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ABSTRACT The solar speckle image has the characteristics with single features, more noise, and blurred
local details. Most of the existing deep learning deblurring methods for solar speckle images have some
problems, such as high-frequency loss, artifact generation, and dependence on the paired image. In this
paper, a deep prior deblurring method fusing the regularization model and prior constraint network is
proposed. Firstly, the traditional handcrafted regularization priors are added to the network parameterized
blind deconvolution model. The image gradient prior and blur kernel initial parameters are respectively
used to the network parameterization process of two variables in the blind deconvolution model, which are
the latent clean image variables and blur kernel variables. After that, the solar speckle image deep prior
deblurring model is established. Secondly, the blur kernel generation network input is estimated by using
the atmospheric point spread function (PSF) to improve the model convergence speed. Thirdly, a latent
clean image generation network including joint gradient branching and Feature Pyramid Network (FPN)
structure is designed to enhance image local edge details. Finally, a joint loss function including pixel
loss, image prior loss, and mean squared error (MSE) loss is introduced to guide the model for alternate
training. It can obtain the best parameter values of latent clean image and blur kernel, and achieve the solar
speckle image high-resolution reconstruction. The experimental results show that the proposed method can
eliminate the dependence on the reference image, and the reconstructed image has less noise and more
obvious high-frequency details, faster network convergence, and two evaluation indicators of Peak Signal
Noise Ratio (PSNR) and Structural Similarity (SSIM) are significantly improved.

INDEX TERMS Solar speckle image, regularization model, deep image prior, point spread function.

I. INTRODUCTION
Due to the interference of atmospheric turbulence, the
solar speckle images taken by ground-based telescopes are
severely blurred and require high-resolution reconstruction
by image processing. High-resolution reconstruction tech-
niques can be divided into two categories: one is the speckle
imaging method [1], [2], [3] based on the statistics with each
order, and the other is the multi-frame blind deconvolution
and phase differencemethod, which is based on instantaneous
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deconvolution [4]. However, these methods require more
prior knowledge in the reconstruction process, such as atmo-
spheric seeing and speckle interference function [5], and
require more image frames, resulting in a large amount of
calculation in the reconstruction process, which cannot meet
the real-time data processing requirements of astronomical
observation.

As deep learning is widely used in computer vision and
image processing, using deep learning techniques to recon-
struct solar speckle images, and improve the solar observa-
tion data analysis and processing capability has become one
of the hot spots in solar observation image processing [6].
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In recent years, network model represented by a generative
adversarial network (GAN) [7] has achieved better perfor-
mance than traditional algorithms in many image processing
tasks, such as image segmentation [8], and image denois-
ing [9]. Most deep learning-based deblurring algorithms for
solar speckle images [10], [11], [12], [13], [14] also use
GAN as a framework, and remove artifacts and noises in
blurred image by learning the end-to-end mapping function
from blurred image to reference image. However, since the
blurring of solar speckle images is caused by the irregular
changes of atmospheric turbulence, which makes the blur-
ring distribution of solar speckle images taken at different
moments vary greatly. And the model trained several minutes
ago may not be suitable for the solar speckle image taken
several minutes later and needs to be retrained. The newly
taken solar speckle images do not have corresponding real
images in a short period time, resulting in supervisedmethods
cannot be applied to real-time reconstruction of solar speckle
images that rely on blurred images and their corresponding
reference images. To solve the problem of insufficient ref-
erence images, in 2018, Ulyanov et al. [15] constructed an
unsupervised network model deep image prior (DIP), which
replaced the image variables in the energy function by the
output of a deep convolutional neural net (ConvNet) with
noise as input. In this way, the image prior can be captured
by the hyperparameter of the ConvNet, and the output image
is determined by the parameter of the ConvNet [16]. The
model effectively solves the problem that the reconstruction
results depend on the reference image, but the deblurring per-
formance is not well. After that, Mataev et al. [17] integrated
Regularization by Denoising (RED) [18] into DIP to improve
the deblurring performance of the DIP model. Shocher et al.
[19] used two separated hourglass networks to capture both
latent clean image and blur kernel prior, respectively. How-
ever, the hourglass network is designed to generate natural
images and is limited to capture the prior of blur kernels.
Ren et al. [11] replaced the blur kernel generation network
with fully connected network (FCN) to make up for the lim-
ited of hourglass network in reconstructing blur kernel, which
further improved the image reconstruction result. Mirza et al.
[20] proposed a conditional generation adversarial network,
which replaced noise with other prior information as network
input to improve the network prediction results. Fumio et al.
[21] and Sun et al. [22] inputed medical noise images as
prior information into generate network, and obtained better
image denoising results. These methods have achieved good
results in image deblurring calculation, but there are some
deficiencies for solar speckle image reconstruction, such as
slow network convergence and blurred local edges, which are
due to the large randomness of the generated results when
the network with noise as input, as well as the solar speckle
images usually contain single structural features, more noise,
and blurred local details.

