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ABSTRACT Rapid development in sketch-to-image translation methods boosts the investigation procedure
in law enforcement agencies. But, the large modality gap between manually generated sketches makes
this task challenging. Generative adversarial network (GAN) and encoder-decoder approach are usually
incorporated to accomplish sketch-to-image generation with promising results. This paper targets the sketch-
to-image translation with heterogeneous face angles and lighting effects using a multi-level conditional
generative adversarial network. The proposed multi-level cGAN work in four different phases. Three
independent cGANs’ networks are incorporated separately into each stage, followed by a CNN classifier.
The Adam stochastic gradient descent mechanism was used for training with a learning rate of 0.0002 and
momentum estimates β and β as 0.5 and 0.999, respectively. The multi-level 3D-convolutional architecture
help to preserve spatial facial attributes and pixel-level details. The 3D convolution and deconvolution guide
theG1,G2 andG3 to use additional features and attributes for encoding and decoding. This helps to preserve
the direction, postures of targeted image attributes and special relationships among the whole image’s
features. The proposed framework process the 3D-Convolution and 3D-Deconvolution using vectorization.
This process takes the same time as 2D convolution but extracts more features and facial attributes. We used
pre-trained ResNet-50, ResNet-101, and Mobile-Net to classify generated high-resolution images from
sketches. We have also developed, and state-of-the-art Pakistani Politicians Face-sketch Dataset (PPFD)
for experimental purposes. Result reveals that the proposed cGAN model’s framework outperforms with
respect to Accuracy, Structural similarity index measure (SSIM), Signal to noise ratio (SNR), and Peak
signal-to-noise ratio (PSNR).

INDEX TERMS Convolutional neural network, generative adversarial network, sketch-to-Image translation,
machine learning.

I. INTRODUCTION
Crime has taken a drastic revolution, so it demands enhanc-
ing the security of forensic files and records. There is an
increased requirement to use technological measures in crime
to identify, detect, and recognize suspects. For safety and
security-related prompts, biometric recognition is necessary.
One of the most common biometric techniques is face recog-
nition. The face is the most convenient and reliable way
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of identification. Face-sketch recognition is a strong face
identification domain when the photograph is not available.
Face recognition systems have been evolving over the past
few decades, particularly with the availability of large-scale
databases and access to sophisticated hardware. Large-scale
face recognition challenges such asMegaFace [1] and IARPA
Janus Benchmark [2] provide further opportunities for bridg-
ing the gap between unconstrained and constrained face
recognition. Sketch recognition is also an emerging trend in
law enforcement agencies to identify suspects [3], [4]. Sketch
recognition problems involve automated matching and
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generating coloured images from sketches [5]. There are
two ways to reorganize the suspects by sketches: 1) Convert
all the database images to sketches & compare the sketch
with the sketch-database images. 2) Another way is to colour-
ize the sketch and then find that colourized face image in
the database. The first way is easy and less complex, but we
lose too much information during the conversion process of
images to sketching. Sowe are unable to find good& accurate
results. On the other hand, if we convert the sketch into a
coloured face image, this task is complex and challenging,
but it is more effective to find out the suspect effectively.

Generative Adversarial Networks (GAN) have been used
to colour the images and it may create sketches from coloured
images. Due to the rapid development in GAN models
[6], [7], [8], [9], the quality and efficiency of the sketch
to coloured image translation have been improved signifi-
cantly [10], [11], [12], [13], [14], [15], [16], [17], [18], [19].
Currently, translations from sketch-to-image or image-to-
sketch have been extensively used in law enforcement agen-
cies and digital image entertainment [20], [21], [22], [23],
[24], [25], [26], [27], [28]. Zhang et al. [21] developed an
architecture based on the dual transfer face sketch tech-
nique to improve the identification performance of sketched
images. The Dual-transfer sketch approach comprises an
intra-domain and inter-domain transfer process. It is used
for identity-specific information loss and retrieval of com-
mon facial structures. Unlike a dictionary-based traditional
approach, Zhang et al. [29] developed an end-to-end deep
convolutional neural network (CNN) model for an image-to-
image translation, while Isola et al. [30] work on conditional
GAN by adding new condition y in traditional GANs. The
condition y is used along with the input layer to handle
the mapping between generated image and the input image.
Zhang et al. [20] developed a generator for face sketch-
ing that addresses the problem of sketch generation using
soothing properties. This work outperforms for the reduc-
tion of high-frequency loss with considerable performance.
Zhang et al. [22] developed an automatic sketch generator
comprising rough, fine, and finer face parts. Themodel colour
the face sketch using mentioned parts with gentle and deep
detail features. Probabilistic graphical models were used by
Zhang et al. [23] to develop the face sketch architecture. They
considered the generated sketch pixels and ground truth from
training data to generate the face with fine details features.
Zhang et al. [24] address heterogeneous lightning effect prob-
lems by developing cascaded face sketch synthesis models.
This model comprises cascaded low-rank representation and
numerous feature generators. The responsibility of the feature
generator is to extract finely detailed features under different
illumination. At the same time, the distance between the syn-
thesized facial sketch and the corresponding ground truth was
reduced by cascaded low-rank representation. To improve
the efficiency of face sketching, Wang et al. [25] used new
random sampling instead of an online KNN search method.
Results show that this technique outperforms concerning
quality and efficiency. Current face sketching techniques

