at a refresh rate of 18 Hz for
control command, whereas other systems have slower refresh rates. Our methods show better performances
than current state-of-the-art navigation approaches within limited computation resources as shown in 3D
simulation tests. In addition, we demonstrate the applicability of our mobile robot system through successful
autonomous driving in an indoor environment.

INDEX TERMS Mobile robot platform, robot system, RGB-D camera, real-time navigation, global path
planning, 3D SLAM.

I. INTRODUCTION
Recently, mobile robots have been navigating cluttered
environments such as buildings and roads. Implementation
of these devices into various industrial fields has been
accelerating [1]. Depending on the design and purpose, they
are utilized in various areas, such as for delivery, guidance,
searches, and inspections. Therefore, robot navigation in
crowded environments has been studied as a key topic in
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many research fields. Furthermore, the demand for mobile
robots is increasing not only in industrial fields but also for
individual uses. Examples include social robots, home service
robots, and cleaning robots.

However, expensive hardware and high power consump-
tion are hindering the practical application of mobile
robots [2]. For safe driving, the ability to recognize traversal
areas and to detect obstacles is critical in an advanced motion
planning strategy. LiDARs have been used as a dominant
sensor to ensure accurate distance measurements and have
been combined with cameras for deep learning recognition.
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FIGURE 1. Our indoor mobile robot platform: DPoom. (a) 3D model of the
robot chassis and components. (b) Image showing the actual appearance
of DPoom.

However LiDARs are far more expensive than other sensors
and thus increase the price of the robot. Simultaneous
localization andmapping (SLAM) [3], mainly used for indoor
positioning, requires a high-performance computer. Mean-
while, with the rapid development of deep reinforcement
learning (DRL), numerous studies have focused on the use of
neural networks for robot navigation [4], [5], [6]. Although
the inference of a DRL model can be done in a short
time, environment recognition requires heavy iterations for
sensor data processing. This should be supported by a high
performance computer, and the process ends up draining the
battery more rapidly.

Furthermore, software components for environmental
interactions such as image-based object detection should
be followed by navigation components to serve a socially
interactive robot. These image-based recognition algorithms
rely highly on the graphics processing unit (GPU). Therefore,
navigation algorithms with low GPU utilization are greatly
welcomed in mobile robot systems, even if they have an
on-board GPU.

We build an open-source low-cost autonomous mobile
robot system without a need for a high-performance GPU
or LiDARs that successfully overcomes the aforementioned
problems. We also propose a real-time navigation approach
designed for low-cost indoor mobile robots. Only an RGB-D
camera is used for environment recognition, and real-time
performance is achieved on a low-end single-board computer
(SBC) without external computing aids. The robot can build
a point cloud map and perform real-time positioning by
means of lightweight RGB-D SLAM. We use a modified
A* algorithm that generates a stable path while maintaining
sufficient distances from adjacent obstacles. In addition,
we propose a ground segmentation approach that provides
a compact traversability map in real time using an RGB-D

camera. This approach enables the robot to navigate among
pedestrians safely. We demonstrate the feasibility of our
ground segmentation method using both rule-based and
learning-based navigation policies with the traversability
information. All of the software for fully autonomous
driving is integrated on our mobile robot platform, DPoom
(see Fig. 1). For human-computer interactions, friendly
expressions are displayed on the front screen. It also has
an appropriate exterior design for educational and socially
interactive purposes. We deployed DPoom as a social robot
in a crowded residential environment.1 All of our materials,
including the hardware and software, are released under an
open-source license.2

II. RELATED WORK
System design of a robot is crucial since it dictates its
purpose, function and cost. Most traveling mobile robots are
designed for mission automation. For full automation, several
essential functions should be realized synchronously with
cross-interaction capabilities. Inmodern autonomous driving,
the task is developed with separately divided modules that are
integrated in a pipeline. Localization is the most basic module
for all control tasks with closed-loop feedback. SLAM is
generally used for indoor robot localization. In order to drive
to a certain location in a wide area, the robot should generate
a trajectory through global path planning via, for instance,
the A* algorithm [7]. When obstacles not on the prior map
or moving objects appear on the planned trajectory, the robot
avoids them by motion planning.