For the existing deblurring algorithms depend on the refer-
ence image, there are problems when DIP-based methods are
used for solar speckle images reconstruction, such as slow

network convergence and blurred local edges, a deep prior
deblurring method fusing the regularization model and prior
constraint network is proposed, and the method is named
as Solar Speckle Image Deep Prior Deblurring (SSIDPD).
Firstly, the TV regularization prior [23] and L1 regularization
prior [24] are added to the blind deconvolution model of
network parameterized. And the prior information such as
image gradient prior and blur kernel initial parameters are
respectively used to the network parameterization process
of two variables in the blind deconvolution model, which
are the latent clean image variables and blur kernel vari-
ables. After that, a deep prior deblurring model is established
for solar speckle image. Secondly, according to the solar
speckle image blur kernel characteristics, the atmospheric
point spread function (PSF) output is used to blur kernel
generation network FCN input to capture the blur kernel
prior. Thirdly, the noise and blur image are used to the
Latent Clean Image Generation Network (LCIGN) input to
capture the latent clean image prior. Finally, a joint loss
function including pixel loss, image prior loss and MSE loss
is introduced to guide the model for alternate training. It can
obtain the best parameter values of the latent clean image
and blur kernel, and achieve high-resolution reconstruction of
the solar speckle image. The experimental results show that
the proposed SSIDPD method can get rid of the dependence
on the reference image, and the reconstruction results have
more obvious edge details, less noise and artifacts, network
model converges faster, and both evaluation indexes of Peak
Signal Noise Ratio (PSNR) and Structural Similarity (SSIM)
are significantly improved.

SSIDPD has three contributions for solar speckle images
reconstruction:

(1) The handcrafted regularization prior, image gradient
prior, and blur kernel initial parameters are merged into the
blind deconvolution model of network parameterized, which
can train the reconstruction network without solar speckle
reference image.

(2) The atmospheric PSF is used to give approximate
estimate of the blur kernel generation network input, which
accelerates the network model convergence.

(3) A latent clean image generative network LCIGN is
designed to reconstruct the solar speckle image, which can
capture image edge details prior more effectively.

The contents of this paper are arranged as follows: In the
second part, the proposed SSIDPD method is introduced in
detail, including the establishment of a deep prior deblurring
model for solar speckle image, blur kernel generation net-
work with atmospheric PSF output as input, and the design of
the generation network LCIGN; In the third part, some exper-
iments and result analysis are preformed to verify SSIDPD
effectiveness; In the fourth part, the advantages and disad-
vantages of SSIDPD are summarized.

II. METHODOLOGY
The proposed SSIDPD method includes three parts: (1) con-
structing the solar speckle image deep prior deblurringmodel.

128196 VOLUME 10, 2022



Y. Jin et al.: Solar Speckle Image Deblurring With Deep Prior Constraint Based on Regularization

(2) estimating the input of the blur kernel generation network
by using the atmospheric PSF. (3) designing the reconstruc-
tion network LCIGN.