cannot select the neighbour feature during face synthesis.
Bayesian techniques were used by Wang et al. [26] to con-
sider the weight computation model and neighbor selection
model to overcome it. Thismethod competeswith the existing
techniques concerning subjective perceptions and objective
evaluations. However, recent research [3], [4], [28], [31],
[32], [33] [23], [34], [35] ignores the 3D-convolutional pro-
cess for sketch to image colorization and controlling of pixel-
level facial attributes during sketch to colored face translation.
Existing sketch colorization and face sketching techniques
are unable to outperform with heterogeneous lighting effects
and fail to taking into account the neighboring features during
face synthesis. The attention of all researchers was to achieve
a balance between the target image and generated image
to look more realistic and natural. But, due to minor facial
feature selection, realistic and natural image generation is
not achieved effectively. If the number of features increases
directly, the desired results may be achieved. Still, it increases
the complexity and depth of the model, which requires more
computing power and other computational resources. The
alternative way of increasing the feature is to increase the
depth of convolutional layers and apply 3D convolutions
instead of 2D. In addition, the existing research focuses on
2D-convolutions [36], [37] instead of 3D, which reduces the
efficiency of the loss learning function to preserve spatial
facial attributes of the input image. Existing research works
does not provide any ground truth that may authenticate the
performance using cross-match analysis.

Current research works, either GAN-based [23], [34],
[35], [38] or CNN-based [3], [4], [28], [31], [32], [33], are
insufficient to handle the facial attribute changing during
sketch translation into RGB images. These techniques missed
texture attributes and pixel-level details of facial attributes.
However, the existing solution tends to overfit sketches
because it outperforms training instances compared to test
instances, thus requiring consistent professional sketches as
inputs.

Most of the time, the photos of suspects obtained from
surveillance cameras are poor in quality, so forensic experts
draw face sketches of suspects and colour them to retrieve
them from the database. To enhance retrieval performance
and efficiency, we can synthesize face sketches from photos
in the database and thenmatch themwith the suspect’s sketch.

To overcome the problems mentioned above, a multi-
level 3-dimensional conditional generative adversarial net-
work (3D-cGAN) is proposed to translate and colourize
sketches into realistic images. The proposed model translates
and colours hand-drawn sketches into high-resolution RGB
realistic images. It also controls spatial features and pixel-
level details without affecting realistic attributes by imitat-
ing the condition. In addition to generating high-resolution
RGB realistic images from sketches, the proposed model can
also classify and recognize the input images. This architec-
ture comprises four phases i.e., three cGANs followed by
an image classifier. Each cGAN comprises Generator and
Discriminator. The generator handles the 3D facial attributes
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during face sketch colourization and translation based on a
conditional encoder-decoder network. It will be achieved by
decoding optimum features extracted by the encoder, availing
conditions. The framework converts the sketch into a high-
resolution RGB image and classifies them. The whole pro-
cess work in four different steps: In the first step, the input
sketch is converted into a grayscale image. Secondly, the
grayscale image is converted into an RGB image with the
consideration of facial attributes. In the third step, the RGB
image is converted to a high-resolution RGB image using
a pixel modifier. The high-resolution RGB image is clas-
sified and labelled concerning the relevant class during the
fourth step.

We have developed a face dataset for experimental pur-
poses that consists of 1000 face images of 100 people
(10 images per person). Each image is preprocessed and
distributed into four versions: original RGB image, manually
drawn sketches, Grayscale image, and high-resolution image
for cross-match analysis. So, as a result, we have devel-
oped a fine-tuned state-of-the-art 4000 face image dataset.
This dataset comprises 1000 original RGB images with dif-
ferent face positions for extracting spatial facial attributes,
1000 manually drawn sketched images, 1000 grayscale
images, and 1000 high-resolution RGB images. These man-
ually generated images and sketches work as training data
and ground truth for cross-match analysis to authenticate the
proposed model performance.