Collision avoidance and safe navigation are particularly
important for stable robot operation [8]. Reciprocal velocity
obstacles [9] and optimal reciprocal collision avoidance
(ORCA) [10] have been commonly used for dynamic robot
navigation. However, given that they are based on hand-
crafted functions, they do not work well in more complex
environments. Recent works applied DRL to navigation in
crowds [4], [5], [11]. These approaches assume that the
robot is aware of objects in a 360 ◦ field of view (FOV)
and that it accurately measures the positions of objects
in real time with LiDAR. Unlike those assumptions, point
cloud processing is computationally expensive and lowers
the decision frequency of navigation algorithm when running
on an onboard computer. A slow decision often causes
frozen robot situations or even collisions. Therefore, it is
necessary to choose a navigation policy that guarantees
real-time execution according to the robot’s computational
performance. Furthermore, if procuring a 360 ◦ FOV consid-
ering the assumptions above, the price of the required sensor
increases greatly. This also places negative constraints on the
mechanical design and on the design of the robot body’s
exterior components. Meanwhile, successful navigation is
coupled with the ability to estimate traversable areas, not

1Our detailed video is available in: https://youtu.be/Li3-RlO28lk
2Our entire works including hardware and software are in:

https://github.com/shinkansan/2019-UGRP-DPoom
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merely depending on the navigation policy. Recent ground
segmentation methods based on a convolutional neural
network (CNN) incur a high computational cost [12], [13].

In this paper, we use an RGB-D camera, which is generally
much less expensive than a 3D LiDAR. The depth data
provide robustness for localization and the direct distances
to obstacles without estimating them with heavy algorithms.
The robot body design was convenient because the sensor
does not need to be mounted on top and an empty layer is not
required in the middle of the body for laser range scanning.
Real-time navigation is possible using our RGB-D ground
segmentation approach.

III. APPROACH
A. DPoom INDOOR MOBILE ROBOT PLATFORM
DPoom (see Fig. 1) is an open-source indoor autonomous
mobile robot designed to interact with people while traveling
around indoor environments. It was developed while focusing
on three factors: cost performance, human-robot interaction,
and ease of use.

DPoom is built for fully autonomous driving using only
a low-end SBC (LattePanda Alpha 864, LattePanda) and an
RGB-D camera (Realsense D435i, Intel). The low-end SBC
consists of an Intel dual-core m3-8100y processor, 8 GB
RAM and Intel HD 615 on-board graphics. The controller
board (OpenCR, ROBOTIS) for our system is is embedded
with a robot operating system (ROS) [14] and has a nine-axis
IMU Sensor MPU9250. The robot uses the front RGB-D
camera D435i with a 1280 × 720 resolution to recognize
the environment. The camera has 85.2 ◦ × 58 ◦ FOV. Two
actuators (Dynamixel XM430-W210-T, ROBOTIS) are used
for wheel driving, and two ball casters at the bottom of
the rear structure support differential driving. The software
interface is built on Ubuntu-based ROS Kinetic. The
hardware is 33.0 × 33.5×35.0 mm (width×depth×height),
weighs approximately 4 kg, and can achieve speeds up
to 0.26 m/s.

B. 3D SLAM
Mapping should be preceded before deploying a robot to
an unknown area. Mapping enables the robot to plan its
trajectory to the goal and to perform localization to estimate
its pose. 3D mapping using RGB-D data is known to be
capable of higher accuracy than monocular vision-based
mapping as it provides additional robust features for scan
matching. We used RTAB-Map [15] to perform mapping
and localization simultaneously with RGB-D data and wheel
odometry. RGB image frames and depth frames were
obtained from the Intel Realsense D435i with Intel Realsense
SDK 2.0. Wheel-based odometry was calculated in the
OpenCR controller using data from the built-in IMU sensor
and motor encoders.

Environments are represented as a point cloud map or a
grayscale occupancy grid map after SLAM. Fig. 2a presents
the result when mapping around a building hallway. Point
cloud maps are saved in local memory and are used for scan

FIGURE 2. Environment representation and localization of 3D SLAM.
(a) Point cloud map after 3D mapping around the floor area.
(b) Bird’s-eye view of a point cloud map for an indoor room. (c) 2D
occupancy grid map through the processing of 3D point cloud projection.
(d) Robot trajectory in the localization mode.

matching during localization. The projected occupancy grid
map can be used as prior knowledge of global path planning.
The localization results are synchronously published to the
ROS middleware in our system.