A. SOLAR SPECKLE IMAGE DEEP PRIOR DEBLURRING
MODEL
When the blur kernel remains spatially invariant, image
recovery can be viewed as a linear blind deconvolution prob-
lem, and the blur image y ∈ Rd×m×n may be expressed as:

y = k ∗ x + n (1)

where * is a two-dimensional convolution operation,
k ∈ Rh×w is an unknown blur kernel, x ∈ Rd×m×n is a
latent clean image,n ∈ Rd×m×n is an additive Gaussian white
noise with noise level σ , and d denotes the number of image
channels. Our aim to recover the latent clean image x from
the blurred image y.
In this proposed deblurring framework, the latent clean

image x and the blur kernel k are parameterized as the output
of ConvNet like

x = fθ (zx) , k = gρ (zk) (2)

The process is shown as follows

f : {zx ∈ �1 | p (zx) 6= 0} ×21
ConvNet
−→ I1, (zx , θ)→ x

(3)

g : {zk ∈ �2 | p (zk) 6= 0} ×22
ConvNet
−→ I2, (zk , ρ)→ k

(4)

where p denotes the probability density function, f and g
denote different ConvNet structures, θ and ρ are the network
weights of f and g, respectively, zx and zk are input as prior
information in fθ (·) and gρ(·), respectively, �1, �2 are the
sample spaces of zx , zk , respectively [25], 21, 22 are the
weight space determined by the ConvNet structure, and I1,I2
are the solution spaces of x and k under the constraints of the
ConvNet structure. Thus, with the solution space I1, f maps
the network with noise zx ∈ RC ′×H ′×W ′and network weights
θ as input to the output x ∈ R3×H×W of the network model,
and with the solution space I2, gmaps the network with initial
parameters zk ∈ RC ′×H ′×W ′and network weights ρ as input
to the output k ∈ R3×H×W of the network model.
Substituting x = fθ (zx) and k = gρ (zk) into the linear

blind deconvolution model (1), the model can be rewritten as

y = gρ (zk) ∗ fθ (zx)+ n (5)

The latent clean images x and the blur kernel k will be
obtained as(

θ∗, ρ∗
)
= argmin

(θ,ρ)

∥∥fθ (zx) ∗ gρ (zk)− y∥∥22
x = fθ∗ (zx) , k = gρ∗ (zk) (6)

In order to remove the noise and artifacts from the recon-
struction results, the TV regularization prior of x and the L1

regularization prior of k are added to (6).Then, the model can
be extended as(
θ∗, ρ∗

)
= argmin

(θ,ρ)

∥∥fθ (zx) ∗ gρ (zk)− y∥∥22 + δTV (x)+ η‖k‖1 (7)

where x = fθ∗ (zx) , k = gρ∗ (zk), δ and η denote the two
regularization parameters. Although model (7) can remove
the noise and artifacts in the reconstruction results, there
also exist some deficiencies of local edge blurring in the
reconstruction results. Considering that there are still a large
amount of reusable gradient information in the blur image y,
using the generative network fθ (·) to capture the prior of x
from y and zx at the same time, we modify x in (2) with

x = fθ (zx , y) (8)

The parameterization process for the modified x is shown as

f :
{
zx ∈ �1, y ∈ Rd×m×n

| p (zx) 6= 0
}
×21

ConvNet
−→ I1,

((zx , y) , θ) → x

(9)

According to (8), we modify (7) again to obtain the solar
speckle image deep prior deblurring model as follows(
θ∗, ρ∗

)
= argmin

(θ,ρ)

∥∥fθ (zx , y) ∗ gρ (zk)− y∥∥22
+δ ‖fθ (zx , y)‖TV + η

∥∥gρ (zk)∥∥1 (10)

Model (10) can be solved by analogy with the alternating
minimization algorithm like the traditional blind deconvolu-
tion model [26], [27], [28]. The parameters in two networks
fθ and gρ will also be optimized in an alternating manner.
In this paper, model (10) is decomposed into two subproblem
as shown in equation (11)-(12)with

θ∗ = argmin
θ

∥∥fθ (zx , y) ∗ gρ (zk)− y∥∥22 + δ ‖fθ (zx , y)‖TV
(11)

ρ∗ = argmin
ρ

∥∥fθ (zx , y) ∗ gρ (zk)− y∥∥22 ++η ∥∥gρ (zk)∥∥1
(12)

The specific alternative solution process is shown in Algo-
rithm 1. When using the ADAM [29] optimizer to update the
network parameters of fθ , the parameters of gρ are fixed, and
vice versa.

