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ABSTRACT The high performance requirements of nowadays computer networks are limiting their ability
to support important requirements of the future. Two important properties essential in assuring cost-efficient
computer networks and supporting new challenging network scenarios are operating energy efficient and
supporting cognitive computational models. These requirements are hard to fulfill without challenging the
current architecture behind network packet processing elements such as routers and switches. Notably, these
are currently dominated by the use of traditional transistor-based components. In this article, we contribute
with an in-depth analysis of alternative architectural design decisions to improve the energy footprint and
computational capabilities of future network packet processors by shifting from transistor-based components
to a novel component named Memristor. A memristor is a computational component characterized by non-
volatile operations on a physical state, mostly represented in form of (electrical) resistance. Its state can
be read or altered by input signals, e.g. electrical pulses, where the future state always depends on the
past state. Unlike in traditional von Neumann architectures, the principles behind memristors impose that
memory operations and computations are inherently colocated. In combination with the non-volatility, this
allows to build memristors at nanoscale size and significantly reduce the energy consumption. At the same
time, memristors appear to be highly suitable to model cognitive functionality due to the state dependence
transitions in the memristor. In cognitive architectures, our survey contributes to the study of memristor-
based Ternary Content Addressable Memory (TCAM) used for storage of cognitive rules inside packet
processors. Moreover, we analyze the memristor-based novel cognitive computational architectures built
upon self-learning capabilities by harnessing from non-volatility and state-based response of memristors
(including reconfigurable architectures, reservoir computation architectures, neural network architectures
and neuromorphic computing architectures).

INDEX TERMS Memristors, network architectures, cognitive networks, ternary content addressable
memory, neural networks, neuromorphic computing.

I. INTRODUCTION
Nowadays the Internet is the backbone of most computing
systems and computer-based applications spanning over
server ends, packet processing nodes and users’ end devices.
The Internet depends on highly efficient packet processing
elements optimized to yield high throughput with high per-
formance operations for packet processing, in particular for
matching and modifying packet headers, and generating new
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packets based upon the matches. Modern packet processors
perform computational steps at time scales which are in
the order of nanoseconds with throughput in the order of
terabits e.g., 25.6 Tbps throughput for Intel’s programmable
Tofino-3 switch [1]. These high performance requirements
combined with complex functionalities come at the price of a
very high energy footprint. In fact, the energy consumption
in transporting data between source and destination in the
Internet is 260-340 TWh, which is at least 260, 000 times
higher than the average electricity generation by a nuclear
power plant [2], [3]. At the time to support requirements on
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performance, it also imposes challenges to integrate, change
the mechanisms which would allow to utilize the network
resources more efficiently. The integration of cognitive
functions uptil now is only feasible by connecting external
computational elements with packet processors at the cost
of high energy consumption and excessive data movement
delays. It is highly challenging to integrate these functions at
the level/speed of packet processing within the architectures
of current network packet processors. Overcoming these
challenges requires to fundamentally rethink the design and
architecture of network elements.

A particular problem inherent at current design of network
elements is the dependence on transistor-based components
which have high power consumption and lack non-volatility.
Recent research efforts in the domain of solid-state elec-
tronics have proposed a new component named Memristor
which has highly promising characteristics for enhancing
or even replacing transistor-based components in current
computer architectures [4]. In particular, in the domain
of computer networks, its properties have a tremendous
potential to enhance the energy efficiency, but also the
computational capabilities of network packet processors [5].
A memristor compared to a transistor is characterized by
state transitions which are non-volatile. In addition, such
transitions do not support only read and write operations like
in volatile transistor-based memory, but can also model so
called cognitive computations as part of a state-transition.
This way data storage and computations are co-located
and make energy and time consuming data movements
feasible. Although there is a rapid and tremendous interest
in memristors, their implementation for network functions is
challenging due to the absence of cognitive models benefiting
from thememristive features of non-volatility and state-based
response.

The implementation of memristors for cognitive packet
processors poses several research questions in the areas
of designs, implementations and tradeoffs in comparison
to transistor-based packet processors. The non-volatile and
state-based response of memristors encourages the explo-
ration of its applications in cognitive systems, built upon
the installation of programming rules for execution of
network operations, called rule-based systems, e.g., Ternary
Content Addressable Memory (TCAM) architecture for
feeding and fetching cognitive rules. This leads to the fun-
damental research question, ‘‘Can future computer networks
be designed using memristor-based network components
to benefit from the non-volatile state-based response and
implementation of energy efficient network functions?’’.
Moreover, colocalization of memory and computation in
memristors promotes its applications in novel cognitive
architectures, which can analyze, develop and modify the
rules based upon the system conditions, called learning
systems, e.g., reconfigurable architectures, reservoir com-
putation architectures, neural network architectures and
neuromorphic computing architectures. Unlike in the von
Neumann architecture, in a memristor-based architecture

memory and computation is inherently colocalized. Hence,
the next related research question is, ‘‘In how far can mem-
ristors efficiently support cognitive computations with self-
learning capabilities?’’. The implementation of memristor-
based architectures also comes at the cost of increased
computational complexity and device implementation chal-
lenges. This motivates us for the next research question,
‘‘What are the designs, trade-offs and challenges in shifting
from the traditional transistor-based network components to
the memristor-based network components?’’. This survey
focuses on comprehending these research questions related
to memristor-based network components for the implemen-
tation of cognitive functions at packet processors in the
Internet.

A. CONTRIBUTIONS
In this article, we survey and analyze research findings
on memristive materials from the perspective of packet
processors. In particular, we study recent advancements
in memristor-based cognitive components that could be
an integral part of future packet processing lines. In this
context, firstly, this survey presents the design of rule-based
systems using memristor-based TCAM architectures for
incorporation of cognitive functions inside packet processors.
It also presents the traditional measures of performance
enhancement in TCAM with a comparison to the energy
consumption statistics. Secondly, this survey studies the
implementations of memristor-based learning systems for
the development of self-learning cognitive functions at
packet processors. This line of study includes reconfigurable
architectures (including crossbar arrays, Field Programmable
Gate Arrays (FPGAs) and application-specific architectures),
reservoir computation architectures, neural network archi-
tectures and neuromorphic computing architectures. Lastly,
this survey presents the design considerations and future
directions of research for incorporation of memristor-based
cognitive network architectures at packet processors. State-
of-the-art literature has surveyed researches for designing
memristor-based architectures, however, previous surveys
mainly focused on memristive cognitive properties and
specific architectures with less emphasis on the application-
side of memristive cognitive architectures. On the contrary,
our survey specifically focuses on the use of memristive
components in packet processors to harness energy efficiency
and cognitive functionality of memristors. However, the
findings of previous surveys and reviews act as a foundation
for our survey.

B. SURVEY FINDINGS
Our survey suggests that the memristor-based components
can provide better performance in terms of energy effi-
ciency and implementation of cognitive functions at packet
processors than the traditional transistor-based components.
In the rule-based cognitive systems, traditional transistor-
based TCAM designs can only be slightly optimized in per-
formance by managing hardware resources more efficiently.
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FIGURE 1. Organization of our survey paper.

On the contrary, memristor-based TCAM architectures can
provide multiple programmable states, along with non-
volatility, which support in developing energy efficient
TCAM architectures for matching cognitive rules. In the
learning systems, our survey shows that memristors can be
used for the development of reconfigurable architectures
like crossbar arrays, FPGA designs, etc. Memristor-based
crossbar array designs provided sophisticated network func-
tions stemming from matrix multiplication operations and
development of cognitive functions. Moreover, the scope of
network functions can be extended to incorporate cognitive
packet handling by the development of memristive reservoir
computation architectures. Our survey also showed thatmem-
ristors can be used for the development of neural network

architectures by programming conductance of memristors
analogous to the programming of weight in neural networks.
Lastly, our survey showed that memristors provide all the
brain inspired synaptic properties which can make them an
efficient alternate to transistor-based designs and they can be
used in packet processors for providing cognitive capability.
Based upon the discussed literature, our survey shows that the
future computer networks can harness from memristor-based
cognitive packet processors in terms of energy efficiency and
cognitive functionality at packet processors.

C. PAPER ORGANIZATION
Organization of our survey paper in form of major modules
and submodules is shown in Fig. 1. Section-II presents the
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TABLE 1. Summary of important acronyms used in the survey paper.

motivation of the research problem. Section-III introduces the
background and properties of memristors. Rule-based sys-
tems comprising of transistor and memristor-based TCAM
architectures have been discussed in Section-IV. Section-V
analyzes the memristor-based learning systems for cognitive
network architectures including reconfigurable architec-
tures (Subsec-V-A), reservoir computation architectures
(Subsec-V-B), neural network architectures (Subsec-V-C)
and neuromorphic computing architectures (Subsec-V-D).
Memristive challenges and future scope of research
are discussed in Section-VI. Section-VII presents the
related surveys and reviews in comparison to our survey
and Section-VIII concludes the paper. A list of major
acronyms used in the survey paper has been summarized
in Table 1.

II. BEYOND TRANSISTOR DOMINATED NETWORK
ARCHITECTURES
In this section we explain why current network tech-
nologies are strongly limited in energy efficiency and in
their ability to execute cognitive functions. Furthermore,
we introduce the cognitive models we will use in the
survey to classify advancements in memristors. In-network
processing requires cognitive processing of network flows
to deal with more network traffic with intelligent decisions,
high throughput and less delay, at packet processors with
power efficient network functions [6], [7]. On the contrary,
current packet processors consume huge amount of energy
resources and lack cognitive functionality for network packet
flows [8], [9].

The root of these problems stems from the underlying
operating principles of the transistor-based technology used
in the current packet processors. The major problems
in transistor-based architectures are volatility, high power
consumption, large switching time and lack of state-based
response. The transistor’s state-based response resembles
a Moore machine where the output depends only upon
the input without any relationship to the past state of the
transistor [10]. As a result, transistor-based architectures are
used in von Neumann architectures which use a combination
of memory and computation because transistors cannot
compute and store at the same time. Moreover, the state
of a transistor is volatile and requires continuous power
supply for state maintenance. Also, power consumption in
a transistor is the product of voltage and current across
a transistor and it is solely dependent upon the hardware
material characteristics. At the moment, transistor-based
architectures consume large amount of power along with
the generation of significant amount of heat due to the
inherent material characteristics and atomic operations [11].
Regarding switching times, it is the time difference between
an applied input and an observed output in a transistor, and
it directly influences the available clock cycles per unit time
for any network function. Transistor-based architectures are
experiencing large switching times which worstly affects
the computational performance of any operation. Moreover,
invalidity of Moore’s law in increasing the number of tran-
sistors per unit area and fabrication limitations exacerbated
the exhaustion of resources for providing cognitive functions
at packet processors. As a result of all these shortcomings,
the implementation of cognitive functions for complex
network operations, like network congestion management,
dependent upon the past state of the network become
challenging and energy inefficient to model in the transistor-
based packet processor. The network functions, like anomaly
detection, keep a track of past states of the system and
current von Neumann architecture uses separate state storage
and processing. As a result, it poses challenges regarding
excessive power consumption and providing flow guarantees
for cognitive network operations. Large switching time in
transistors is a major challenge for the implementation of
complex network functions because every network function
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FIGURE 2. Taxonomy of the Internet architecture.

consumes more time for the same number of operations.
Therefore, a fundamental question is whether and in how far
alternative designs of packet processing platforms can help to
counteract or even overcome all these limitations.