The key contribution of our research work is as follows:
1. First, we developed a multi-level 3-dimensional condi-

tional generative adversarial network (3D-cGAN) that will
colour and translate the sketch into realistic images and
preserve spatial facial attributes and pixel-level details.

2. We process the 3D-Convolution and 3D-Deconvolution
using vectorization, which trains more attributes and
parameters without extra time consumption.

3. We also generate high-resolution RGB colour images
from sketches that will be more realistic images.

4. The proposed technique also considers the spatial
domain’s heterogeneous lightning effect and neighbour
feature selection.

5. We introduced a face dataset that consists of 1000 face
images with four categories of 100 people (PPFD).

6. This work provides ground truth for each image at mul-
tiple stages that authenticate the performance of the pro-
posed architecture using cross-match analysis.

II. RELATED WORK
Face recognition or person identification has been achieved
by mutually using soft and hard biometric traits [39]. It is
well-known that sketch information and facial attributes give
more authentic results than sketch alone. It is due to the
non-availability of complementary information in sketches
such as skin, eye, hair colour, and ethnicity. Furthermore,
other attributes like eyeglasses or wearing a hat would
be considered secondary information to narrow down the
results. In [40], Klare et al. proposed a direct approach for

suspect identification using facial attributes without a sketch.
Mittal et al. [41] try to increase the accuracy of their proposed
algorithm by fusing multiple sketches and considering soft
biometric traits like skin colour, ethnicity, and gender to
reorder the ranked list of the suspects. Another framework
has been developed by Ouyang et al. [42] to reduce the gap
between photo and sketch by combining low-level features
with facial attributes. The GANs have been widely used in
image generation [7], [24], [29], [43], [44], [45], image trans-
lation [46], [47], and image synthesis [12], [13]. Recent litera-
ture regarding deep learning approaches [48], [49], [50], [51],
[52], [53], [54] focuses more on face recognition and clas-
sification problems than classical methods [55], [56], [57].
These approaches can also be used for sketch-photo recog-
nition problems. Face recognition through sketch is more
complicated and challenging than classical face recognition
problems. The main reason behind this is the heterogeneous
nature of photo and sketchmodalities and the non-availability
of large datasets. For example, most datasets generate only a
single sketch per face, making it challenging for a deepmodel
to learn robust features [58]. Another CNN-based work with a
new optimization objective functionwas introduced by Zhang
and Lin [29] for end-to-end face image-to-sketch translation.
They target the preservation of input image features during
translation. Zhu. et al [45] are trying to solve the problem
related to the non-availability of paired training data by intro-
ducing a new architecture cycle GANs. This GAN network
tries translating the input images into target images without
using paired training samples. Li et al. [59] proposed a deep
CNN model named VGG-Face to overcome facial attribute
preservation during translation. This model generates the
expected output image based on desired facial attributes.
Att-GAN was introduced by Zuo et al. [60] and worked as
an attribute classifier and tried to guarantee the generation
of correct faces based on desired facial attributes. Recently,
conditional GANs networks [43] have greatly emerged in
the image generation domain. These networks perform work
based on conditions that are given as input. Based on cGAN,
Karras et al. [61] introduce a substitute for the generator
in GAN networks that can isolate stochastic variation and
high-level facial attributes. This generator helps to generate
high-quality facial images. In [30], Isola et al. developed a
pix2pix architecture of GAN for image colourization, sketch-
to-image creation, and semantic segmentation. An improved
version of [56] has been proposed by Wang et al. [62],
named pix2pixHD. This network demonstrates cGAN appli-
cation concerning semantic label maps in the image gener-
ation domain. Hand-drawn sketches have been colourized
by Sangkloy et al. [19] by taking user-centred sparse colour
strokes as conditions. Researchers have explored component-
based methods [16] for human face image generation by
taking high-level features of human faces. Wu and Dai [63]
introduced a three-step mechanism for sketch-photo-sketch
conversion. They took sketches as input in the first step
and then matched them with a face image dataset. The sec-
ond step colored the sketch with the best-fit face image.
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FIGURE 1. Facial images with different positions, angles, and heterogeneous lighting effects.