B. ESTIMATE THE INPUT FOR BLUR KERNEL GENERATION
NETWORK
It can be seen from model (10) that zk will be used as a
prior input to the blur kernel generation network gρ (·). The
blur kernel gρ(zk ) also be regarded as a mapping function
for the network gρ (·) to learn a latent vector zk to gρ(zk ).
We consider the gρ(·) with the atmospheric PSF output
as input to accelerate the convergence of the blur kernel
generation network, the reason is that the atmospheric PSF
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Algorithm 1 Alternating Minimization Algorithm for Solv-
ing Model (7)

Input: blur image y, maximum number of iterations T ,
Gaussian noise zx , blur kernel initial parameters zk .
Output: blur kernel k and latent clean image x.
1: k = g0ρ (zk)
2: for t = 1 to T do
3: x = f t−1θ (zx , y)
4: Compute the gradient w.r.t. gρ by

argmin
ρ

∥∥∥f t−1θ (zx , y) ∗ gt−1ρ (zk)−y
∥∥∥2
2
+η
∥∥gt−1ρ (zk)

∥∥
1

5: Update gtρ using the ADAM algorithm
6: k=gtρ(zk )
7. Compute the gradient w.r.t. fθ by

argmin
θ

∥∥∥f t−1θ (zx , y) ∗ gtρ (zk)−y
∥∥∥2
2
+δ

∥∥∥f t−1θ (zx , y)
∥∥∥
TV

8: Update f tθ using the ADAM algorithm
9: end for
10: x = f Tθ (zx , y) , k = gTρ (zk)

can reflect many blur kernel properties of the solar speckle
image [12].

From the theory of atmospheric dynamics [30], the general
form of the atmospheric PSF is usually given by Hankel
transform of the modulation transfer function, and the form
is as follows

P (r0) =
∫
∞

0
J0

(
λv2

2π

)
exp {−0.5 Ds(v)} vdv (13)

where exp {−0.5 Ds(v)} is the modulation transfer function,
J0
(
λv2
2π

)
is the order zero Bessel function, ν is the spatial

frequency, and λ denotes the atmospheric wavelength. Ds(v)
is the phase space structure function, which represents the
mean squared difference of the phase between any two points
in the focal plane of the telescope, as shown in following.

DS (v) = 6.88
(
λv

2πr0

)5/3

(14)

where r0 is the atmospheric seeing, which is an important
physical parameter to measure the intensity of atmospheric
turbulence disturbance. It can be seen from (13) that given
different values of r0, different zk can be obtained zk = P(r0).

Since zk estimated by (13) is a one-dimensional vector,
if gρ(·) is a linear fully connected network, then we can
directly input zk into gρ(·) as a prior, and then decide the
output size of the blur kernel gρ(zk ) in the last fully connected
layer. However, if gρ(·) is a deep convolutional network,
usually need the space size of zk and gρ(zk ) are the same
during the mapping process, then we need to determine the
size of zk in advance. Since the fully connected network
is used as the blur kernel generation network in this paper,
thus the number of nodes in the last fully connected layer is
determined by the size of the blur kernel.

From the principle of optical imaging, the degradation of
image quality can be considered as an image taken using an

aperture of r0. When r0 is given, the size of the blur kernel
npix can be calculated by (15) [31] likes

npix =
α

αpix
(15)

where α is the angular second, defined as α = 2.021×105×
λ
r0
, and αpix denotes the size of a single pixel corresponding

to the angular second.

C. DESIGN THE RECONSTRUCTED NETWORK
Compared to natural images, the texture structure of the
solar speckle images is more complex, and the contextual
information is mainly reflected in the scattered shapes of rice
grains and the gaps between rice grains [13]. Therefore, it is
necessary to design a special network structures f to express
the priors of latent clean image. Due to the sparseness of
the blur kernel, a simple FCN is used to capture the prior
of blur kernel from the latent vector zk . In natural image
processing, the FPN [32] has achieved good results, but it has
the disadvantage of local edge blurring for the solar speckle
image with single features, low contrast, and more noise.
In this paper, we construct the LCIGNmodule to make up for
the deficiency of local edge blurring of the existing network
reconstruction results. The reconstruction network consists
of two generator network modules, the latent clean image
generation network module LCIGN, the blur kernel gener-
ation network module FCN, and the reconstructed network
structure is shown in Figure 1.