The current Internet architecture transports network pack-
ets between threemajor network entities; Data producers (end
users and Internet of Things (IoT) devices), Data processors
(communication system) and Data consumers (Data centers),
as shown in Fig. 2. Data is generated by a range of end
devices including IoT devices and end users amounting to
4.8 zettabytes of traffic in 2022 [12]. The Data Transmission
phase comprises of a range of network appliances consisting
of cellular networks and copper/fiber networks connecting
to the Border Network Gateway (BNG). BNGs connect to
the autonomous systems comprising of packet processors,
with or without Software defined networks, and transmit
the information to the Data Computational units, i.e., Data
centers and remote servers, for processing and computing the
packet payload information and replying Internet Protocol
(IP) packets with the requested information. As evident from
the Fig. 2, Data transmission phase carries the most load
of traffic transmission and it’s widely spread in the world
and at the moment it is dominated by the traditional von
Neumann architectural configurations built upon transistors.
It takes a maximum of 40 Hops (15 hops for Routing
Information Protocol [13]) for network packets to reach any
connected device in the world and every hop count at a packet
processor is associatedwith a delay for taking decisions based
upon incoming packet header and performing non-cognitive
computations. Implementation of cognitive functions at

packet processors has already shown superior performance
in decision making by incorporating a vast variety of
rules without excessive consumption of storage space for
incoming packets [14]. However, these cognitive benefits are
reaped at the costs of increased energy consumption and
excessive delays by using the transistor-based von Neumann
architecture. The future packet processors can incorporate
cognitive processing through incorporation of two kinds of
systems in the edge and middleware nodes; (1) Rule-based
Systems [15], (2) Learning Systems [16]. These two kinds of
cognitive systems will be used to study advancements in the
development of novel architectures at packet processors.

A. RULE-BASED SYSTEMS
Representation of knowledge is done in form of rules in a
rule-based system. The programming model of a rule-based
system comprises of if-then-else statements. There is no self
learning capability in the system, but, the system is able to
make cognitive decisions based upon a series of installed
rules in the system. An example of rule-based systems in
networks is the IP-lookup functionality at packet processors.
The header information containing the destination IP address,
VLAN ID, ethernet protocols, etc., of incoming packets is
assessed to compute the destination path. This computation
takes place by cognitive rules installation at specialized
Match-Action units at packet processors as discussed below.

1) TCAM ARCHITECTURES
The high performance header processing of packet processors
stems from the use of a specialized unit called TCAM [17].

VOLUME 10, 2022 129283



S. Saleh, B. Koldehofe: On Memristors for Enabling Energy Efficient and Enhanced Cognitive Network Functions

TCAMs enable prefix matching in one clock cycle and are
therefore one of the key building blocks of high performance
packet processing in the Internet. Building on new data
plane programming models, like the P4 language [18],
packet processors can also be used for the acceleration of
cognitive network functions by providing reconfigurability of
processing pipeline at the hardware level with applications
in content-based routing and load balancing. Nevertheless,
a drawback is the high energy footprint, cost of the mem-
ory components, scalability issues and switching failures
(e.g., Microsoft Azure switch failures [19]) of the packet
processor.

B. LEARNING SYSTEMS
Artificial Intelligence (AI) empowered learning systems have
a complex task of using the feature selection, analysis and
classification to learn the rules with adaptive intelligence
based upon the network function requirements without any
influence from the outside factors. Learning systems can
adapt to the knowledge and relearn and modify the rules
for the network based upon the varying conditions. Network
functions like firewall development, congestion control, load
balancing, etc., can be hosted at packet processors to analyze
the network packet streams and adapt the cognitive decisions
based upon the network conditions. The implementation of
learning systems can be performed by utilizing a diverse set of
architectures, (1) Reconfigurable architectures, (2) Reservoir
computation architectures, (3) Neural network architectures,
and (4) Neuromorphic computing architectures, as discussed
below.

1) RECONFIGURABLE ARCHITECTURES
Flexibility of the software can be used for high com-
puting frameworks by employing reconfigurable hardware
architectures. Programmable crossbar arrays and FPGAs
are some of the examples of reconfigurable hardwares
which can be used to implement cognitive functions.
In crossbar array architectures, a set of inputs can be
mapped to a set of outputs by connecting programmable
entities (components) in between every input and output.
FPGAs consist of programmable logic gates to map an input
to an output and reprogrammability provides the ability
to learn from the current inputs and modify the input-
output logic by controlling the gate connectivity. Transistor-
based technology consumes excessive energy resources and
requires excessive data transport between memory and
computational units which makes it infeasible to use in
cognitive reconfigurable architectures. At packet processors,
reconfigurable architectures provide the benefit of diversity
in network functions for incoming packet streams. A variety
of cognitive decisions can be installed and adapted based
upon the network conditions.

2) RESERVOIR COMPUTATION ARCHITECTURES
In reservoir computation, a fixed and programmable nonlin-
ear system called reservoir can be trained tomap input signals

to higher dimensional computational spaces. Reservoir
computation uses the model of a recurrent neural network
with feedbacks to map input and output signals. Every
reservoir must have nonlinear functions for neurons along
with information storage capability. However, transistor-
based architectures require separate storage and computation
to achieve this task which worstly effects the performance
of the reservoir. In the field of networks, the network
functions like congestion control, routing, load balancing
etc. can be computed at packet processors by feeding
parameters on the input side of the reservoir and complex
cognitive decisions can be obtained on the output of the
reservoir. The model can be trained to determine the optimal
cognitive decision by programming the weights in the
reservoir.

3) NEURAL NETWORK ARCHITECTURES
Cognitive decisions can be made through an Artificial Neural
Network (ANN) which is made up of a network containing
a circuit of neurons. The connections between neurons are
modeled as programmable weights which can be tuned
to achieve the desired performance of the network. Every
neuron combines the inputs by a weighted sum and adds a
bias after setting an activation function which controls the
amplitude of the output. In the context of networks, neural
networks can increase the range of decisions for network
functions, like data analytics, at packet processors and they
can transform the network from a rule-based network to a
continuously evolving decision making network. However,
transistor-based networks face limitations in neural network
implementations due to network state requirements which
requires continuous data movement between memory and
computational units.

4) NEUROMORPHIC ARCHITECTURES
Significant amount of energy and time is invested in data
transport between computation and memory units in the
traditional von Neumann architecture [20]. To counter von
Neumann issues, the neuromorphic architecture focuses on
combining large number of computational nodes through an
asynchronous clock. Moreover, all nodes have co-localized
computational and memory units and every node takes a
decision based upon the Spiking neural network model and
propagates the decision through the network. Motivation of
the neuromorphic research is derived from the functioning of
human brain which operates at 1 exaflops (1018) calculations
per second with a 25 W energy consumption, while a
supercomputer operates at 200 petaflops and consumes
10 MW energy for equivalent number of operations [21],
[22]. Neuromorphic chips Loihi by Intel [23] and TrueNorth
by IBM [24] are some prominent neuromorphic computing
architectures. The packet processors can benefit from the
neuromorphic architectures by deploying energy efficient
network functions, like cognitive decision making using
packet header fields and network conditions.
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FIGURE 3. Pinched hysteresis curve of memristors.

III. MEMRISTORS
In this section, we introduce the memristor, a fundamental
circuit design component along with its background, history,
characteristics, and modeling dynamics in reference to net-
work packet processors. The Internet landscape is dominated
by the transistor-based components used in computing and
storage elements e.g., processors and network memories.
However, continuous power supply is required to maintain
the data inside the transistor-based components. Moreover,
there is less diversity in the state-to-state transitions in the
transistors which ultimately results in the scarcity of imple-
mentable functions or high overhead of implementation. As a
result, the implementation of network functions built upon
AI would require huge energy and excessive delays for data
movement and huge costs would incur for state maintenance
in the traditional transistor-based components. The remedy
for all current network issues is the shift towards network
entities built upon a novel component Memristor instead of
transistors.

A. BACKGROUND ON THE WORKING OF MEMRISTOR
In a memristor, the state is represented by its electrical
property, resistance (or conductance, the inverse of resis-
tance). State changes require an applied voltage, but the
state remains if no voltage is applied. To find the current
state of a memristor, current flow is measured across the
memristor. Analysis showed that the resistance exhibited by
the memristor by applying an input voltage is a function
of the past resistance, unlike transistor or any fundamental
component like resistor, capacitor or inductor. This state
dependent relationship of resistance can be represented in
form of a pinched-hysteresis curve as shown in Fig. 3
(simulated in Matlab). Each point in a curve corresponds
to a distinct state and number of states depend upon the
composition and type of the memristor. In network analogy,
it suggests that state of the memristor can be programmed
and the memristive state is dependent upon the input
parameters and past state of the memristor function. In terms
of network functions, it gives the memristors an inherent
ability for implementation of state-based functions including
computational and memory operations because output is
dependent upon the input and past state of the system and

FIGURE 4. Fundamentals of electrical components in networks.

nonlinearity can be used for complex operations. It is also
worth noting that the extreme right and left points are called
SET and RESET states. These two points are used to eliminate
the information about the past states, because, all past states
converge to these two points by application of the required
voltage. This response can be useful in removing the state-
based memory in memristors for providing security and
privacy in networking applications.

B. HISTORY OF MEMRISTORS
The concept of memristor has a short history; before 1971,
the four fundamental electrical properties namely voltage,
current, charge and flux, were linked together through
three fundamental electrical components namely resistor,
capacitor and inductor. In 1971, Leon Chua proposed a new
theoretical fundamental component namely Memristor by
linking the four fundamental properties together [25]. Fig. 4
presents the linkage between the four fundamental electrical
components by voltage, current, charge and flux. Memristor
was introduced as a theoretical linkage between charge
and flux. Memristor was proposed to be the fourth critical
building block in circuits along-with resistor, capacitor and
inductor [26]. In a resistor, induced current is dependent
upon the applied voltage only. On the contrary, current in a
memristor is dependent upon the past state of the memristor
as well as the applied voltage. This gives it the name
memristor from the combination of memory and resistor.
Memristor behaves similar to a nonlinear resistor with a
memory, and such a behavior cannot be modeled by any
combination of a Resistor-Inductor-Capacitor (RLC) circuit
because all previous circuits are using stateless operations.
In 2008, Stanley Williams and his team [4] discovered the
fourth fundamental element Memristor at a research lab.
They showed that memristance arises naturally for nanoscale
electronics by coupling together the basic physical properties
of ionic transport and solid state electronic after application
of an external voltage [27]. The relationship between voltage
and current was demonstrated by varying the width of the
doped region. Layers of Titanium oxide and oxygen deficient
Titanium oxide sandwiched between Platinum electrodes
were used for the fabrication of the first memristor, as shown
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in Fig. 5. Based upon the feature study, memristor discovery
proved to be a milestone in developing non-volatile and
state-based network components which can ultimately lead
to cognitive computational and memory architectures [28].

FIGURE 5. Structure and composition of a memristor.

C. CHARACTERISTICS OF MEMRISTORS
In the context of networking architectures, we are inter-
ested to understand how the memristors would impact the
performance and energy-efficiency of packet processors as
compared to the traditional transistor-based components.
Therefore, we survey the research focusing on the analysis
of hardware characteristics of memristors critical for packet
processors. We focus on memristive switching behaviors,
combinational characteristics with other components, cog-
nitive properties, electrical properties for read and write
operations, and power efficiency traits of memristors in this
section.