C. GLOBAL PATH PLANNING
Under a 2D environment, the deterministic planning can
generate more accurate paths in less time than a probabilistic
path planner [16]. In this study, we use the A* algorithm [7],
a deterministic path planning algorithm, as the global
path planner. The A* algorithm searches for the path by
adding information about the goal node to the Dijkstra
algorithm [17], which is the most basic path planner.

By introducing the distance cost d(n) to the cost calculation
of the A* algorithm as shown in Equation (1), it is possible
to generate a path with more stability, maintaining a proper
distance from obstacles [18]. We used the fast marching
method (FMM) to calculate the distance cost, as this
approach solves the boundary value problem of the Eikonal
equation [19]. The height map generated by FMM has a
lower value as the node becomes closer to the obstacles.
We modified the height map to the distance cost map by
reversing it so that the costs nearby the obstacles become
larger than others. In this case, the distance cost is designed
to have a larger value as the node becomes closer to nearby
obstacles. Hence, the modified A* algorithm generates a
smoothed path with more stability, showing a tendency to
keep a distance from nearby obstacles.

f (n) = g(n)+ h(n)+ d(n). (1)

The pseudo code for themodifiedA* algorithm is shown in
Algorithm 1. The coordinates of the start node and the goal
node, and the map information are received as input values
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and the coordinates of the path are returned in the form of a
list.

Algorithm 1 A* Algorithm With Distance Cost
1: procedure Astar(maze, start, end)
2: OpenList = [start]← Searching Target
3: ClosedList = [ ]← Searched Nodes
4: while OpenList is not empty do
5: Compare f costs of every Node in OpenList
6: Assign Node with the least f as CurrentNode
7: if CurrentNode 6= end then
8: for child in 8 neighbors do
9: child.g = CurrentNode.g + neighboring

distance (1 or
√
2)

10: child.h = Distance from child to end
11: child.d = DistanceCost(child)
12: child.f = child.g + child.h + child.d
13: if child in ClosedList or

[4.65] child in OpenList with larger f then
14: Skip this child
15: else
16: OpenList.append(child)
17: else if CurrentNode == end then
18: path = Reversed list of parent nodes
19: return path

F Return the Path

D. FAST RAW DEPTH IMAGE GROUND SEGMENTATION
When a low floor mobile robot follows a globally planned
path, it is necessary not only to detect obstacles for collision
avoidance but also to recognize whether the floor surface
is traversable. Along with the rapid growth in the field of
deep learning, research on ground traversability estimation
with RGB-D cameras has been also conducted [20]. Yang
et al. demonstrated the robustness of CNN-basedmodels [12].
Paigwar et al. presented a real-time preprocessing method
and a CNN model for application to robot navigation [13].
However, these methods require GPUs for real-time opera-
tion. In addition, deep-learning-based approaches can take
into account floor thresholds, but they are unable to adjust the
height of ground threshold on a deployed model depending
on the situation. Floor thresholds are disastrous to low floor
robots, as they can cause a malfunction or cause the robot to
overturn. Therefore, there is a need for an analytic algorithm
capable of adjusting the threshold height according to the
robot platform and driving situation.

Mathematically derived estimation algorithms have been
developed at the same time. For a mobile robot system
designed at a low price point, the algorithmmust be computa-
tionally efficient and must support real-time implementation.
Holz et al. showed that real-time plane segmentation is
possible on a CPU by clustering andmerging points in normal
space [21]. However, this requires an additional analysis to
determine whether each plane area is actually drivable when

considering physical constraints such as the vehicle’s width
and rotation angle.