In order to enhance the edge details of the image, the
LCIGN network is designed with a joint reconstruction of
FPN network structure and gradient branches, because the
FPN network can capture smaller details, and at the same
time, incorporating a large amount of reusable gradient infor-
mation in the blur image y into the reconstruction result of
the FPN network can effectively enhance the edge details
of the image. And also in order to ensure that the added
individual branch Gradient Enhanced Network 2 (GEN2) can
obtain a valid and true gradient image from y, a loss function
needs to be introduced to constrain the mapping space of
GEN2. To achieve this purpose, we first add the gradient
enhanced network branch 1 (GEN1) to the FPN network and
then obtains the gradient information in the reconstruction
result of the FPN network, and the result is recorded as the
target gradient image, and then calculates the mean absolute
error (MAE) of the target gradient image and the gradient
image obtained by GEN2, and finally adds the error result
to the total loss function for parameter search.

1) CONSTRUCT THE LCIGN NETWORK MODULE
Inspired by Ma et al. [33] and Kupyn et al. [34], the LCIGN
network module is constructed by using the FPN network
structure and gradient branching joint reconstruction, and the
structure of the LCIGN network module is shown in Figure 2
as follow. Among them, Ma et al. [33] use the gradient image
of the clean image as a reference, and guide the gradient
branch to recover the high-resolution gradient image from
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FIGURE 1. Reconstruction network structure.

the low-resolution gradient image of the blurred image, and
provide a spatial structure prior for the image reconstruction
process to recover the local details in the image.

Unlike the above work, the solar speckle image deblurring
model established in this paper does not involve a clean
reference image. To recover the local details of the solar
speckle image as a spatial structure prior, we add the gradient
branch GEN1 after the FPN network to obtain the gradient
information of the reconstructed results. This design is based
on the fact that the FPN reconstructed solar speckle image
has less noise in the neural blind restoration model, and the
powerful prior expression ability of the GEN1 structure can
directly obtain the gradient image with higher resolution from
the FPN network reconstruction result, so that the gradient
image can be used as the target gradient image to guide
the gradient branch GEN2 to recover the gradient image
with higher resolution from the gradient image containing a
lot of noise. The experimental results show that the design
can effectively obtain the gradient information of the blured
image and recover the local edge details. In addition, the
Residual-in-Residual Dense Block (RRDB) residual module
[35] used in the gradient branch can not only further deepen
the gradient information, but also improve the training pro-
cess stability.

2) BLUR KERNEL GENERATION NETWORK
Due to the sparsity of the blur kernel of the solar speckle
image, similar as Ren et al. [11]. In this paper, a simple FCN
is used as the generative network structure of the blur kernel g.
It consists three layers with the input layer, the hidden layer,
and the output layer. The number of nodes in the input layer

is 500, the number of nodes in the output layer is npix2, and
the number of nodes in the hidden layer is 1000. npix is the
size of the blur kernel, and the calculation process is shown
in (15). To ensure that the blur kernel always satisfies the non-
negative and equation constraint, the SoftMax nonlinear layer
is applied to the output layer. The network also needs to be
rescaled to a 2D npix × npix size blur kernel after output. The
structure of the blur kernel generation network g is shown in
Figure 3 as follow.

3) JOINT LOSS FUNCTION
In order to ensure the fidelity of image reconstruction,
we use MSE loss to optimize the neural blind restoration
model of solar speckle images. In addition to the MSE loss
LMSE, TV regularization loss LTV and L1 regularization loss
Lreg are added to constrain the mapping space of f and g,
respectively. To ensure that the gradient branch GEN2 can
restore high-resolution gradient image, the pixel loss Lpix is
used to force GEN2 to perform parameter search.

The total loss function is shown in (16).

Ltotal = LMSE + %Lpix + δLTV + ηLreg (16)

where

Lreg (k) =
wk∑
i=1

hk∑
j=1

(∣∣ki,j∣∣) (17)

Lpix (zx , y) =
1

wlHl

wl∑
m=1

Hl∑
n=1

‖GEGN2(y)m,n

−GEGN1 (F (zx , y))m,n ‖1 (18)
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FIGURE 2. LCIGN network module structure.