The sketch is re-drawn from the generated image during the
last step to authenticate the output images. The problem with
this technique was that it required a well-drawn sketch as
input. Gu et al. [59] enabled component-level controllability
of facial attributes using auto-encoders with the learning of
embedding features from individual face components. They
used mask-guided generative networks for the fusion of com-
ponent feature tensors. cGAN networks have also been used
to localize facial images using both facial sketches [8], [64]
or semantic label masks [65], [66]. The semantic label mask-
based editing is more flexible concerning style transfer and
component transfer, while the former approaches give fine
and direct control of facial components. To overcome the
errors in manually generated sketches, [67] Portenier et al.
proposed a conditional completion network that accepts the
smooth edge semantic map and input sketch.The attention of
recent approaches [20], [21], [22], [23], [24], [25], [26], [27],
[28], [29], [44], [46], [68], [69] was to balance the targeted
and generated images, making the generated image lookmore
realistic and natural. But, less feature selection in the spa-
tial domain reduces these models’ effectiveness in heteroge-
neous lighting effects with different angles of the same face.

Pixel-level details of facial attributes were not preserved
accurately due to 2D convolutions of loss learning functions.

III. METHODOLOGY/RESEARCH PROCESS
A. DATASET PREPARATION
For experimental purposes, we have developed a face dataset
that comprises a total of 100 participants. Each participant
collected 10 facial images with different face positions and
angles. So, a total of 1000 images were collected. These
images with different facial positions and angles along with
heterogeneous lighting effects are shown in Figure 1.

After that, a preprocessing phase was initiated, and four
versions of each image were generated: original RGB image,
manually sketched, grayscale image, and high-resolution
image. Sketching and manual enhancement was performed
under the supervision of expert artists and photographers.
In this way, our fine-tuned facial image dataset is equipped
with 4000 images with four categories: 1000 original RGB
images, 1000 manual sketches, 1000 grayscale images, and
1000 with super-resolution, as shown in Figure 2.

The original image size is 256 × 256 × 3 with normal
quality, high-resolution image 256 × 256 × 3 with high
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FIGURE 2. Four versions of dataset images. Original, High resolution, Grayscale, and manually sketched images.

quality, grayscale image 256 × 256, and manually sketched
image 256× 256.

B. PROPOSED FRAMEWORK ARCHITECTUR
The proposed model comprises four major phases. The first
three phases are cGAN networks that generate images from
sketch to high-resolution images step by step. In the pro-
posed framework, every GAN network is a modified form of
U-Net [70]. The final output of the first three phases acts as
input to the fourth phase for classification and recognition.
The fourth phase of the network contains the state-of-the-
art CNN network. We re-trained three CNN networks for
classification and recognition, i.e., ResNet-50, ResNet-101,
and Mobile-Net. Based on the classification and recognition
model selection, one of the above networks is selected for the
classification and recognition of the input. Figure 3 shows
the general framework of the proposed work. In this fig-
ure, the sketch image is an input of the first GAN G1.
It encodes the sketch input and generates a grayscale image.
The grayscale output of theG1will be the input of the second
GANG2. TheG2 of the framework executed the grayscale
image and generated an RGB image as output. The RGB
image is given to the third GAN G3 to generate high-
resolution images. Image encoding and decoding processes
are completed at this stage, and high-resolution images are
passed to the CNN network for classification and recognition.

1) GAN ARCHITECTUR
TheG1,G2 andG3 have the same architecture for a sketch to
grey, grey to RGB and RGB to high-resolution functionality,
respectively. Each GAN Network of the proposed framework
includes Generator and Discriminator. The internal architec-
ture of the Generator and Discriminator is as follows

a: GENERATOR ARCHITECTURE
The generator of the GAN network consists of two blocks:
Encoding and Decoding.

i) ENCODING
The encoding block extracts the features from the input image
and encodes them into optimum features. The encoding block
of the proposed GAN network’s generator consists of eight
3D-encoding sub-blocks. Every sub-encoding block contains
convolutional layers with a stride size of 2, Leaky ReLU,
and batch normalization. During the preprocessing phase,
the input image is resized into 256 × 256 × 3. The gen-
erator of the GAN network accepts images with the size of
256 × 256 × 3, and all encoding blocks convert them into
1 × 1 × 512.

ii) DECODING
The decoding block of the generator has seven sub-decoding
blocks. The decoding block upsamples the input from
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FIGURE 3. Flow chart of the proposed model with three different GAN and CNN classifiers. Here G1, G2 and G3 represent GAN networks.