Here, we propose a concept known as milestone over
rendered paths (MORP), a real-time ground segmentation
algorithm that can robustly recognize the forward traversal
area with an RGB-D camera and that is designed to avoid
obstacles effectively. With this algorithm, motion planning
can be solved with a very small amount of computation by
separating the area in front of the robot into virtual lanes
and using the information of the closest non-traversable
point recognized in each lane. Ground segmentation is
performed for the center path of each lane area, and the
first encountered non-traversable point is saved as a dead-
end. This procedure is similar to 2D line extraction for fast
segmentation of 3D point clouds [22]. A raw depth image
is used for ground segmentation, which is converted from
a depth point cloud into a 2D gray-scale image. Holz et al.
showed that considering the pixel neighborhoods instead of
spatial neighborhoods leads to a significant increase in the
point cloud processing speed at the cost a small degree of
accuracy [23]. It is possible to represent a large lane area by
performing single column segmentation in a raw depth image.
The score of each pixel is a weighted sum of the gradient
from both the assigned start pixel depth and the adjacent
pixel depth relative to the current pixel depth. Let (w1,w2)
denote the weighting factors of the gradients. The first pixel
exceeding the score limit will be the dead-end in that area.
Let (d(i,j),r , d(i,j),z) denote the actual position from the sensor
of pixel P(i,j) in the N × M size depth image, as shown in
Fig. 3. Let n denote the number of virtual lanes to scan. The
dead-ends D(n) consist of the set of the largest indices to be
segmented as the ground in each column j:

D(n) =
1−M

n⋃
j=M

n ,
2M
n ,...

max (Si(j) ), (2)

Si(j) = {i ∈ (sj, sj+1, . . . ,N ) |w1

(
d(i+1,j),z − d(i,j),z
d(i+1,j),r − d(i,j),r

)
+w2

(
d(i+1,j),z − d(sj,j),z
d(i+1,j),r − d(sj,j),r

)
< C}, (3)

where sj is the start index of the ground on column j, and
C is the empirically determined threshold to segment as
the ground. When this process is done sparsely over the
entire image, milestones are generated for a traversability
map containing robust but very compact data. It is easy
to implement parallel computing because the process is
explicit and the execution time is virtually consistent on
each lane. The implementation results are visualized in
Fig. 3.
More dense segmentation will be done on the front

area of the robot as n becomes larger. However, there
is a trade-off relationship between the density and the
computation cost. An appropriate n should be selected in
consideration of the width and the driving performance of the
robot.
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FIGURE 3. Notations and results of the ground segmentation algorithm.
(a) Notations for the ground segmentation algorithm in side view. (b) Our
raw depth image ground segmentation result in the Gazebo environment.
(c) Result in the real world.

E. ROBOT NAVIGATION BASED ON TRAVERSABLE AREAS
Given that each dead-end in D(n) contains direct information
about non-traversable areas, collision avoidance is possible
just with simple rule-based decisions. Avoidance in this case
works in the same manner as a vehicle lane change on a road.
On the other hand, this type of data pre-processing to obtain
compact and representative features D(n) can be used as the
observation space (o) for reinforcement learning. One power-
ful and sample-efficient approach of reinforcement learning
is imitation learning. Behavior cloning (BC) in particular
has been successfully used in many robotics applications
given its simplicity and efficiency [24]. In this work, we also
implement a neural network policy based on BC to verify the
feasibility of our lightweight ground segmentation method
aside from rule-based navigation policy. Both policies are
evaluated in Section IV.

We used a feedforward fully-connected neural network
for imitation learning. Here, we denote the robot position
relative to the goal point as x and y, and denote the robot
direction as θ . The robot state is defined as s = [x, y, θ].
The action command is defined as a = [vx , ωz], representing
the longitudinal velocity and angular velocity of the robot,
respectively. Then, we can consider a policy π̂ that takes
xt = [st , ot , at ] at time t as input and results in the next action
at+1 as output. If the policy is given only a single time step
information, capturing high-level intentions from the human
demonstrationsmay be ambiguous. Therefore, we provide the
state, observation and action history here as the input of the
policy. In this case, the observation history contains implicit
information about the velocities of the moving obstacles.
This approach has been introduced in relation to applications
of helicopters, autonomous vehicles, and quadruped legged
robots [26], [27], [28]. The length of the history is denoted
as H . The overall structure of our neural network policy
at+1 = π̂ (xt−H+1, xt−H+2, . . . xt ) is shown in Table 1.