FIGURE 3. Blur kernel generation network structure.

LMSE (zx , zk , y) =
∥∥Gimage (zx , y) ∗ Gkernel (zk)− y

∥∥2
2 (19)

LTV(x) =
wx∑
i=1

hx∑
j=1

√(
xi+1,j − xi,j

)2
+
(
xi,j+1 − xi,j

)2
(20)

where Gimage denotes the latent clean image reconstruction
network, Gkernel denotes the blur kernel reconstruction net-
work, wl and Hl are the feature image dimensions, wx and
hx denote the height and width of the latent clean image,
wk and hk denote the height and width of the blur kernel,
GEGN2 denotes the gradient reconstruction branch EGN2,
GEGN1 denotes the obtain gradient branch EGN1, and F is the
FPN network. δ and η denote the regularization parameters
in the loss function, and % denotes the coefficient of pixel
loss. In order to make the balance between the loss function

items, this paper sets δ, η, and % as 0.045, 0.008, and 0.001,
respectively, through repeated experiments.

III. EXPERIMENTAL RESULTS
A. DATA SETS
In our experiments, we use the highly blurred solar speckle
images taken by the Fuxian Lake Solar Telescope of Yun-
nan Observatory as the dataset, because the unsupervised
model we construct only needs to input the blurred images
into the network for iteration to achieve blind deblurring of
the images. Since captured solar speckle blurred images are
2560×2160 in size, directly inputting the blurred images into
the network model for iteration will lead to an explosion of
computation of the network parameters, and thus the dataset
needs to be cropped. Each solar speckle image of size 2560×
2160 is divided into four sub-blocks, each with a pixel size of
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TABLE 1. Comparison with other methods.

1024×1024, and then the segmented sub-blocks are used for
the network model training.

B. TRAINING PROCESS
To accelerate the convergence speed of the model and avoid
the nonconvex optimization problem, we first divide (16) into
two subproblems and then update the network parameters of
fθ and gρ alternately using optimizer Adam. While updating
the parameters of the fθ network, the parameters of the gρ
network are frozen and vice versa.Typically, we set the num-
ber of iterations per image to 5000, and then set the initial
learning rates of fθ and gη to 1× 10−4 and 0.01, respectively,
and multiply them by 0.5 for decay when the number of
iterations reaches 2000, 3000, and 4000. All experiments in
this paper were performed on a single Nvidia 1080ti GPU.
Although GEN1 and GEN2 use the same network structure,
the network iteration process does not need to update the
parameters of GEN1, because the powerful prior expression
ability of GEN1 network can also extract better gradient
information without training.

C. COMPARISON WITH SIMILAR METHODS
1) QUANTITATIVE COMPARISON
In order to verify the validity of this method more accurately,
the proposedmethodwas comparedwith similar blind deblur-
ring methods on PSNR, SSIM and MSE metrics, and the
quantitative comparison results are shown in Table 1. From
Table 1, it can be seen that the proposed method achieves
better results in PSNR, SSIM and MSE indexes.

2) QUALITATIVE COMPARISON
In order to see the deblurring performance of SSIDPD
more intuitively, we compare the reconstruction results of
SSIDPD with other similar blind deblurring methods, includ-
ing Zhu et al. [24], Shocher et al. [19], Wang et al. [16], and
Ren et al. [11], and the comparison results are shown in
Fig. 4. Among them, Zhu et al. [24] is the traditional multi-
frame blind deconvolution algorithm (MIBD), Shocher et al.
[19], Wang et al. [16], and Ren et al. [11] are the DIP-based
methods. Among these methods, for the blur kernel gener-
ation network input, DIP-based methods all used noise as
input, while SSIDPD used the atmospheric PSF output as
input. For the latent clean image generation network input,
both the DIP-basedmethod and SSIDPD used Gaussian noise
as input. Since both the MIBD algorithm and the SSIDPD
method all have latent clean image regularization terms and

blur kernel regularization terms, we set their regularization
parameters δ and η to 0.048, 0.008, respectively.