1 × 1 × 512 to 256 × 256 × 3. The sub-decoding block
applies transposed 3D convolution, batch normalization, and
ReLU. The dropout of 0.5 was also applied only to the initial
three sub-decoding blocks. This dropout was applied after
convolution and batch normalization before ReLU to achieve
suitable noise removal while maintaining the original face
texture and features. Each sub-decoding block gets input
from the previous block and the corresponding same-sized
sub-encoding block. This approach helps to improve fea-
ture selection and texture preservation during encoding and
decoding. The decoding part of the generator tries to gener-
ate a target image closer to the ground truth. The complete
process of the encoding and decoding phase of the proposed
cGAN is described inFigure 4.

b: DISCRIMINATOR ARCHITECTURE
The discriminator also comprised seven different sub-blocks.
The initial three sub-blocks of the discriminator are similar
to that of the sub-encoding blocks of the generator. After
three sub-blocks, two separate convolutions are applied with
a stride size of 1 for feature purification and preservation of
the input. After that, batch normalization and LeakyReLU are
applied. The discriminator received two inputs: 1) an Image
generated by the generator and 2) Target Images as ground
truth. The primary function of a discriminator is to find
discrimination between generated and ground truth images.
It finds how much-generated images differ from the ground
truth. Finally, the generated image of the discriminator of size
30 × 30 × 1 is used to decide generation quality, as shown
inFigure 5.

2) CNN NETWORK
The final phase of the proposed network comprises
three pre-trained CNN networks, as shown in Figure 3.

1) ResNet-50, 2) ResNet-101, and 3) Mobile-Net. These
networks are used for the classification and recognition of
colourized high-resolution images. We adopted the transfer
learning technique for the training purpose of these CNN
networks.

C. TRAINING DETAILS
1) PARAMETERS USE
The generator of the proposed model used 163,577,577
parameters in all GAN stages. These stages are sketched
to grayscale conversion, grayscale to RGB, and RGB to
the high-resolution image. The discriminator used a total
of 8,311,299 parameters to find the originality and quality
of the generated image. The CNN models, i.e., ResNet50,
ResNet101 and mobileNet used 197525588, 216552832 and
175393895 parameters, respectively for classification pur-
poses. The complete details of the total, trainable and non-
trainable parameters of all stages are given in Table 1.

2) TRAINING PROCESS
The traditional Convolutional Neural Networks (CNNs) can-
not explain the spatial relationship between features and the
whole image. So, it will lose some of the targe’s attribute
information, such as direction and posture. To utilize the
optimum attributes of the target image, the proposed multi-
level 3D GAN applies 3D convolution to encode the input
image into vectors as shown inFigure 6. The output vector of
the encoder is given as input to the decoder to reconstruct
the guided coloured-face image. The 3D convolution and
deconvolution guide the G1, G2 and G3 to use additional
features and attributes for encoding and decoding. This helps
to preserve the direction, postures of targeted image attributes
and special relationships among the whole image’s features.
The process of 3D-Convolution and 3D-Deconvolution is
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FIGURE 4. Internal structure of GAN-generator. The generator comprises two blocks, i.e., encoding and decoding. Encoding encodes the input
and reduces it to minimum features, while decoding expands it and generates the output image.

FIGURE 5. Discriminator received two images as input, i.e., original ground truth images and generated sketch images, and compared how
much generated image differs from the ground truth.

handled by a vectorization process, that takes the same pro-
cessing time as 2D-Convolution but extracts more features
and texture information.

Generally, GAN networks generate the final image y from
scratch, i.e., random noise vector z, G : z → y [43]. In the
case of the proposed GAN, the network gets two inputs, i.e.,
random noise vector z and conditional vector x as sketch
image, to construct the final output image y, G : x, z→ y.

The discriminator D trained adversarially to differentiate
the generated vs. real images. The generator generates good-
quality images indistinguishable from natural images as long
as the generator is trained. The training mechanism of the

proposed GANNetwork is demonstrated inFigure 7. We used
the Adam stochastic gradient descent [71] mechanism to
train for the optimal learning rate of 0.0002 and momentum
estimates as β1 and β2 as 0.5 and 0.999, respectively. The
learning rate was reduced to 0.00001 after 150 epochs for
fine-tuning model weights.

Before training, preprocessing phases were initiated to
resize the image according to the underlying framework.
Then, images are randomly cropped to the target size with
horizontal flipping. For the training of the proposed GAN, the
G1 trained on 250 epochs for Sketch to Gray transformation.
The G2 trained on 300 epochs for grey to RGB image, while
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TABLE 1. Trainable and non-trainable parameters of the proposed framework.

450 epochs were used to train G3 to transform the RGB to a
high-resolution image. G3 was trained on 450 epochs due to
texture enhancement and feature improvement.