TABLE 1. Overall architecture of the neural network policy.

Finally, all modules are synchronously integrated into the
autonomous driving system. In order to navigate to the goal
in a complex environment, the ideal trajectory should be
generated from global path planning as part of the proposed
method. The orientation toward the waypoint should be
updated while avoiding obstacles via localization. A real-
time traversability analysis based on our ground segmentation
method is required to avoid local obstacles successfully.
Our rule-based and learning-based motion planners navigate
the system to the goal without collision based on the
traversability analysis. The system follows the waypoint of
the global path if there are traversable virtual lanes in front of
the system, and when the lanes are not traversable, the motion
planner does evasive maneuvers according to their rule-based
and learning-based method. The overall system architecture
is shown in Fig. 4.

IV. EXPERIMENTAL RESULTS
A. 3D SLAM
We tested our SLAM in a residential lobby on the DPoom
platform. The 3D point cloudmap was saved in local memory
for localization. Fig. 5a depicts the obtained occupancy grid
map. We added artificial grass and tables as confined areas
on the map. Compared with Fig. 5b, the map shows that a
loop closure was performed to correct distortion and elevation
issues.

B. GLOBAL PATH PLANNING
The modified A* algorithm uses a binarized 2D occupancy
grid map. It is also used to obtain a distance cost map
by FMM. The modified A* algorithm generates a path by
calculating the fitness cost based on the binarized map and
the distance cost map (see Fig. 6).
We compared the generated paths from the original A*

algorithm and the modified method. These results are shown
in Fig. 7. The original A* algorithm generates a path
close to obstacles, whereas the modified method generates
a smoothed path with keeping distances from the adjacent
obstacles.

C. TRAINING NEURAL NETWORK NAVIGATION POLICY
Before actually training the policy network, a proper value
of the parameter H (the number of history time steps for the
model input) should carefully be determined. If the given
trajectory is too long, it will cause overfitting. In contrast,
if the history is too short, it becomes difficult for the model to
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FIGURE 4. Software architecture of our autonomous driving system.

FIGURE 5. Result of 3D mapping and 2D projection. (a) 2D projection of
the point cloud map. (b) Actual floor plane of the area.

FIGURE 6. Map information for the modified A* algorithm. (a) Binary map
image. (b) Visualization for the distance cost map.

FIGURE 7. Path generated by the global path planner. The start node and
goal node are correspondingly shown in green and red. (a) Original A*
algorithm. (b) Modified A* algorithm with the distance cost.

find the optimal policy. We collected a human demonstration
dataset in a simulated environment that included static and
dynamic obstacles. We used Gazebo [29] simulation, and
we implemented the hardware and driving characteristics of

FIGURE 8. Training results of different H values.

DPoom in the simulation. The RGB-D camera specifications
are described on the Gazebo plugin for a realistic simulation.
The demonstration data were collected in environments
containing {0, 1, . . . 5} moving obstacles and {0, 3, 5} static
obstacles.3 Moving obstacles used the DPoom 3D model as
well and were controlled by ORCA [10].

We trained the neural network policy using the dataset with
different H values. We used the mean squared error (MSE)
loss and Adam optimization fotraining. The results are shown
in Fig. 8, demonstrating the fastest convergence speed and
lowest test loss when H = 4 (in red).

For further training, we used the DAgger [30] method,
which is a basic on-policy approach of imitation learn-
ing [24]. During the training procedure, we leveraged the
previously aggregated dataset as the initial dataset as a warm
start. Moreover, we used the pre-trained policy network as the
initial policy for bootstrapping rather than using a randomly
initialized policy. This strategy can also be found in recent
studies of imitation learning and its effectiveness has been
proven [31], [32]. The best policy model during training is
saved and used in the experiments. Here, we denote the expert
demonstration asπ∗. The details of our training procedure are
shown in Algorithm 2.