As can be seen in Fig. 4, the blur kernel estimated by
our SSIDPD contains less noise, and the estimated clean
image is with more obvious local edge details, less noise,
and artifacts, and the image recovery quality is visually better
compared to other methods. Although Zhu et al. [24] can
improve the signal-to-noise ratio by using more frames, the
deconvolution process will amplify the image noise, which
causes image phase inaccuracy and results in a large number
of artifacts. Shocher et al. [19] used an hourglass network
[15] to generate the blur kernel, but the generated blur kernel
was too divergent and there were still a lot of artifacts in the
reconstruction results.Wang et al. [16] added a Softmax layer
after the output layer of the hourglass network to ensure blur
kernel non-negative and equality constraints, and although
they were able to restore the rice grain profile feature of the
solar speckle image, white patches appeared on the rice grain
gaps. Ren et al. [11] used FCNnetwork to avoid the limitation
of hourglass network generating blur kernel, and the white
patches in the reconstructed results were reduced, but there
were still noise, artifacts, and local blurred edge.

D. BLUR KERNEL GENERATION NETWORK WITH
DIFFERENT INPUTS
To verify that the blur kernel generation network with atmo-
spheric PSF output as input, which can accelerate the conver-
gence of the network model. In this experiment, we first com-
pare the convergence of the blur kernel loss function when
blur kernel generation network with Gaussian noise, uniform
noise, and the atmospheric PSF output as input, respectively.
Figure 6 shows the optimization curves of blur kernel loss
with respect to iterations when the blur kernel generation
network with different prior as input. As shown in Figure 6,
when the blur kernel generation network with atmospheric
PSF output as input, the convergence of the network model is
faster compared to Gaussian noise and uniform noise as input.
This also confirms our idea that the network with atmospheric
PSF output as input, which can be regarded as a conditional
constraint to guide the network to generate blur kernel. It not
only accord with the blur kernel characteristics of the solar
speckle images, but also can converge with fewer iterations.
This is similar to related work in conditional GAN [37], [38]
that when the input is not random noise, but the associated
prior information, the prediction results can be improved.
In contrast, the generated results of network with noise as
input are uncontrollable [20] and require a higher number of
iterations to converge.

To be able to see more intuitively, the different prior are
used to blur kernel generation network input, which can
influence the network model convergence. Figure 5 shows a
visual comparison of the intermediate evaluation results of
the blur kernel generation network with different priors as
input under 500, 1000, and 1500 iterations. It can be seen
from Figure 5 that the blur kernel gradually becomes clearer
with increasing number of iterations and eventually becomes
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FIGURE 4. Comparison of reconstruction results of different methods.

a point source shape. However, when the number of iterations
at 500 it can be seen that the blur kernel is significantly
noisier when the kernel generation network with uniform
noise and Gaussian noise as input, while the blur kernel is
relatively clearer when the kernel generation network with
the atmospheric PSF output as input. This is consistent with
our expectation that only a few iterations are needed for the
network to generate clear blur kernels, reducing the latent
clean image generation network solution space. This idea is

further confirmed in the solar speckle image reconstruction
results in Figure 7.

Figure 7 shows the comparison of reconstruction results
of the solar speckle image when the blur kernel generation
network respectively with uniform noise and atmospheric
PSF out as input for the same number of iterations. It can also
be intuitively seen from Figure 7 that the local reconstruc-
tion results of the images are better when the network with
the atmospheric PSF output as input, because atmospheric
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FIGURE 5. Comparison of blur kernel reconstruction results with different iterations.

FIGURE 6. Optimization curves for blur kernel generation networks with
different inputs.

PSF output is closer to the real blur kernel distribution and
can be regarded as a kind of conditional prior to guide the
network to generate blur kernel, which shortens the distance
of generating network to capture the blur kernel prior, and
can quickly reverse solution the latent clean image. However,

the kernel generation network with uniform noise as input,
construction results of the latent clean image show significant
local defects, which may be due to the slow convergence of
the blur kernel, resulting in a limited solution of latent clean
images during blind deconvolution.

The quantitative evaluation in Table 2 shows that when
the kernel generation network with atmospheric PSF output
as input, the quality of the image reconstruction results is
significantly better than the kernel generation network with
uniform noise and Gaussian noise as input. This further
demonstrates the effectiveness of using the atmospheric PSF
output as the blur kernel generation network input to speed up
the convergence of the network model, and thus blur kernel
generation network with the atmospheric PSF model output
as input is a good choice.