1) SWITCHING BEHAVIOR
Memristor switching refers to the transition of a memristor
in between maximum and minimum resistance states in
a binary state transition model. Memristors have unique
properties for switching behaviors in packet processors.
Prodromakis et al. [29] studied the switching mechanism
of memristors at nanoscale level. The authors performed
experiments on a four layer fabricated memristive device
and presented the current-voltage andmemristance (electrical
resistance of memristor) patterns in comparison to the
hysteresis curves. By observing the stable and continuous
state transitions in memristors, the study concluded that
memristors can be a promising component for switching
mechanisms with better energy efficiency and switching
performance. Moreover, the research showed that memristors
are feasible at nanoscale for the requirements of practical
applications like computational and storage architectures in
the networks.

2) COMBINATIONAL SWITCHING CHARACTERISTICS
Owing to the widespread use of network functions built upon
resistors, capacitors and inductors, it is highly essential to
study the memristor properties in combination with these
components. Joglekar andWolf [30] showed that memristor’s
hardware characteristics in form of current voltage patterns
and complex logic development can be enhanced by com-
bination with capacitors and inductors. The major gains in
combination with other components were achieved in form

of variations in hysteresis curves, and decaying and damping
properties of circuits. All of these parameters are linked to the
state and state transitions of memristors which are the basic
building blocks of network functions. In network analogy,
it suggests that the combination with other components
can help us in varying the state dynamics of memristor-
based architectures by controlling the input parameters and
implementing a variable output function.

3) COGNITIVE PROPERTIES
Cognitive capability can be employed in networks using
memristors by comparing the brain’s neuronal properties
with memristors. Sheridan et al. conducted a survey-based
study and showed that the critical features of human brain
including Spike Timing Dependent Plasticity (STDP), short
term plasticity and long term potentiation can be exhibited
by memristor-based networks [31], [32]. All of these features
relate to the strength, connectivity and output behavior of the
brain’s neural network. The study shows that the hardware
topology of memristor poses several challenges including
Sneak path problem which refers to unwanted current paths
and creates noise in the system. However, combination
of Complementary Metal Oxide Semiconductor (CMOS)
and memristor-based components can be advantageous for
achieving the functionality required in network functions.
Authors showed the physical characteristics of memristors
through modeling and motivated the use of cognitive
components in future computer networks.

4) THREE TERMINAL CONTROLLABLE CHARACTERISTICS
A critical line of research is the study and development of
three terminal memristive components, instead of the typical
two terminal memristors. A third terminal can control the
output and it can be employed to use the memristor as
a switch. Duan et al. present the switching dynamics of
oxide-based memristors and study the characteristics of three
terminal memristors [33]. The authors present a novel three
terminal device for emulating the heterosynaptic plasticity
and compare it with HfO2 based memristors to show the
ability of mapping neuronal functions. The study suggests
that a fuzzy restricted Boltzmann machine can bypass
the inherent shortcomings of device variations and resolve
device stochasticity in neuromorphic circuits. Moreover, the
proposed device can implement the non-Boolean logic which
suggests its effectiveness for employment in neuromorphic
applications.

5) ELECTRICAL PROPERTIES
The analysis of the structural properties and electrical charac-
teristics can aid in determining the read and write operations
of the memristors. In write operation, a certain voltage,
depending upon the material characteristics, is applied to
bring thememristor to the required state. On the contrary, read
operation refers to the application of small pulses of voltage
in order to measure the current to retrieve the state of the
memristor. Ho et al. [34] present the electrical properties of
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memristors in relationship to the read and write operations.
The authors develop closed form expressions to emphasize
the practicality of memristor-based read and write operations
in a crossbar array architecture. In a follow up work [35],
the authors show that data integrity and noise tolerance
are major issues in nanoscale packing of memristor-based
architectures. The closed form mathematical derivations
showed the practicality of memristors as data storage devices.

6) POWER EFFICIENCY TRAITS
Understanding the energy characteristics of hardware mate-
rials plays a pivotal role in the practical realizations of
novel components. Radwan and Fauda [36] made a thorough
investigation on the mathematical modeling of memristors
along with the estimation of energy consumption and
associated combinational factors. The authors presented the
memristive circuits and developed the Arithmetic-Logic Unit
(ALU) for memristor operations. The review concluded that
memristors can be utilized in combination with transistors for
realization of a range of circuits, and Spice simulation models
can be used to estimate the performance of hardware designs.
Moreover, the review showed that memristors are power
efficient components due to their state retaining capabilities.

7) SUMMARY OF MEMRISTIVE CHARACTERISTICS
In this section, we reviewed the researches related to the
fundamental properties and characteristics of the memristors
which can aid in network-based memristive applications.
Review showed that memristors can exhibit stable and
continuous state transitions in form of timing delays
and switching characteristics. Combination with resistor,
capacitor and inductor can help in achieving stable state
transitions based upon the developed networking algorithm.
This switching behavior can aid in memristor-based novel
architectures and it can be utilized to replace the state-
of-the-art transistor-based architectures with state-based
components. Recent researches on three terminal memristors
also showed performance benchmarks for implementation
in complex computational architectures. By using three
terminals, a control logic in networks can be established using
memristors and this makes the memristor useful both as a
storage and computational element. Hardware characteristics
of memristors also showed brain like neuronal traits including
STDP and potentiation factors. It suggests that memristors
can be utilized to map complex cognitive neural functions
in packet processors. Memristors exhibit prominent electrical
properties, like power efficiency in read and write operations,
with several challenges, including optimal circuit designs,
open for future research. All of these factors promote the use
of memristor as a promising networking component for the
design of future computer networks.

D. MEMRISTIVE MODELING
Memristor-based researches have spanned over the devel-
opment of computation and storage components, and it is
highly important to model the behavior of a memristor in

FIGURE 6. Dimensions of memristor modeling in various domains.

a simulation and analytical framework for future cognitive
packet processors. In this section, we would highlight the
researches which modeled the behavior of a memristor. Fig. 6
presents an overview of the modeling domains catered in the
related literature regarding memristors.

1) MEMRISTOR PROGRAMMING MODEL
Bala et al. [37] made the first effort for modeling of
memristor in C++ programming language. Authors focused
on the development of a memristor-based single and multi-
layer neural network in C++. Simulation results for pattern
classification at two learning rates for linear and nonlinear
functions demonstrated that memristor can perform the role
of classification with significant accuracy by using the
proposed model.

2) MEMRISTOR-BASED NEURONAL MODEL
In another study, Zhevnenko et al. [38] simulated a
memristor-based model for emulating the spiking response
similar to a neuron. Researchers incorporated the approxima-
tion of memristor switching series and mobility functions,
and applied it to an experimental data set of ZrO2 based
memristive device containing 2000 switching cycles. The
study showed that memristors can significantly reduce power
consumption and achieve better performance in simulating a
neuromorphic architecture.

3) MULTI-STABLE MEMRISTOR MATHEMATICAL MODEL
Apart from simulations, Lin et al. [39] proposed a mathemat-
ical model for a memristor with multi-stability. The research
showed that a multi-stable memristor can demonstrate many
co-existing pinched hysteresis loops under varying states.
Application of the proposed model in a Hopfield neural
network demonstrated many coexisting chaotic attractors
which can increase the ability and performance of a neural
network.

4) MEMRISTOR SIMULATION PLATFORM
Xia et al. [40] proposed a simulation platform for memristor-
based neuromorphic architectures called MNSIM. A hierar-
chical structure was developed for flexibility and integration
with other components. Moreover, a computational accuracy
model was developed and incorporated in MNSIM in order
to analyze the non-ideal device factors and interconnection
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challenges. The proposed MNSIM proved to be 7000 times
performance efficient than the state-of-the-art SPICE model
and it provided optimality in design decisions.

5) SUMMARY OF MEMRISTIVE MODELS
A review of memristor modeling showed that the modeling of
memristors is feasible and realizable, and theoretical results
proved the simulation results in the previous studies. Current
researches have developed the memristor models from
programming languages, like C++, to the development of
independent simulation platforms. Researchers also realized
the feasibility of memristor’s mathematical and neuronal
models. State-of-the-art literature showed that memristors
can be modeled along with efficient characterization of all
required network modeling parameters.

IV. RULE-BASED SYSTEMS
Current packet processors are a combination of computation
and storage units which are used to implement cognitive
functions. These cognitive functions can implement intel-
ligent operations in networking applications like routing,
firewall, load balancing, etc. in any network using rule-based
systems. In these systems, network memories play a crucial
role for operation of network functions in storing the rules
and performing matches against packet header fields in every
clock cycle. Among the rule-based network components,
TCAM is the most critical resource due to high energy
consumption, complex functionality of performing match
operations within a single clock cycle, limited memory size
and high cost. In this section, we firstly survey the state-of-
the-art research and performance improvement techniques in
TCAM architectures. Later, we study the power requirements
of TCAM and critical power hungry components. Lastly,
we survey the memristor-based TCAM researches including
design goals and performance analysis. Fig. 7 shows the
pie chart for classification of TCAM researches. Analysis
shows that TCAM performance analysis has been the most
prominent research direction followed by the application of
memristors in TCAM.

FIGURE 7. Classification of TCAM researches.

A. STATE-OF-THE-ART TCAM ARCHITECTURE
TCAM is the most crucial network resource which per-
forms the matching and comparison operations in any
network component within one clock cycle. Before delving

FIGURE 8. Taxonomy of TCAM state-of-the-art researches.

into the details of future memristive architectures for
TCAM, some of the preceding researches and improvements
for the TCAM are presented in this subsection. Fig. 8
presents an overview of major research domains regard-
ing performance improvements in the traditional TCAM
architecture.

1) ENERGY EFFICIENT HIERARCHICAL TCAM
Pattern classification in TCAM can be performed with
less energy consumption by using a hierarchical TCAM
architecture. Spitznagel et al. [41] suggested a two level
hierarchy for the TCAM architecture where an index block
can be enabled/disabled for querying the main block and
the secondary block can be used for performing the circuit-
based comparison operations. The proposed TCAM design
can perform 100 million lookups per sec for 100, 000 filters.
Moreover, power and space efficiency are achieved by a
reduction factor of ten and three times, respectively. However,
the issue of incremental updates and more elaborate research
on block size and improvements in hierarchical structure are
required in future research.

2) HIERARCHICAL TCAM FOR ROUTING TABLE
COMPACTION
High power consumption and heat dissipation in TCAMs
have motivated the researchers to look into the options of
routing table compaction. Ravikumar and Mahapatra [42]
performed research on minimizing the memory consumption
along with the feature of IP route increments in TCAM
architectures. The authors proposed a two level hierarchical
architecture in which the former stage deals with the
compaction of required memory and later stage deals with
the selective selection of only a subset of the TCAM. Prefix
compaction, prefix aggregation and routing table compaction
were the major design parameters in the proposed research.
Simulations and analysis on a router data set, containing
prefix addresses, showed that the power savings can range
from 67% to 99% due to compaction and other features.
However, the scope of this study limited to the application
side of TCAM architecture.
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3) TWO-TIER PREFIX MATCHING STRATEGY
Research on novel hardware-based lookup for longest prefix
matching in pipelined TCAMs can also improve the energy
efficiency of TCAM. Kasnavi et al. [43] suggested a two
tier approach for Hardware-based Longest Prefix Matching
(HLPM). First stage focuses on the search of a don’t care
bit in the prefix ending for a partial match. A simplified
cell design has been proposed to reduce the complexity
and energy consumption in this stage. In the second stage,
complete output (full match) is forwarded based upon themax
value of coded lengths of prefixes. The proposed technique
demonstrated a 30% reduction in power consumption, along
with less area consumption.