The batch size was set to 1 for all three GANs networks.
The proposed GAN took 120 minutes for G1 and 145 min-
utes for G2, and 230 minutes for G3 on P100s GPU for
training. At the same time, every GAN needs approximately
0.35 sec to transform the input to output using the same
GPU. So, the proposed GAN model needs only 1.25 sec to
convert the sketch into a super-resolution coloured image.
For classification, the input size of ResNet-50, ResNet-101,
and Mobilenetv2 is 224 × 224 × 3. For the training of CNN
networks, we used random crops of 224× 224× 3 from high-
resolution images. Resnet-50 and Resnet-101 models were
trained on 45 epochs with a batch size of 128 and a learning
rate of 0.0001. While the batch size of 128 and the learning
rate of 0.0001 was also set for Mobilenetv2 with 70 epochs.

FIGURE 6. Three dimensional convolutional mechanism.

IV. RESULTS AND DISCUSSION
A. IMAGE GENERATION
The whole proposed multi-level GAN network generates
sketches to high-resolution images in three phases. Three
GAN networks are incorporated with each other to generate

high-resolution images. During the training process, each
GAN network was trained independently. The detail of each
phase for generating images is given below.

Phase-I: The first GAN (G1) input is a sketch image,
shown in Figure 3. For training purposes, we use the proposed
PPFD dataset. The train-test ratio for G1 was 7:3. A total
of 500 epochs were carried out with a conditional training
procedure on 1400 images.

These 1400 images include 700 sketches and 700 grayscale
images. The output of G1 was a grayscale image, as shown
in Figure 8. As the training starts, G1 generates a noisy
and blurry image. But the noise is removed gradually as the
number of epochs increases. At epoch no 210, the generated
picture is more precise, and at epoch no 300, the generated
image is more likely to ground truth, as shown in Figure 8.

Phase-II: Phase-II GAN network (G2) received
700 Grayscale images and 700 coloured images for training.
The training ofG2 comprises 420 epochs with a learning rate
of 0.0002. the output ofG2was a coloured image, as shown in
Figure 9. Initially, at epoch no 15, the generated image shows
a blurry pattern, but at epoch no 110, the image looks more
realistic.

As the execution goes ahead, from epoch no 210 to 300,
the facial expression of the generated image shows a more
realistic pattern than the ground truth.

Phase-III: The phase-II output is the normal coloured
image. To generate a high-resolution image with a more real-
istic facial attribute, we incorporated G3 with this network.
G3 network enhances regions with blurry and nosy patterns to
convert normal images into high resolution using conditional
attributes. The visual results ofG3 on epochs 7, 111, 285, and
390 is shown in Figure 10.

1) GAN EVALUATION
The generator generates output against every input, then the
discriminator evaluates the Input image and generates the
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FIGURE 7. Training Mechanism of GAN Network A: Generator Training, B: Discriminator Training.

image in the first step. The discriminator evaluates the Input
image and the targeted image during the second step. Finally,
generator and discriminator losses were calculated with the
gradient loss of the generator and discriminator’s input. In this
way, all the results were optimized.

a: GENERATOR LOSS
Generator loss is the sigmoid cross-entropy of generated
images and an array of ones. Generator loss includes L1,
which means absolute error (MAE) between the generated
image and the target image. L1 loss helps the generator to
generate an image more realistic to the target image. Total
generator loss is evaluated by equation 1.

Total Generator loss = genloss + λ ∗ L1loss
Here, λ = 100 (1)

Initially, the highest generator losses of the proposed model
regarding G1, G2, and G3 were calculated as 3.31, 5.47,
and 4.33, respectively, as shown in Figure 11. These losses
approach zero by improving the accuracy with an increase
in the number of epochs. To fool the discriminator, the loss

function of the generator tries to improve the generated
images near the ground truth. As the number of epochs
increases, the learning proficiency increases, and generator
loss decreases to 0.35, 0.06, and 0.02 for G1, G2, and G3,
respectively, as shown inFigure 11. The proposed model
achieved the highest training results at 300 epochs regarding
G1 and G2. While for G3, the highest training results were
achieved at epoch 400 due to the generation of texture details
and high-resolution facial attributes.

b: DISCRIMINATOR LOSS
Two inputs were given to the discriminator loss function:
1) Real image and 2) Generated Image. A combination of
sigmoid cross-entropy loss of real image and an array of
ones were used for finding real loss. At the same time, the
generated loss is the sum of the sigmoid cross-entropy loss
of the generated images and an array of zeros. So, the total
discriminator loss (LDT ) is calculated by the sum of real loss
(LR) and generated loss (LG) as shown in equation 2.

LDT = LG + LR (2)
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FIGURE 8. G1 Output results of training on different epochs.

FIGURE 9. Output results of G2 at different epochs.