3The dataset is available in: https://github.com/SeunghyunLim/Dpoom_
gazebo
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Algorithm 2 Training Policy With DAgger Algorithm
1: procedure DAgger(D, π̂0, βi)
2: Input: Previously aggregated dataset from D, Pre-

trained policy π̂0
3: Output: Best π̂i
4: Initialize π̂1 with π̂0
5:

6: for i = 1 to N do
7: Let πi = βiπ∗ + (1− βi)π̂i
8: Sample trajectories τπi = [s0, a0, . . . sT , aT ]
9: Get dataset Di = {(st , at )|t ∈ T } of visited states

in τπi and actions given by π∗

10: Aggregate datasets: D← D ∪Di
11: Train policy π̂i+1 on D
12: Return best π̂i on validation

D. FAST RAW DEPTH IMAGE GROUND SEGMENTATION
AND ROBOT NAVIGATION
In this section, we denote ’MORP-RB’ as our rule-based
navigation policy and denote ’MORP-IL’ as our neural
network policy π̂ trained in the imitation learning manner,
coupled with ground segmentation.

1) TRAINING EXISTING POLICIES
We implemented several existing state-of-the-art naviga-
tion methods in Gazebo for a comparison: ORCA [10],
CADRL [4], and SARL with Local Map [6]. The obstacles
were detected with the RGB-D camera and fed into the
policies. The motion commands of the policy were published
to the integrated system via ROS to actuate the motors.
The DRL policies designed for navigation in dynamic
environments, in this case CADRL and SARL, were trained
using parameters suggested by the authors [4], [6]. The
comparison table of implemented existing methods is shown
in Table 2.

TABLE 2. Comparison table of the implemented existing methods.
CA and DRL are abbreviations of collision avoidance and deep
reinforcement learning, respectively.

It is important to stress that we carefully implemented
and trained the DRL policies and confirmed those policies
showing promising results within ideal validation scenes.
The limited FOV and depth range of the RGB-D cam-
era were applied to the observable area of the agents.
In cases where no object was detected by the DRL
agents, we fed a dummy pedestrian with a zero velocity
and radius into the network, which did not affect the
navigation [1]. ORCA served as the policies of the moving
obstacles.

FIGURE 9. Example trajectories of the compared methods without static
obstacles. The robot trajectory is shown in orange.

2) GAZEBO SIMULATION RESULTS
The point cloud of the RGB-D camera was downsampled by
voxel grid filtering and the detected obstacles were fed into
the ORCA and DRL policies as observed inputs. We eval-
uated the runtime of each navigation method by measuring
the one-step time to return a motion command. We specified
the runtime as three parts: 1) the communication delay on
ROS, 2) the depth data pre-processing time (abbreviated as
‘‘Depth.’’), and 3) the decision delay of the navigation policy
(abbreviated as ‘‘Nav.’’). It was tested on a laptopwith an Intel
Core i7-8565U CPU. The results are the average of more than
100 iterations. Measurements of our methods showed that
it is up to 20 times faster than the other methods compared
here (see Table 3). Unlike existing methods that require
CPU and memory-intensive point cloud pre-processing, our
approaches use an exteroception optimized for indoor mobile
robots, greatly reducing the processing time. The compact
information after ground segmentation also reduces the
complexity of motion planning.
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FIGURE 10. Example trajectories of the compared methods with static
obstacles. The static obstacles are shown in blue.

TABLE 3. Runtime evaluation of different methods. All methods except
for MORP-RB and MORP-IL need point cloud filtering and processing to
detect obstacles. MORP-RB and MORP-IL use our fast ground
segmentation.

We compared the following metrics for a performance
evaluation: the success rate, collision rate, and average time
to reach the goal. Tests were conducted separately in two
different randomized environments with and without static
obstacles. Goal distances from our robot were sampled from
7− 11 m. The first environment had only pedestrians and no
static obstacles. Moving obstacles used DPoom 3Dmodels of
identical sizes. Their start and goal points were empirically
determined to avoid collisions with each other. There were

one to five moving obstacles that were visible to all agents,
but they were not able to perceive our robot (see Fig. 9a).
In the second environment, a unit cube and cylinder-shaped
obstacles each with a 0.5 m radius were added to the first
environment, and the number of obstacles was varied from
one to nine (see Fig. 10a). We modeled ten worlds for each
case and ran the test three times per world. Accordingly,
60 tests were conducted for each navigation method in total.