4) MULTI-PIPELINE PARTITIONING ARCHITECTURE
The requirement of multiple clock cycles in search operation
for multiple queries can ultimately lead to excessive energy
dissipation in high work load scenarios. To tackle this
issue, Jiang and Prasana [44] proposed a partitioning based
multi-pipeline architecture. Authors proposed the use of
HyperCuts packet classification algorithm followed by a
decision tree with bounded height. Two different techniques
were employed to partition the decision tree into several
disjoint sub trees and map it into Static Read Access
Memory (SRAM)-based pipelines. The study showed that the
proposed SRAM-based architecture can store 10 K rules in
0.336 MB with 8 pipelines and provide 1 Tbps throughput
with a 2.25 times reduction in energy consumption. In another
study, Jiang et al. [45] enhance the same architecture
to develop memory distribution and management across
multiple pipelines. Moreover, strategies to load balance the
traffic across multiple pipelines are also proposed. Crux
of the idea lies in the sub-partitioning in form of trie
and sub-trie units in order to attain an efficient memory
balancing architecture. The proposed strategy showed to be
highly efficient by storing 200 K unique router prefixes
using only 3.5 MB cache. Moreover, throughput up to
1 Tbps was achieved with 10 byte packet sizes. However,
implications and implementations in network switches need
to be explored further for practical implementations of the
proposed technique.

5) DISTRIBUTED TCAM ARCHITECTURE
Study of the distributed architecture in TCAM is a promising
avenue of research for improving the TCAM performance.
Zheng et al. [46] proposed a distributed TCAM architecture
for ultra-high lookup throughput and efficient memory
management. The authors proposed the use of multiple
TCAM chips utilizing load balancing along with an improved
performance algorithm for the mapping of TCAM table
entries. The study focuses on the idea of decreasing the
number of lookup operations by executing search operation
inside a single sub-TCAM chip only. The results showed
that 25% more TCAM entries can be accommodated besides
providing throughput of 533 MHz by employing four

133 MHz TCAM chips. The only drawback of this line of
research is the incorporation of mapping overhead for the
arrived entries inside the TCAM table.

6) EFFICIENT MEMORY MANAGEMENT
Performance and energy efficiency of TCAM can also
be enhanced by use of efficient memory management
mechanisms. Mishra and Sahni [47] proposed a dual TCAM
architecture (calledDUOS) for management of routing tables
in TCAM. The authors proposed four memory management
schemes which revolve around the idea of supporting control
plane incremental updates without delaying the lookups in
the data plane. The proposed strategy showed 6-7 times
less power consumption than the competitor technologies.
However, the scope of this research was limited to memory
management and significant research is required to explore
its applicability for the networking scenarios requiring
sophisticated network functions.

7) OPTIMAL ROUTING PREFIX
Management of the routing table is a critical step in increasing
the performance of TCAM. In this regard, Mishra and
Sahni [48] studied the routing table and suggested the
use of optimal routing prefix for increasing the perfor-
mance of TCAM. Although, the proposed design called
PETCAM takes only one clock cycle for search operation,
but, it requires additional resources in the follow-up step
of SRAM evaluation which makes it power and energy
hungry. To overcome this limitation, the authors proposed
improvements in SRAM-based architecture in order to avoid
energy wastage and performance degradation. Experimental
results demonstrated that the proposed TCAM scheme can
reduce power consumption and memory requirements from
8-98% and 45-78%, respectively, based upon the network
scenarios.

8) DYNAMIC ROUTE PREFIX MEMORIES INSIDE TCAM
Redesigning of routing table can also aid the network
in improving performance benchmarks in a TCAM mem-
ory [49]. Akhbarizadeh et al. [50] exploit the inherent
characteristics of the Internet by employing small scale
memories which contain the popular route prefixes inside the
Application-Specific Integrated Circuits (ASICs). Moreover,
partitioning of the TCAM chip into submodules and taking
advantage of the dynamic memories increased the throughput
by more than six times with less power consumption as
compared to the traditional design. A major advantage of
the proposed strategy is the availability of multiple search
operations per clock cycle in certain scenarios. The scope of
this research needs to be explored and validated for complex
TCAM pattern recognition scenarios like Internet Protocol
Version-6 (IPv6)-based networks.

9) LOOK-UP USING IP-RANGE BREAKDOWN
Managing IP-based lookup operation requires critical anal-
ysis of the storage and update scenarios of IP prefixes.
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Chang [51] proposed a two-level TCAM architecture focus-
ing on the IP lookup scenarios for fast and efficient lookup.
Author suggested the use of IP range breakdown in order
to avoid range-to-prefix blowout scenarios, and proposed
two range-to-prefix conversion schemes which can increase
the performance and efficiency of TCAM. Depending upon
the range type, only 4n-3 and 2n+1 TCAM storage entries
are required for contiguous and non-contiguous ranges,
respectively. Moreover, the proposed scheme incorporates
the operations of insertion and deletion of new entries in
the lookup tables. Experiments showed that the proposed
architecture provides better performance in TCAM lookup
time and memory requirement.

10) PARTITIONING PREFIX ADDRESSES
Search operation in prefix-based assignment in a TCAM
table can be improved by a priori sophisticated partitioning
of prefix addresses. Panigrahy and Sharma [52] suggested
the partitioning of TCAM prefixes into eight groups, such
that only a particular subgroup is searched during any
operation. Significant power can be conserved by employing
multiple sub TCAM chips and using only a selected sub
TCAM chip at a time depending upon the prefix assignment.
Under ideal circumstances, where traffic distributions and
patterns are known apriori, the partitioning operation can
provide up to 1000 million lookups per second. The major
limitation of this scheme is its anomalous behavior for
small enterprise networks where traffic characteristics vary
with time. Also, in large enterprise networks, a significant
overhead is expected for anomalous traffic.

11) ROUTING TABLE PARTITIONING
TCAM routing table refinement can also aid in minimiz-
ing the energy consumption of TCAM. Zane et al. [53]
proposed two TCAM-based forwarding engine architectures
based upon the bit selection and trie-based architecture
configuration. The basic idea lies in the same argument
that search operation should be performed in a limited
subsection of TCAM memory only. Both bit selection and
trie-based architecture provide the partitioning mechanisms
with inherent pros and cons. Depending upon the upper bound
of power and energy consumption, the authors chalked a
layout for TCAM design decisions for the hardware design.

12) RANGE EXPANSION USING RULE COMPACTION
Range expansion is another critical problem for TCAM due
to the growing number of classification rules in TCAM.
To prevent range expansion problem, Liu et al. [54] proposed
a novel design called TCAM Razor in order to incorporate
vast number of rules in the limited size of TCAM memory.
The multidimensional rule list is transformed into one
dimensional list and decision-based diagrams are employed
to generate equivalent compressed rules performing same
operation. TCAM Razor showed a compression efficiency
of 31.3% and 29%, respectively. An added advantage of this
software-based improvement is that it does not require any

hardware modifications in the current TCAM architecture.
The scope of this study is limited to the objective of
incorporating more rules without occupying additional space
in the TCAM architecture.

13) SRAM-BASED ARCHITECTURE
TCAM energy and performance limitations can be bypassed
by designing an SRAM-based architecture which is much
better in conserving energy and minimizing space utilization.
Ullah et al. [55] proposed a novel Z-TCAM architecture
which employs the TCAM functionality with an SRAM-
based architecture. Basic idea lies in the partitioning of
TCAM columns and rows into hybrid TCAM sub-tables
which can be mapped into distinct memory blocks. Two
implementations of Z-TCAM on 512× 36 and 64× 32 sizes
showed that the proposed design is realizable and technically
feasible. A major drawback is the search latency in Z-TCAM
which spans to three clock cycles, instead of one clock cycle
in traditional TCAM.

14) BIT VECTOR PROTOCOL FOR PACKET CLASSIFICATION
Mapping and forwarding of packets through a large number
of classification operations in TCAM, especially at line
rate configurations, is a major challenge. In this regard,
Baboescu and Varghese [56], [57] performed research on
the proposition and refinement of a bit vector protocol
algorithm for packet classification. The authors proposed
improvements including recursive aggregation of bitmaps
and filter rearrangement techniques in order to increase the
performance. The results showed that the proposed technique
gives better performance in achieving packet classification
due to the incorporation of SRAM. The importance of this
research lies in opening the horizon for future researches in
the domain of application-specific hybrid architectures.

15) COMPLEX PATTERN RECOGNITION
Malicious attacks pose a serious threat to the Internet and
they can be efficiently addressed through a TCAM-based
pattern matching architecture. Yu et al. [58] showed that
complex patterns including arbitrary long patterns, correlated
patterns, and patterns with negations can be dealt effectively
with a throughput rate of 2 Gbps with a 240 KB TCAM
for a ClamAV data set of 1768 patterns. Owing to the wild
card field of TCAM, it has an added ability of correlating
patterns and detecting patterns with negations and wildcards.
The fundamental motivation in using TCAM is to limit the
security overhead on the client/server side.

16) QUERIES USING BLOOM FILTERS
The search and match operation can be revolutionized
by employing bloom filters for resolving search queries.
Dharmapurikar et al. [59], [60] proposed a novel concept
of using bloom filters for longest prefix matching. The
major advantage of this research dimension is the fact that
performance becomes independent from the length of the
prefix. This fact motivates its usage for lookup operations in
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both Internet Protocol Version-4 (IPv4) and IPv6 addresses.
Results spanning over IPv4 Border Gateway Protocol (BGP)
tables showed that the search operation completes in 1-2 hash
probes per lookup depending upon the data set. However, this
strategy has no search guarantees (like TCAM) which makes
the delays quite variable.

17) TCAM AS CO-PROCESSOR
Owing to the search capabilities of TCAM, there are vast
applications which can benefit from not only search but
also computational powers of TCAM. A major advantage
of TCAM is the ability to perform efficient on-chip
logic minimization. Ahmad and Mahapatra [61] presented
the TCAM computational design with minimum required
resources for using TCAM cells as a co-processor. The study
showed that incremental insertion and bulk deletion can be
achieved within 0.25 µs and 3.8 ms. Moreover, compaction
of 10, 000 entries can be achieved in less than 25 ms by
employing only 300 TCAM entries.

18) LESSONS LEARNED
The most prominent research direction in TCAM is the hier-
archical or pipelining architecture for TCAM which focuses
on splitting a TCAM module into submodules for energy
conservation and comparison operations. This technique can
save significant power and provide better performance in
terms of number of search operations required for the look-
up scheme in TCAM. Another major research domain is the
memory management in TCAMwhich includes routing table
management, prefix address optimization and sub-memories
assignment for routing prefixes. This domain strengthened
the incorporation of more rules with less memory inside
the TCAM and increased the scope of TCAM for network
switches with complex cognitive functions. The development
of application-specific TCAMarchitectures is another avenue
of research. TCAM can be used for computational process-
ing, filtering techniques, classification tasks, SRAM-based
performance enhancements and development of application-
specific TCAM architectures. This interdisciplinary research
domain overlaps with the domains of information process-
ing, big data and computer architectures for performance
improvement in order to increase the performance of TCAM.
Nearly all the studies pointed out the shortcomings of current
TCAM architectures including limitations in match table
entries, limited number of rules, huge memory requirement,
excessive energy consumption, high cost, scalability issues
and lack of non-volatility characteristics. No research has
been able to fulfill the demands of the current TCAM
architecture in terms of all these requirements due to the
hardware limitations of current components.