E. ABLATION EXPERIMENTS
1) GRADIENT BRANCHING VS. NO GRADIENT BRANCHING
In order to verify the effectiveness of adding the gradient
branch GEN2, we evaluated the effects of removing GEN2
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FIGURE 7. Comparison of latent clean image reconstruction results with different inputs to blur kernel generation network.

FIGURE 8. Comparison of the effect of gradient branch on reconstruction results.

TABLE 2. Effects of blur kernel generation network with different inputs.

(LCIGN-) and adding GEN2 (LCIGN) to the reconstruction
results. The quantitative evaluation in Table 3 shows that
LCIGN outperforms LCIGN-, which illustrates the superi-
ority of LCIGN with the addition of the gradient branch.
From the visualization results in Figure 8, we can see that
the local edges of the LCIGN- network reconstruction results
are more blurred, and from the gradient image of the recon-
struction results, we can also see that the gradient of LCIGN-
is not obvious enough, while LCIGN can further deepen

the gradient. Therefore, LCIGN can effectively enhance the
blurred local edges. It also confirms the idea of our network
model design, which uses a gradient branch to capture a large
amount of reusable gradient information in the blurred image
alone, and then incorporates it into the reconstruction result to
achieve enhanced edge details. However, for the unsupervised
network model, since there is no clean gradient image as
the reference image, it is difficult for the gradient branch to
capture the effective gradient information from the blurred
image, and we can only consider obtaining the sub-optimal
gradient image from the not completely recovered blur image
to guide the gradient branch to reconstruct the effective
gradient image from the blurred image, which is similar to
the ‘‘zero-shot’’ self-supervised learning [38], which mines
prior information from the inside of the blurred image to be
beneficial for reconstruction.
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FIGURE 9. Visual comparison of SSIDPD variants with different regularized priors.

TABLE 3. Effect of gradient branch.

TABLE 4. Quantitative comparison of SSIDPD variants with different
regularization priors.

2) REGULARIZED PRIOR VS. NO REGULARIZED PRIOR
We compare the results by considering four regularization
priors: (i) SSIDPD, (ii) SSIDPDk− (with L1 regularization
prior removed), (iii) SSIDPDx− (with TV regularization prior
removed), and (iv) SSIDPDx-,k− (with both regularization
priors removed). As can be seen in Table 4 and Figure 9,
after the regularization prior SSIDPDk− is removed, there
is no limit to blurring kernel solution space, resulting in
artifacts and white patches in the reconstruction results (as
shown in the red box in (b)), but the noise of the latent clean
image is suppressed. Conversely, when the TV regularization
constraint SSIDPDx− is removed from the latent clean image,
a large amount of speckle noise appears in the image. When
SSIDPD does not have any regularization prior as a constraint
SSIDPDx-,k−, SSIDPD essentially degenerates into a method
similar to SelfDeblur [11], and the performance of SSIDPD
in capturing the deep prior of solar speckle images is severely
limited with a large amount of speckle noise and artifacts. The
experimental results show that the two regularization priors
are good choices to suppress speckle noise and artifacts in
the process of neural blind deblurring of speckle images.

IV. CONCLUSION
In this paper, we propose a deep prior deblurring method
SSIDPD, which is fusing the regularization model and prior
constraint network to solve the problems of existing deblur-
ring algorithms for solar speckle images reconstruction.

The proposed method gets rid of relying on solar speckle
reference images, and the atmospheric PSF output is used
to blur kernel generative network input to accelerate the net-
work model convergence. Furthermore, the method merges
the designed LCIGN network into the deep prior deblurring
model of solar speckle image, and the network is trained
by optimizing the model to capture image edge details prior
more better. The experimental results show that the proposed
method outperforms the existing deblurringmethods in visual
as well as quantitative improvements, and the two evaluation
indexes of PSNR and SSIM are significantly improved.

Although the proposed method can better achieve neural
blind deblurring of solar speckle images, the regularization
parameters need to be selected handcrafted during the recon-
struction process. In the future, we will try to introduce a loss
function to optimize both the regularization parameters and
the network model.
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