LDT curves of G1, G2, and G3 decrease from 1.42, 1.65,
and 1.42, respectively, as shown inFigure 11. The trend line
decreases as the number of epochs increases. The graph
behaviour reveals that initially, the discriminator beat the
generator and classified the generated image as fake. But as
the learning of the generator increases up to 150 epochs, the
generator tries to generate a realistic image. Finally, the losses

decrease after 220 epochs, and the generated image looks
more realistic and near the ground truth.

2) IMAGE QUALITY EVALUATION
To evaluate the generated image quality, we have used SNR,
PSNR, and SSIM matrices.
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FIGURE 10. Visual output results of G3 at different epochs.

FIGURE 11. Discriminator, Generator GAN, Generator L1 and Generator Total losses of G1, G2 and G3.

a: SNR
Signal-to-noise ratio (SNR) is used in imaging to char-
acterize image quality. The sensitivity of a (digital or
film) imaging system is typically described as the signal
level that yields a threshold level of SNR, as shown

in equation 3.

SNR = 10log10

 ∑M
j=1

∑N
k=1

(
xj,k
)2

∑M
j=1

∑N
k=1

(
xj,k − x‘j,k

)2
 (3)
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TABLE 2. Image quality Parameters of SNR, PSNR and SSIM.

We have calculated SNR on two different types of images.
1) Images that were included during training (Iinclude), and
2) Images not included during training (Iexclude). The SNR of
G1, G2, and G3 on Iinclude was calculated as 26.13, 38.17,
and 39.80, respectively. While on Iexclude images was 21.39,
37.44, and 34.02, respectively, shown in Table 2.

b: PSNR
SPNR is the ratio between the maximum Signal’s power
(Original target image) and the power of the noisy Signal
(Generated image). To find the quality of the generated image
based on pixels, peak Signal to noise ratio (PSNR) metrics
were used. PSNR is formulated as in equation 4.

PSNR = 10 log
(2n − 1)2

MSE

PSNR = 10 log
(255)2

MSE
(4)

Here

MSE =
1
n

n∑
i=1

(gi − pi)2

MSE is the Mean square error between g and p. Here ‘‘p’’
is the predicted or newly generated image while ‘‘g’’ is the
ground truth image. The PSNR of G1, G2, and G3 on Iinclude
was 29.86, 41.18, and 42.79, respectively. On the other hand,
PSNR for Iexclude was calculated as 26.11, 40.23, and 37.85,
as shown in Table 2.

c: SSIM
SSIM is abbreviated as structural similarity index measure.
It measures the image statistics of the sliding window. The
formula for SSIM is derived as follows.

Let x = {xi|i=1, 2,. . . . . .N} and y={yi|i=1,2,. . . . . . ..N}.
The proposed quality index is defined as in equation 5.

Q =
4σxyx/y/(

σ 2
x + σ

2
y

) ∣∣∣(x/)2 + (y/)2∣∣∣
here, x/ =

1
N

N∑
i=1

xi

y/ =
1
N

N∑
i=1

yi

σ 2
x =

1
N − 1

N∑
i=1

(
xi − x/

)2
σ 2
y =

1
N − 1

N∑
i=1

(
yi − y/

)2
σxy =

1
N − 1

N∑
i=1

(
xi − x/

) (
yi − y/

)
(5)

The proposed multi-GAN network attains the Iinclude SSIM
value as 0.9251, 0.9891, and 0.9940 for G1, G2, and G2.
However, Iexclude SSIMwas calculated as 0.9084, 0.9875, and
0.9661 for G1, G2, and G2 as shown in Table 2.

The comparative analysis of the proposed multi-level
3D-GAN with the existing GAN network is given in Table 3.
The results reveal that the proposedmodel outperforms SSIM,
SNR and PSNR. The proposed model outperforms due to the
usage of multi-level GAN with 3-dimensional convolutions
and deconvolution. 3D convolution extract optimal features
and attributes with each pixel’s direction and position. The
relation among the attribute is also preserved, which helps
decode the image with each object’s actual position and
relation.

B. IMAGE CLASSIFICATION
We proposed a multi-level GAN network with three phases
to generate a high-resolution image from a sketch.

The CNN classifier is used to recognize the generated
high-resolution image using the transfer learning technique
with the help of three pre-trained models, i.e., ResNet50,
ResNet101, and MobileNetV2.

The original high-resolution images were used for the
training of these models. For testing purposes, we used the
generated high-resolution images.

The confusion matrix is the most common and compre-
hensive way to represent classification evaluation. The con-
fusion matrix includes four classes: 1) True Positive (TP),
2) True Negative (TN), 3) False Positive (FP), and
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TABLE 3. Comparison of proposed 3D GAN with existing GAN networks.