B. TCAM POWER REQUIREMENTS
Among all storage architectures including SRAM, Dynamic
Read Access Memory (DRAM) and flash, TCAM consumes
the most amount of power as shown in Table 2. In this

TABLE 2. Power consumption in various network memories [62].

subsection, we aim to survey the TCAM power requirements
and energy footprint of the current network infrastructure.

1) TCAM POWER MODEL
TCAM consumes huge amount of power and energy
resources which also adds an indirect burden on the cooling
budget of the network devices. Agrawal and Sherwood [63]
estimated the power requirements among various compo-
nents in a TCAM cell. The authors developed a power model
for TCAM and verified it from the available industrial data
sets. The study showed that majority of the TCAM power is
consumed by the match lines, followed by the search lines
and priority encoders, respectively. The research also showed
the consequences of increasing the TCAM table size and it
showed that increasing the number of columns in the TCAM
table has less drastic effect on energy consumption than
increasing the number of rows in the TCAM table. Analysis
showed that the power consumed by the search operation of
TCAM is comparable to a similar search operation in SRAM
and it motivates the usage of hybrid SRAM and TCAM
architectures in future networks.

a: ENERGY FOOTPRINT FOR FUTURE ARCHITECTURES
Power factors in future Internet architectures are quite critical
for design of new devices. Chen et al. [62] studied the
energy footprint and power efficiency for the future computer
networks. The researchers developed router power model,
data plane power consumption model and performed power
comparison for various architectures. The results showed
that the IP core and NDN core routers consumed less
power than an IP edge, NEBULA edge, SCION edge and
NDN edge routers. The study concluded that packet carried
state is more power efficient than the routing table lookup.
Moreover, end-to-end communication consumes less power
than the use of in-network caching. Also, analysis showed
that pervasive caching and edge caching have nearly identical
energy footprints.

2) POWER EFFICIENT MATCH LINES
As suggested in previous researches, match lines consume
majority of the power by continuously supplying voltage
pulses. Mathan and Ravichandran [64] proposed a novel data
aware AND-type match line architecture for TCAM. The
authors designed a TCAM of 256 × 128 bits on 90 nm
technology and showed that it provides an improvement
in speed and power by 35% and 45%, respectively. The
proposed strategy is dependent upon the inter-data and intra-
data dependencies and the TCAM cell design contains a
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Data Aware block which plays the most crucial role in the
evaluation of data dependencies. The performance of this
strategy is very much limited for independent and identically
distributed data sets and the scheme is highly dependent upon
the data analytics approach.

3) LESSONS LEARNED
In this subsection, we summarize the findings regarding
TCAM power requirements. Preceding researches showed
that TCAM is the most power hungry component among
other memories including SRAM, DRAM, etc. The high
energy footprint stems from the complex match operations
performed inside every cell in the TCAM. Majority power in
a TCAM architecture is consumed by theMatch Lines which
have to be recharged after every clock cycle. Power models
are also available for TCAM which can be used to map,
measure and compare the performance of TCAM in reference
to other networking models. All of the studies conclude that
energy efficiency is the most critical problem in the TCAM
architecture and it motivates us to study memristor-based
energy efficient designs for TCAM.

FIGURE 9. Current research hierarchy in the domain of memristor-based
TCAM.

C. MEMRISTOR-BASED TCAM
Memristors can be employed in TCAM by using their
non-volatility and cognitive properties. In this subsection,
we survey the memristor-based TCAM researches. There are
two lines of research in designing memristor-based TCAM;
either designing a memristor-based TCAM cell or proposing
application-specific TCAM architectures. We analyze the
researches in both of these domains to study the practical
implementations of memristors. Fig. 9 presents a glimpse
of research dimensions in the memristor-based TCAM
along with key focus areas. Some more recent research
findings have just become available at the time of this
publication.1,2

1 S. Saleh, A. S. Goossens, T. Banerjee, and B. Koldehofe,
‘‘TCAmMCogniGron: Energy Efficient Memristor-Based TCAM for Match-
Action Processing,’’ To Appear in Proceedings of the 7th International
Conference on Rebooting Computing (ICRC 2022), IEEE.

2 S. Saleh, A. S. Goossens, T. Banerjee, and B. Koldehofe, ‘‘Towards
Energy Efficient Memristor-based TCAM for Match-Action Processing,’’
To Appear in Proceedings of the 13th International Green and Sustainable
Computing Conference (IGSC 2022), IEEE.

1) TCAM CELL DESIGN
TCAM cell design is the most crucial step in TCAM
architecture formulation because it has to complete all
search operations within one clock cycle. A number of
studies (including [65] containing a test chip design) laid
the foundation of initial research by proposing TCAM
cells based upon transistors. However, the state-of-the-art
designs have constraints in form of energy efficiency and
development of complex network functions. The added
benefits of memristors in terms of energy efficiency and
memory characteristics have motivated various researchers to
investigate the TCAM cells based upon memristors. In this
subsection, we would present the TCAM cell design based
upon memristors.

a: ELECTRONICS OF TCAM CELL
The nanoscale design of TCAM cell using memristors
and transistors is a first step in the TCAM cell design.
Guo et al. [66] proposed the electronics of a TCAM cell based
upon memristors. Considering the huge power dissipation
and off-chip bandwidth restrictions, the study showed that
memristor-based TCAM cell can provide better computation
power on the chip. The results showed that memristor-based
TCAM cell improves performance and energy consumption
by four and ten times, respectively. Moreover, memristor-
based TCAM cells can provide twenty times better resource
density than the CMOS-based cells. However, the scope of
this study is limited to the hardware part of TCAM, and
authors did not focus on the computer network protocols and
packet processing techniques.

b: MEMRISTOR AS A STORAGE ELEMENT IN TCAM
Memristors are a promising storage element due to their non-
volatile nature. Junsangsri and Lombardi [67], [68] proposed
the use of two memristors inside a TCAM cell in series
to perform the read, write and search operation in TCAM.
Simulations over HSPICE showed that the memristor-based
TCAM cell provides a write time in between 60-70 ns
depending upon the voltage variations. Moreover, the query
search time for memristor-based TCAM decreases by around
700 ps by changing fabrication technology from 65 nm to
32 nm. Extensive research in this study suggested that the
memristor-based TCAM can provide better energy efficiency
in less chip area with enhanced read/write operations.

c: MEMRISTOR-BASED CONTENT ADDRESSABLE MEMORY
Instead of the research on TCAM design, some initial
studies focused over a binary Content Addressable Memory
(CAM) working on two possible states only. In this regard,
Chen et al. [69] propose a Memristor Content Addressable
Memory (M-CAM) architecture by placement of memristors
inside the CAM cell. The authors developed a current
controlled mechanism for memristor-based CAM cells in
order to perform the read and write operations in CAM.
The proposed fuzzy look-up functionality for CAM is the
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basic contribution of the researchers. However, scope of this
research did not span over the domains of packet flow and
traffic analysis in a fully developed CAM architecture.

d: DATA WRITE OPERATION IN TCAM
Date write operation is a challenging task in memristors
due to the unwanted current paths and memristive state-
based response. Ruotolo et al. [70] suggested that a
memristor-based memory can be much more faster than a
phase change memory and much simpler than a magnetic
memory. To mitigate issues in write operation, researchers
proposed a memristor-based write operation for the memory
operations. Analysis of the proposed scheme, carried out
at various voltages and memristive parameters, showed that
the proposed write operation can cope fairly with noise and
memristor-based memories can benefit from similar write
operation strategies.

2) APPLICATION-SPECIFIC DESIGNS FOR
MEMRISTOR-BASED TCAM
The design of memristor-based TCAM depends upon the
developed applications and a review of these studies is
presented in below lines.

a: REGULAR EXPRESSION MATCHING
Graves et al. [71], [72] conducted an indepth analysis
on a memristor-based TCAM for Regular Expression
Matching (RegEx). The authors showed that the incor-
poration of memristor increases the capability of TCAM
in decreasing power consumption, increasing throughput
and expanding rule set sizes including the incorporation
of novel network functions. In comparison to an FPGA-
based approach providing 3.9 Gbps at 630 mW, the
memristor-based TCAM provided 47.2 Gbps at 1.3 W.
The study concluded that the memristor-based TCAM cells
in combination with Memristor Random Access Memory
(mRAM) circuits can be particularly beneficial for large
scale networks due to superior energy and performance
gains.

b: NETWORK INTRUSION DETECTION
In a follow-up research, Graves et al. [73] proposed a
memristor-based TCAM architecture for network intrusion
detection. The authors proposed a TCAM cell design for
intrusion detection in RegEx applications. Improvements in
power consumption, throughput and compression techniques
were achieved by employment of nanoscale memristors in
TCAM cells. The study showed that the use of memristors
can enhance throughput by four times (upto 8Gbps) with only
55% power consumption for network intrusion detection.
Moreover, the use of striding can further increase the
performance in terms of throughput, if required.

c: CMOS/MEMRISTOR HYBRID ARCHITECTURE
Hybrid use of CMOS-based transistors and memristors is
the most feasible option for practical implementation of

memristors. In this regard, Tabassum et al. [74] presented
a memristor-based TCAM cell employing twelve transistors
instead of sixteen, by using memristors for TCAM. The
results suggest that the memristor-based TCAM consumes
70% less energy, 43% less search time and 27% less area. The
study concluded that the proposed NOR type implementation
can be a milestone for future electronic applications based
upon the performance. However, the scope of this study is
limited to the electronics of cell design and it needs further
research for implementation of complex network processing
functions.

3) LESSONS LEARNED
The review of previous researches shows that some studies
proposed and designed the architecture of a TCAMcell with a
focus on the hardware and electrical properties of memristors.
Moreover, use of memristor as a storage element showed
promising performance due to non-volatility and state-based
response. The design of CAM was also realized using
memristors and it also showed an increase in performance
as compared to the state-of-the-art designs in terms of energy
efficiency and implementation of complex network functions.
Moreover, application-specific scenarios showed that the
memristor-based TCAM can be used for regular expression
matching and network intrusion detection systems. Also,
based upon the CMOS architectures, performance and
benefits of memristor-based TCAM can be increased with
an integration to current components by combining CMOS
and memristor-based architectures. The take away from
this line of research includes the realization and feasibility
of TCAM using memristors. This avenue of research
showed that the memristor-based TCAM can be imple-
mented with better performance than the traditional TCAM
architecture.

Algorithm 1Memristor-Based TCAM Search and Write
Operation

1 Entries E = [E1 . . . . . . . . .EN ]
2 Function tcam(Q,O)

Data: Query and operation
Result: Search location or write completion

3 if O==‘Search’ then
4 rows_search(Q)
5 while rows_search(Q) do
6 Out = match_query(Q)
7 end
8 return Out

9 else if O==‘Write’ then
10 search_write_location(Q)
11 rearrange_entries(E)
12 write_match_table(Q)
13 end

14 end
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D. NETWORKS PERSPECTIVE OF MEMRISTIVE TCAM
The computer science perspective of the hardware operations
of TCAM is expressed in Algorithm 1 in form of the TCAM
search operations. The tcam() function performs the search
andwrite operations by using queryQ and operationO, where
Q refers to the pattern being searched and O refers to the
read or write operation. During search operation, all rows
of TCAM are searched for the query Q and the matched
locations are returned in the variable Out. On the other hand,
the write function of TCAM performs the write operation
in decreasing order of priority list of stored rules inside
the match table. Hence, search_write_location() function
performs the location search and rearrange_entries() adjusts
the rows of match table to create the location for new entries.
Lastly,write_match_table() stores the entry inside the TCAM
memory for the match table.