MORP-IL shows the highest success rate while retaining
a short time to reach the goal in both environments (see
Table 4). The collision rate of CADRL is lower than that by
our method with static obstacles because it tends to take large
detours, causing it to spend twice as much time compared
to the others. Except for CADRL, our methods also show
the lowest collision rates because they guarantee real-time
execution. The collision rate for ORCA should be zero in an
ideal 2D simulation with holonomic constraints by its design,
but collisions occurred due to slow decisions by the robot
and were occasionally caused by pedestrians outside of the
robot’s FOV. A slow refresh rate also has a disadvantage
when the robot has non-holonomic constraints because the
robot is unable immediately to rotate or move backwards.
ORCA assumes that all pedestrians are observing the robot
and avoiding it actively regardless of their FOVs, which is
not practical in the real world. This assumption causes the
ORCA agents to take less time to reach the goal in the
first environment and causes collisions with pedestrians who
cannot observe the robot. Moreover, SARL has the longest
one-step runtime due to its complex model architecture (see
Table 3). Akin to ORCA, slow decisions of SARL resulted in
a high collision rate.

In summary, there are two main reasons for the low
success rate of existing algorithms: high inference time and
limited FOV. MORP-RB and MORP-IL cost less inference
time due to their small amount of computation. In contrast,
due to the depth-data preprocessing and heavy computation,
ORCA, CADRL, and SARL require extensive inference
time. Under the low-cost SBC’s limited computation power,
the longer inference time slows the refresh rate of the
algorithm’s decision, thereby lowering the success rate of
obstacle avoidance where real-time is essential. In particular,
for our proposed mobile robot system, the possibility of
collision with pedestrians outside the robot’s FOV caused by
limited FOV lowers the success rate of existing algorithms
such as ORCA and increases the necessity for a higher refresh
rate. Therefore, our ground segmentation-based approaches
outperform other navigation approaches under the limited
computation power and FOV.

3) REAL-WORLD EXPERIMENTS
Our navigation method was integrated into an autonomous
driving system on our DPoom platform via ROS.
We deployed the robot in the DGIST student dormitory
lobby. For human interaction, tiny-YOLOv3 [33] was used
for object detection. The robot was able to estimate its pose by
localization and navigate to the desired locations in the wide,
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FIGURE 11. Real-world experimental result of the entire system. (a)-(b) The robot is heading to the goal location. (c)-(d) A pedestrian is found on the
RGB-D camera, and the robot drives to avoid it while slowing down. (e)-(h) The robot keeps driving to the goal without refreshing the global path,
because it does not stay far from the original trajectory.

TABLE 4. Comparison of the different methods with the RGB-D camera
FOV on the environment without and with static obstacles.

crowded environment without collisions. Face emotions were
displayed on the front screen depending on the situation. Our
robot was able to interact in a friendly manner with people as
a social robot (see Fig. 11).

V. CONCLUSION
In this paper, we built an open-source low-cost mobile
robot platform with a single RGB-D camera. In addition,

we designed a software architecture of fully autonomous
navigation system for a low-cost mobile robot without
LiDARs or high-end computers. For global path planning,
we developed the modified A* algorithm, applying FMM
to generate collision-free trajectories. For motion planning,
we proposed a new RGB-D ground segmentation method that
represents the traversability of the front area in the form of
compact information, which is well-suited for mobile robots.
This enables depth data processing in real time on a low-
end SBC. We combined this idea with both rule-based and
learning-based motion planners, validating that our methods
can successfully navigate in crowded environments. Unlike
current state-of-the-art DRL navigation approaches were
slowing down while executed simultaneously with other
autonomous driving functions, our approaches operated at
18Hz in real time. We also demonstrated that our method
(especially MORP-IL) had 15%, 25% lower collision rates
and 25%, 45% higher success rates compared to ORCA and
SARL, respectively, through simulations with dynamic and
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static obstacles. CADRL showed the lowest collision rate
of 13%, but MORP-IL showed a 32% higher success rate
than CADRL. Finally, we deployed our autonomous driving
system on our platform in a real-world residential lobby,
proving the applicability of the proposed system. We tackled
practical issues associated with current mobile robots and
contributed to the universal use of this technology through
the presentation of a price-efficient mobile robot.
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