FIGURE 12. Confusion matrix of generated Image recognition.

TABLE 4. Classification results of MobileNet, ResNet-50 and ResNet-101.

4) False Negative (FN). The confusion matrix of ResNet50,
ResNet101, and MobileNetV2 is given in Figure 12.

The other classification evaluation matrices used to evalu-
ate the proposed work includes accuracy, precision, recall and
F1-score.

1) ACCURACY
Accuracy is used to find how much the proposed model
produces accurate results. Accuracy is the ratio of correctly
classified images and the total number of images evalu-
ated. The accuracy of the proposed model is calculated by
equation 6.

Accuracy =
(TP+ TN )

(TN + TP+ FP+ FN )
(6)

The ResNet-50, ResNet-101, and Mobile-Net achieved out-
standing accuracies as 97.394.7% and 91.7% respectively.

2) PRECISION
Precision is the formulation of finding how many values are
positive that are predicted as positive. It is beneficial when
we have labelled data about our predictions. The formula for
precision is given in equation 7.

Precision =
TP

(TP+ FP)
(7)

Due to deeper structural architecture, the proposed model got
a high precision value in the case of ResNet-50, ResNet-101
thanMobile-Net. The precision ofMobileNet, ResNet-50 and
ResNet-101was 91.77%, 94.74% and 97.43%.
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3) RECALL
Another way to evaluate the classification is recall. It helps
us to find the ratio between correctly classified values as
positives over the total values that are positives. The recall
is formulated in equation 8.

Recall =
TP

(TP+ FN )
(8)

The global recall value of MobileNet, ResNet-50 and
ResNet-101 calculated as 91.67%, 94.67% and 97.33%,
respectively.

4) F1 SCORE
The overall picture of precision and recall can be calculated
with the F1-Score. It gives the harmonic mean of recall and
precision. The formula for F1-Score is given in equation 9.

F1score =
2 ∗ (precision− recall)
(precision+ recall)

(9)

ResNet-101 achieved the highest value for F1Score at 0.9733.
However, ResNet-50 and Mobile-Net did not play better than
ResNet-101 and got the F1Score of 0.9465 and 0.9165.

5) SPECIFICITY
It helps us to find the ratio between wrongly classified values
as negative over the total values that are negative. The speci-
ficity is formulated in equation 10.

Specificity =
TN

(FP+ TN )
(10)

ResNet-101 outperformed in respect of specificity and
got 99.70%. While ResNet-50 achieved 99.41MobileNet
99.07%. The values of evaluation matrices are also shown
in Table 4.

C. ADVANTAGES AND LIMITATION
This approach has the following advantages over existing
techniques.

• The proposed conditional GAN can perform work in
3-phases, i.e., sketch to colour and then high-resolution
RGB image.

• The proposed framework used 3D-Convolution and
3D-Deconvolutional processes using vectorization.

• The proposed 3D-cGAN can translate sketches into
more realistic images by preserving more spatial facial
attributes and pixel-level information while using the
same processing time as conventional 2D-Convolution.

• We have also developed a state-of-the-art facial PPFD
dataset that contains 4000 images with four distinct
categories along with a heterogeneous, multi-color, and
different Luminus effect.

• Despite this, the proposed 3D-cGAN cannot generate
full high-definition like 1024 × 1024 and more images
due to the limited computational resources and complex-
ity of convolutional neural networks.

V. CONCLUSION
This work proposed a frameworkwith amulti-level 3D cGAN
network to generate high-resolution images from sketches
along with a classification network to recognize the image.
We developed a state-of-the-art PPF dataset that comprises
4000 images collected from 100 people for experimental pur-
poses. We have also generated the ground truth of each image
to authenticate the proposed framework model results. The
framework integrated three conditional cGAN networks for
sketch-to-image generation, followed by pre-trained ResNet-
50, ResNet-101, and Mobile-Net for classification. We use
the 3D-Convolutional process for all GANs using vectoriza-
tion, which extracts more features and texture information
from images while using the same computational cost as 2D-
Convolution. We used Adam’s stochastic gradient descent
mechanism to achieve the optimal results with a learning rate
of 0.0002 and momentum estimates β1 and β2 as 0.5 and
0.999, respectively, during training. Multiple statistical mea-
sures were considered to authenticate the performance of the
proposed framework. The framework got 97.33% accuracy
with 99% image structure similarity index measure with high
SNR and PSNR.

In the future, we will enhance the quality of the generated
image using fewer parameters so that high-quality image gen-
eration may become possible with low-processing devices.
We also try to generate images with the help of textual data.
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