The network packet processors can use the memristive
TCAM for a number of operations including IP lookup,
intrusion detention and mapping large number of policies
for the Internet packets. The packet processors are the most
promising entities benefiting from the memristive TCAM
because of high speed data processing requirements. More-
over, in-network operators can incorporate the memristive
TCAM for adding cognitive functionality inside the packet
processors. The benefits of TCAM can be extended to replace
the traditional network memories with the TCAM because
memristive TCAM performs all search operations within one
clock cycle and consumes less energy than the traditional
technologies.

V. LEARNING SYSTEMS
The current design of computer networks requires data
operations in the path between source and destination with
little energy consumption and complex cognitive functions.
Although, memristors provide the state-based energy effi-
cient function formodeling a complex response, but, coupling
of memristors is a fundamental requirement for incorporation
of complex network functions and cognitive functions inside
the network. This coupling of memristors can be achieved
in various configurations based upon the desired network
functions such as reconfigurable architectures, reservoir
computation architectures, neural network architectures and
neuromorphic computing architectures. In reconfigurable
architectures, programming ofmemristors is utilized to repro-
gram the state of the memristor and coupling arrangement is
based upon the required functions. Crossbar arrays and FPGA
designs are some of the prominent examples in this category.
On the other hand, reservoir computation empowers the
memristive connectivity with cognitive functions by mapping
a range of output functions to a given set of input signals.
The training of memristive reservoir architecture can be
performed by reprogramming the individual conductances
of memristors inside the reservoir. In neural networks, the
programming of memristors is utilized similar to the weight
function in a neural network model. While, neuromorphic

computing utilizes the synaptic behavior and memristive
cognitive properties similar to the human brain for modeling
of cognitive functions. In this section, we review researches
in the domains of these four architectures in order to perform
cognitive decisions in the future packet processors built
upon memristors.

A. MEMRISTOR-BASED RECONFIGURABLE
ARCHITECTURES
In this subsection, we present the memristor-based novel
architectures focusing on gate array architectures, reconfig-
urable architectures, FPGA designs and application-specific
architectures including deep packet inspection and data
security architectures in reference to their applications in
networks.

1) GATE ARRAY ARCHITECTURE
Computational architectures can be designed using the gate
architectures with programmable threshold control logic by
leveraging from the state-based response of memristors.
Rajendran et al. [75] proposed the gate array architecture by
using memristors as weights at the inputs of the threshold
gates and authors considered the power, area and delay
considerations for memristor-based designs. In comparison
to the traditional lookup table (LUT) architecture, the
proposed architecture decreases power and area consumption
by 75%. On the downside, the combination of a large
number of memristors in the gate array architecture increased
the delay of the system which is a challenge for future
research.

2) FPGA AND CSGR ARCHITECTURES
The reconfigurability and programmability of hardware can
assist in the computational performance by tuning the
hardware according to the software requirements and this
task can be achieved by reconfigurable architectures. FPGA
and Coarse grained reconfigurable (CSGR) architectures
are two major types of reconfigurable architectures with
extensive applications in computational tasks like pattern
matching and image recognition. Memristors, as two ter-
minal resistive switches, can transform the reconfigurable
architectures by providing programmable parameters for the
required software functionality. Lu et al. [76] studied the
behavior of memristors for reconfigurable architectures and
showed better switching time, switching ratio, endurance and
retention for memristor-based architectures. Extensive device
modeling in SPICE concluded that the use of memristors
can lead to higher function densities due to a range of pro-
grammable states and it also provides power efficiency due to
less computational operations and memristor’s limited power
requirement. The scope of this research limited to small
scale setup built upon simplified circuits and authors left the
large scale analysis built upon complex circuits for the future
research.
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3) FPGA ARCHITECTURES
Memristors can revolutionize the FPGA architectures by
providing control logic for the network algorithms. Cong
and Xiao [77] proposed a novel memristor-based FPGA
architecture, mrFPGA, using only memristors and metal
wires for interconnection. In the proposed design, memristors
are helpful in providing the capacitance shielding effect from
unused routing paths and decreasing the delay of the system.
The authors also proposed an adaptive buffer mechanism
to further increase the performance of memristor-based
architecture. The study concluded that mrFPGA provides
area, speed and power improvements by 5.18, 2.28, and
1.63 times, respectively, in comparison to 20 largest MCNC
circuit benchmarks.

4) CROSSBAR NEUROMORPHIC ARCHITECTURES
Memristor-based crossbar neuromorphic circuit is specially
useful for achieving application-specific tasks like Deep
Packet Inspection (DPI) on mobile devices requiring area,
power and throughput efficiency. Bontupalli et al. [78] pre-
sented two types of crossbar array neuromorphic circuits for
static pattern matching and regular expression circuits. The
study showed that throughput up to 160 Gbps can be achieved
through memristor-based crossbar array architectures with
greater accuracy and lower latency. On the contrary, alternate
DPI standards (including de facto Snort) provide less than
half of this throughput.

5) SECURE CROSSBAR ARCHITECTURE
Memristor-based non-volatile storage architectures require
special attention in handling security and privacy con-
straints especially in the area of personal computing and
IoT. Kannan et al. [79] studied the security challenges
and proposed a Sneak-Path Encryption (SPE) technique
based architecture for memristor-basedmemory applications.
Study suggested the use of data encryption for memristor-
based crossbar array architectures by incorporating critical
memristor parameters including physical characteristics,
multi level cell capability and sneak paths in crossbar
memory architectures. SPE proved to be resilient under the
application of three challenging attack scenarios. However,
the major limitation of the proposed technique is its overhead
in form of 16 delay cycles and 1.5% degradation in
performance.

6) LESSONS LEARNED
A review of memristor-based novel architectures showed
that memristors can be utilized for the development of
programmable threshold gates which can aid in the process
of logic development. The programmability of memristors
can be used to develop new architectures employing a range
of states for various network functions. The current network
paradigms like P4 [18], NetFPGA [80], etc., also build upon
same basic principles of reconfigurability and memristors
can aid in the development of complex architectures built

FIGURE 10. Memristor-based crossbar array architecture.

upon small reconfigurable memristive circuits. This results
in not only direct performance enhancement due to efficient
operations, but, also atomic operations of memristors provide
energy efficient response as compared to the transistors.
Memristors showed performance gains for reconfigurable
architectures due to their prominent switching, timing and
energy consumption statistics. Packet processors can benefit
from the reconfigurable architectures in form of hardware
accelerators and logic synthesizers by employing fast switch-
ing and less energy consumption properties of memristors.
It also results in a direct performance improvement in terms
of throughput in the network due to less complex operational
overhead in the packet processors. In computational applica-
tions, DPI has also been facilitated with great performance
(in terms of throughput) by employing memristor-based
novel crossbar array architectures and it can be used on
network routers for combating network attacks by identifying
attackers’ signatures. Lastly, owing to the state-based non-
volatile characteristics, memristors can replace transistors
in the FPGAs and ASICs, and they can be reprogrammed
through a range of states for complex logic building with less
energy consumption.

7) EMPLOYMENT IN PACKET PROCESSORS
The findings of previous researches can be extended to the
packet processors by reviewing the memristor-based crossbar
array architectures as shown in Fig. 10. For anm×n crossbar
array connecting m input lines to n output lines, m × n
memristors are required where each memristor connects one
input line to one output line. The output current O is an
array of currents obtained from the corresponding n output
lines. By using memristor programmability, we can vary
the conductance inside the memristor. The response of the
given network architecture can be demonstrated by using
the current voltage relationships. Using Ohm’s law, voltage
(V ) and current (I ) are related to the resistance (R) of the
memristor by (1).

V = IR (1)
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We know that the conductance (G) is inversely related to the
resistance of the memristor as shown in (2),

G = 1/R (2)

According to the Kirchhoff’s current law, sum of input
currents is equal to the sum of the output currents through
any node. Hence, the output current from the first output line
is given by (3). Equation (4) shows the array of currents from
all n output lines.

O1 = G(M11)× I1 + G(M12)× I2 + G(M13)× I3
+ . . .+ G(M1n)× Im (3)

O = [O1 O2 O3 . . . . . . . . . .. On] (4)

By programming the conductance G of the memristor,
we can program the memristor-based crossbar array architec-
ture for a range of functions ranging from basic algorithmic
computational operations to complex functions like in-
network complex event processing and cognitive decision
making.

B. MEMRISTOR-BASED RESERVOIR COMPUTATION
Reservoir computation is a computational framework for
mapping input signals to higher dimensional computational
spaces by using a nonlinear fixed system called the reser-
voir. The background of reservoir computation stems from
recurrent neural networks and it can be used to map a
variety of complex network functions in the context of
programmable nanoscale components, memristors. In this
subsection, we review the memristor-based reservoir com-
putation architectures with a focus on application-specific
designs including big data analysis, feature extraction and
classification, and image recognition.

1) PATTERN CLASSIFICATION ARCHITECTURE
Reservoir computation based upon memristors is a promising
avenue of research due to the memristor’s abilities for
large scale packing, nonlinearity and non-volatile memory
characteristics. Kulkarni and Teuscher [81] presented the
first memristor-based reservoir computation architecture for
computational tasks and demonstrated the feasibility of the
proposed design for pattern classification and associative
memory tasks. The authors used memristive programming
features to test the performance of reservoir computation
architectures. Simulations and evaluations were performed
in Ngspice and Genetic Algorithm was used for training of
the software framework. The study suggested similar perfor-
mance gains for future work on complex cognitive functions
and incorporation of memcapacitors and meminductors can
further increase the performance margins.

2) ANOMALY DETECTION ARCHITECTURE
In another study on memristor-based reservoir computa-
tion, Sayyaparaju et al. [82], [83] presented a memristor-
based crossbar array architecture that has been trained
using STDP features on a Wisconsin Breast Cancer data

set. A major improvement is the reconfigurability of the
proposed architecture for handling anomalistic behavior.
In this research, authors presented a robust liquid state
machine implementation technique using memristor-based
spiking neural network. The study showed that device level
switching asymmetry issues can be successfully resolved
using the proposed memristor-based architecture. However,
the proposed architecture needs to be evaluated and validated
for packet processors considering the network flow guarantee
requirements which are challenging to achieve in a Spiking
Neural Network (SNN)-based network.

3) REAL-TIME DATA ANALYSIS ARCHITECTURE
A fundamental requirement of neuromorphic computing is an
in-depth understanding of the underlying mechanisms inside
the nervous system. However, large amount of neuronal
activity cannot be processed in real-time. Zhu et al. [84]
proposed a memristor-based reservoir computation archi-
tecture for real-time analysis of large data sets including
neuronal behaviors. Perovskite-based memristor was used
for emulation of neuronal spikes and state of memristor
captured the temporal features in the neuronal spike train. The
study showed that memristor-based reservoir computation
can emulate the processing with significant resemblance
and sophisticated cognitive functions can be modeled using
memristors. The scope of this study for real-time data analysis
can be very useful for network applications with high real-
time traffic demanding sophisticated data analysis at the
compute nodes.

4) FEATURE EXTRACTION ARCHITECTURE
Feature extraction and analysis is one of the critical tasks in
reservoir computation for big data analysis. Cai and Lu [85]
presented the feature extraction and analysis methodology
for memristor-based networks. The authors presented a
hardware implementation of sparse coded algorithm on
a 32 × 32 memristor crossbar architecture and emulated
the characteristics of a neural network with better optimal
settlement and showed the reconstruction of features in a
memristive array. The results on a range of data sets including
MNIST and real world images show that the proposed
architecture can identify the hidden features. Moreover,
authors showed successful reconstruction of second order
nonlinear dynamical systems using the proposed memristive
reservoir computation architecture.

5) IMAGE RECOGNITION ARCHITECTURE
Image recognition on the edge computing nodes is a critical
network challenge for the current Internet. Ran et al. [86]
developed a memristor-based blaze block circuit for edge
computing systemwith a specific focus on image recognition.
The design includes a memristive convolutional neural
network followed bymultiple modules of memristive pooling
and block elements for the operation. The simulation results
showed an accuracy of 84.38% for the CIFAR-10 data set
with performance benefits in energy consumption, and time
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and area efficiency. The research also studied and showed
the performance improvement by incorporation of multi-
state memristor conductance and data quantization effects.
A shortcoming of the research is the lack of optimization
in memristive and computational resources deployed in the
design process.

6) LESSONS LEARNED
The review of previous studies suggested that the memristor-
based reservoir computation architectures are feasible and
complex learning functions can be developed through such
architectures. The capabilities of memristors for nano-
packing, state-based response, non-volatility and less energy
consumption made them an ideal component for reservoir
computation architectures. The development of novel learn-
ing functions can aid in deploying cognitive functions at
packet processors and end nodes without any data movement
requirement between memory and computational units.
In this regard, several researches showed the performance
benefits for memristor-based reservoir computation architec-
tures in mapping large number of functions including data
analysis for network components. Also, novel complex cross-
bar array architectures can be deployed for network functions
for edge computing and data center computing. Prominent
applications of reservoir computation include data analysis
which motivated researchers to look into feature extraction
and analysis in a memristive architecture. Another prominent
application includes image processing and application of
blaze block circuits with an implementation perspective of
memristors. All of these applications suggest the use of
memristors for energy efficient state-based cognitive network
functions inside packet processors.

C. MEMRISTIVE NEURAL NETWORKS
The requirement of cognitive network functions has moti-
vated the use of neural networks inside the packet processors.
A cognitive network function can be deployed in network
middleware entities or edge devices to handle the traffic flows
based upon the cognitive requirements of network functions
like load balancing, flow management, routing, firewall
development, etc. However, the application of current neural
network approaches is challenging due to the data movement
between memory and computational units, huge energy
consumption and limited state options in the transistor-based
implementations. In this regard, the state-based response
of memristors with programmability features provides an
alternate to the traditional transistor-based neural network
architectures. At the same time, less energy consumption
of memristors can help in achieving complex AI operations
at end nodes and edge devices. An energy efficient neural
network architecture can ultimately replace the state-of-the-
art network paradigms like P4 [18], NetFPGA [80], etc.,
due to the cognitive handling of packets unlike any other
architecture. In this section, we would highlight the previous
researches and their findings in the domain of memristor-
based neural networks. Fig. 11 presents an overview of the

FIGURE 11. Research in memristive neural networks.

research dimensions and key research areas in the studies on
memristor-based neural networks.

1) MEMRISTOR-BASED CNN
Memristors can be used for establishing neighboring con-
nections in Cellular Neural Networks (CNNs). Lehtonen
and Laiho [87] proposed a novel memristor model for
CNNs and evaluated the results in the SPICE simulation
environment. The authors concluded that memristors can
provide all the desirable functionalities in the CNNs including
linear I-V curves in the compute mode and steep program-
ming thresholds. It was shown that the template variation
is less feasible in memristor-based CNNs, and cascades
of memristive networks were proposed for changing the
templates.

2) FINITE TIME SYNCHRONIZATION FOR RECURRENT
NEURAL NETWORK (RNN)
Memristor-based networks pose a significant challenge to
timing synchronization in neural networks due to the variable
processing delay among various paths in the network.
Gao et al. [88] studied the memristor-based recurrent neural
networks in reference to finite time synchronization. The
authors proposed a novel controller-based network which
can decrease the synchronization time by incorporating the
differential inclusions theory and set-valued maps. Analytical
and simulation results demonstrated the effectiveness of the
proposed controller for achieving finite time synchroniza-
tion. This study aided in the practical implementation of
memristor-based neural networks.

3) MULTI-LAYER CIRCUIT DESIGN
Despite various promising results, practical implementations
require circuit design for memristor-based implementations.
Zhang et al. [89] proposed a memristor-based multi-layer
circuit design using a single array of memristor for all
kinds of synaptic responses. The authors’ contributions also
span in the use of memristors as switching elements and
development of adaptive back propagation algorithms which
can be used for Exclusive OR (XOR) operation and character
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recognition. The research concluded that the proposed design
provides higher recognition rates in fewer clock cycles by use
of memristor-based design approaches. Also, increasing the
noise from 0% to 30% decreases memristor-based network’s
performance from 100% to 97.4%, while, the performance
in original design (without memristors) decreases from
99.8% to 72.5%. Hence, the memristor-based design also
proved to be resilient to system noise which suggests the
use of memristors in complex circuits requiring large scale
replication of small scale circuits.

4) MEMRISTIVE ACTIVATION CIRCUIT FOR DEEP NEURAL
NETWORK (DNN)
Implementation of Deep Neural Networks (DNNs) requires
a memristive activation circuit. In this regard, Bala et al. [90]
presented a MIN function-based circuit for memristor-
based neuromorphic implementation. Two memristors and
a comparator were used for realization of a Rectified
Linear Unit (ReLU) activation function. The given cir-
cuit was simulated and performance was compared to
the traditional crossbar array architectures. The results
showed that the proposed architecture gives better perfor-
mance than the previous state-of-the-art architectures in
terms of time and area efficiency. Moreover, the train-
ing process also takes less time by using the proposed
architecture because of the simplicity of the memristive
activation function and training inside the network without
any data movement between memory and computational
units.

5) STABLE NEURAL NETWORK WITH CONTROLLER
Instead of the traditional decentralized approaches, a novel
class of neural networks can also be built upon the
memristors. Wu and Zeng [91] focused on achieving
exponential stabilization and formulated the conditions for
using memristors in neural networks. Moreover, the authors
proposed a novel controller along with the estimation of
theoretical results for development of a neural network and
showed significant performance gains due to the presence
of a centralized controller. The decrease in cost function in
memristor-based neural networks was the major contribution
of the authors.

6) DESIGN OF MULTIPLICATION FUNCTION
The design, analysis and application-specific focus of
memristor-based CNNs can chalk out the feasibility of
cognitive devices for networks. Duan et al. [92] suggested
that the memristor-based multiplication function can be
much more efficient than the traditional transistor-based
design. Moreover, the nonlinear current-voltage character-
istics, negative differential resistance, non-volatility, high
density, and programmability of synaptic weights were the
beneficial features of the proposed CNN design. Monte
Carlo simulations were used to analyze the proposed design
and image processing functions greatly benefited from the
proposed approach.

7) MEMRISTOR NETWORK EMULATOR USING FPGA
The use of memristors can also be employed in conjunction
with an FPGA platform. Vourkas et al. [93] made the first
effort to implement a digital memristor emulator on an
FPGA platform. The authors used the threshold type bipolar
memristor model and proved the synaptic properties of the
memristor. However, a shortcoming of the research includes
its limited scope on the issues of scalability and complex
memristive models for ANN.

8) DNN FOR RESISTIVE READ ACCESS MEMORY (RRAM)
ARCHITECTURE
DNNs have extensive applications in Resistive Read Access
Memory (RRAM) design by employing in-memory comput-
ing architectures.Wang et al. [94], [95] discussed the possible
implementations and design proposals for implementation of
DNN in RRAM architecture. Critical factors including finite
array size, quantized partial products and non-ideality factors
were evaluated and techniques were proposed to enhance the
performance of DNNs in RRAM. The study showed that
RRAM architecture based on DNN can successfully deploy
the models like VGG-16, MobileNet and Recurrent Neural
Network (RNN)/LSTM on ImageNet dataset and perform the
text classification tasks.

9) CMOS-RRAM ARCHITECTURE
In a follow up research, Correll et al. [96] studied the
semantics and architectures for the analog design of a CMOS-
RRAM reprogrammable neuromorphic chip. By employ-
ing RRAM, the bottleneck for data availability in data
hungry applications, including AI and machine learning
applications, can be bypassed. The authors proposed the
first prototype 54 × 108 RRAM crossbar array hierarchy
followed by its digital and analog circuitry. They used
Analog-to-Digital Converters (ADCs) and Digital-to-Analog
Converters (DACs) to present a hybrid CMOS-RRAM
architecture which demonstrated performance improvement
for machine learning functions including online learning. The
study concluded that the proposed RRAM provides gain in
throughput (2.6 Giga Operations Per Second (GOPS)) and
reduction in power (307 mW for combined CMOS-RRAM).

10) MEMRISTOR’s NON-IDEAL BEHAVIOR
Hybrid use of memristors and CMOS is a feasible
implementation option due to the CMOS resilience and
track record of feasible components built upon CMOS.
Pham and Min [97] studied the critical aspects relating to
the non-ideal behavior of memristors-CMOS hybrid usage.
The non-ideal behavior is much related to the crossbar
connection of memristors resulting in variations in synaptic
memristance, parasitic resistance and physical conditions.
The non-ideal characteristics were demonstrated on ReLU
and Sigmoidal activation functions. This study laid the foun-
dation for future usage of memristors in hybrid networks and
identified these shortcomings in the hybrid use of memristors
and CMOS.
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FIGURE 12. Memristive neural network for network packet processors.

11) LESSONS LEARNED
The review of memristor-based research in neural networks
shows that memristors can be deployed for neural network
architectures. Research over network design showed that the
memristor-based ANN and CNN circuit designs required
less training time and energy due to the colocalization of
memory and computation. Also, application of complex
neural network functions including multiplication function
and multi-layer computation showed promising gains with
memristors due to memristors inherent state-based response.
Moreover, novel architectural designs including FPGA-
based emulators and activation circuits for DNN were also
realizable with memristors. Stability has been a challenge
in memristor-based neural networks, but, this shortcoming
can be bypassed by moving towards CMOS-based hybrid
architectures or employing a centralized controller-based
neural network. On the application side, memristors along-
with CMOS presented suitable alternatives for DNN with
some critical challenges, but, the benefits of memristive
architectures promote their usage for complex neuromorphic
architectures.

12) MEMRISTIVE NEURAL NETWORKS IN NETWORK PACKET
PROCESSORS
In reference to the network-based applications used in packet
processors, memristor-based neural networks can bemodeled

Algorithm 2Memristor-Based Neural Network

1 Current I = [I1 . . . . . . . . . ..IN ]
2 Conductance G = [G1 . . . . . . . . . ..GN ]
3 b;//Neural network bias
4 φ;//Activation function
5 Function neural_network(I ,G)

Data: Currents and conductances at nodes
Result:Weighted average followed by biases and

activation functions at nodes

6 x = I × GT ;
7 output = φ(x + b);
8 return output;
9 end

FIGURE 13. Research in memristive neuromorphic computing.

as shown in Fig. 12 and Algorithm 2. In a memristive
neural network, every node receives input current (I ) from
the connected input side through memristors. Using Ohm’s
law, the currents at the outputs of memristors are a function
of the resistance (inverse of conductance (G)) programmed
inside the memristor. Using Kirchoff’s current law, the
current at the output of the node is the sum of the input
currents. Moreover, neural network can add a bias (b) and
an activation function (φ) at the compute node to make
more intelligent and controlled decisions. The activation
function and bias can change the behavior of the circuit and
can be tuned based upon the back propagation algorithm
and required constraints. In networks, this configuration
can be used to increase the range of decisions for in-
network processing at packet processors. During in-network
processing, packet processors can base their decisions upon a
range of network functions incorporating load, congestion,
routing and administrator policies, which can ultimately
result in cognitive handling of the network packets.

D. MEMRISTIVE NEUROMORPHIC COMPUTING
Neuromorphic computing emulates the neuron spiking
capability of human brain along with the colocalization of
memory and computation for achieving superior benchmarks
in energy and cognitive capability [98]. In this section,
we review the neuromorphic computing architectures based
upon the memristors and present a glimpse of the ongoing
research as depicted in Fig. 13.
The limitations of transistor-based components, in terms

of energy efficiency and computational models, motivate the
research community to study the use of novel components
including memristors for neuromorphic computing [99].
In this regard, the construction of electronic neurons
resembling the synaptic capabilities of human brain is the
most crucial step and a number of studies focused over
the use of memristors for neuromorphic architectures [100].
Upadhyay et al. [101] surveyed the synaptic properties
and implementations of these properties in neuromorphic
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architectures. The authors reviewed the decision mechanisms
of human brain and compared them to the properties of new
memristive devices for emulating neuronal behavior. The
study showed that capturing neuronal activity in an integrated
memristor circuit is a major challenge for neuromorphic
architectures due to the brain’s complex communication
mechanism. In another research, Zhang et al. [102] reviewed
the synaptic properties of memristors for use in neuromorphic
computing. The review suggested that area and energy
efficiency followed by applications of neuromorphic com-
puting are key areas for memristor applications. The authors
motivated the feasibility and applicability of memristor
crossbars for DNNs, ANNs and SNNs. Challenges in the
design process include the selection of suitable memristors
considering their hardware properties and ideal crossbar
connections for resembling the properties of brain. In the
below lines, we would review the research on memristor-
based neuromorphic architectures.

1) NEUROMORPHIC ARCHITECTURE DESIGN
Indiveri and Liu [103] presented a brain inspired neuro-
morphic computing architecture by using transistor-based
CMOS technology. Memory and computation were co-
localized to emulate human brain. The design incorporates
the synchronous and asynchronous modes of operation to
present performance benefits of neuromorphic computing.
However, authors left the use of nanoscale devices (including
memristors) for future research, but, they presented a baseline
by comparing and analyzing neuromorphic computing archi-
tectures with the traditional architectures.

2) MEMRISTOR-BASED NEUROMORPHIC ARCHITECTURE
Owing to the drawbacks of CMOS-based transistors, many
researches have focused over the use of nanoscale com-
ponents for future cognitive architectures. Liu et al. [104]
presented a novel framework for use of memristors in
neuromorphic computing. The study showed that the spiking
designs with digitized interfaces are more energy and cost
efficient than the counterpart analog designs. Owing to the
analog design benefits in performance and cost, the authors
proposed a current sensing scheme to improve the analog
design. Also, novel hardware-based strategies were suggested
to remove the inherent memristor defects and upto 99.3%
performance gains were obtained by using the proposed
strategies.

3) MEMRISTOR-BASED COGNITIVE ARCHITECTURE
The development of a cognitive architecture is a critical
task for incorporating learning capabilities in the packet
processors. Zheng et al. [105] proposed a novel memristor-
based computing architecture leveraging from the high
learning and memory capabilities of memristors. The authors
developed a neural network architecture by incorporating
spike timing and rate dependent plasticity, and generating
spike behavior similar to the functioning of human cortex.
The study showed through simulations that the neuromorphic

architecture can provide better performance in terms of
cognitive decisions than the conventional architectures.

4) MEMRISTOR-BASED CROSSBAR ARRAY ARCHITECTURE
It is crucial to model the crossbar array design using
memristors for employment in neuromorphic architectures.
Hu et al. [106] proposed the use of memristor crossbar
arrays for hardware implementation of brain state-in-a-box
neural networks. The authors developed a mathematical
model for training and recall features. Impact of various noise
levels through extensive Monte Carlo simulations proved the
resiliency of the proposed neuromorphicmodel.Multi answer
character recognition algorithm was used for robustness
analysis of the proposed design. The research concluded
that the correlation between memristor crossbar arrays and
optimization of summing amplifier are the most critical
factors in the neuromorphic circuit’s performance.

5) MEMRISTOR-BASED HYBRID NEUROMORPHIC
ARCHITECTURE
An interesting practical line of research is the incorpo-
ration of memristor-based architectures in the traditional
networks using hybrid design topology. In this regard,
Liu et al. [107] proposed a computing architecture, called
Harmonica, by incorporation of memristor-based neuro-
morphic architecture in the traditional architecture. The
authors suggested the use of mixed signal interconnection
network to increase the computational power of ANNs. The
research showed that Harmonica provided performance and
energy gains by 27.06× and 25.23×, respectively. Moreover,
incorporation of Multilayer Perceptron (MLP) can further
increase the performance of the network. The performance
gains of Harmonica proved to be much better than the
traditional designs with digital neural processing units or
memristor-based crossbar arrays. Major driving factors for
high performance statistics included the high throughput in
mixed-signal computation, reconfigurability of the network,
low data overhead and concise coordination interface.

6) RANGE INCREASE IN NEURONAL CIRCUIT
On the side of hardware implementation, a critical problem is
the increase in range of the neuronal circuit. Jiang et al. [108]
proposed a cyclical sensing scheme for increasing the range
of high speed Integrate-and-Fire Circuit (IFC). Simulations
showed that cyclical sensing IFC performed matrix multi-
plication with an integration of 32 × 32 memristor crossbar
arrays. Power efficiency was also achieved for large input
current and high output frequency.

7) MEMRISTOR CROSSBAR ARRAY
Practical deployment of memristor-based crossbar arrays
is a major line of research for feasibility analysis.
Kataeva et al. [109] designed amemristor-based crossbar chip
with 2.4 million memristors. The authors used 1032 48 ×
48 crossbars of Al2O3/TiO2−x memristors and performed
the analysis by integrating the chip with an FPGA board.
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Testing of the chip on an FPGA board showed that it can
be successfully employed for the deployment of ANNs using
memristors.

8) VON NEUMANN VS MEMRISTOR-BASED
NEUROMORPHIC ARCHITECTURE
Comparison of the memristor-based architectures with tra-
ditional design techniques can signify the gains in the
performance improvements. An et al. [110] compared the
conventional von Neumann architecture with the neuro-
morphic architecture. The authors proposed a memristor-
based neuromorphic architecture and estimated its energy and
performance efficiency. Three variations of neuromorphic
architectures were proposed which were emulating the
functioning and spiking capabilities of human brain. Authors
varied the neuronal locations, connectivities and distribution
patterns in order to analyze the performance of memristor-
based neuromorphic architectures in various designs. The
study showed that the neuronal architecture can mitigate
the congestion issues in the network, and amplify the
performance of data analytics during in-network processing.

9) MEMRISTOR MODELING FOR NEUROMORPHIC DESIGNS
Inspired by the second order memristors due to synaptic
plasticity characteristics, Marrone et al. [111] developed a
model to link memconductance and temperature to synaptic
efficacy and temperature. The authors also developed amodel
to link the second order memristors to the neuromorphic
architectures and compared themwith the spike and plasticity
models. The proposedmodel was analyzed for varying factors
including spike pairs, triplets and quadruplets at different
frequencies and themodel’s behavior was similar to the brains
neural network. The model laid the foundation for future
research in the employment of second order memristors for
neuromorphic computing.

10) LEARNING-BASED ATTACK PREVENTION
Neuromorphic learning systems based upon memristors are
susceptible to learning-based attacks due to the memristors
state-based response and various studies focused over this
issue. Yang et al. [112] presented a model to prevent an
attacker from learning the behavior of the memristor-based
neuromorphic architecture. The proposed strategy employs
the memristor obsolescence effect for users where only
legitimate users get complete access to the network. The
resilience of the proposed scheme was demonstrated on
four data sets with variations in constraints, cost functions
and activation functions. The proposed scheme provided an
increase of nonlinearity index by 179.93% and 288.99% on
Mean Square Error (MSE) and error rate, respectively.

11) ANOMALY DETECTION USING
NEUROMORPHIC COMPUTING
The use of memristors in neuromorphic computing can
improve the detection and estimation accuracy in complex
large scale data analysis. Chen et al. [113] proposed the

use of memristors for neuromorphic computing by focusing
on anomaly detection in large traffic networks. The authors
used the cogent confabulation model in inspiration from
the human neocortex system. Likelihood ratio test was
used to identify the abnormal vehicles demonstrating an
anomalistic behavior. The research showed that the vehicles
over speeding, tailgating and stopping-and-going can be
identified with an anomaly score ranging from 25% to 100%
depending upon the particular conditions and circumstances.

12) MEMRISTOR-BASED ANN FOR DATA ANALYSIS
Memristor-based ANNs can have applications in user
security and privacy. Fu et al. [114] performed research
on noise injection in the memristor-based ANNs. The
authors proposed a linear optimization strategywhich updates
the memristor conductances analogous to the weights in
memristor-based ANNs. Test results on MNIST handwriting
data set demonstrated an increase of accuracy by 39.67%. The
study concluded that the memristor-based ANN can provide
higher user privacy for large scale data analysis than the
conventional designs.

13) NOVEL MEMRISTOR TYPES FOR NEUROMORPHIC
COMPUTING
The study of hardware characteristics of novel memristor
types is a prominent research direction in memristor-based
neuromorphic architectures. In this regard, Zaman et al. [115]
conducted an experimental study to chalk out the suitability
of memristive devices for neuromorphic applications. The
authors studied the GeTe and VO2 memristors, and analyzed
the characteristics of these memristors including symmetry,
reliability, stability and programmability. The study showed
that the programmable resistance range can be utilized for
the development of neuromorphic architectures. The research
showed that high variability in device characteristics can
be efficiently utilized to map a variety of neuromorphic
functions.

14) NOVEL MEMRISTORS FOR NEUROMORPHIC CHIPS
Memristors exhibit significant characteristics quite useful for
employment in neuromorphic architectures.Wang et al. [116]
showed the resistance programming of a new type of
memristor, namely LiNbO3 memristor, with significant
characteristics, including tunability and switching curves,
which motivate its usage in neuromorphic systems.

15) REVIEW OF MEMRISTOR-BASED CIRCUITS
The development of a memristor neural circuit is a major
challenge for neuromorphic architectures. In this context,
Zhao et al. [117] reviewed the memristor-based neuromor-
phic implementations for ANNs. The authors presented the
challenges and suggested that the development of a basic
neural circuit element followed by an extensive connectivity
would be amajor hardware challenge for neuromorphic archi-
tectures. However, memristor-based crossbar architectures
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can promote the development of complex neuromorphic
functions.

16) LESSONS LEARNED
The review shows that neuromorphic computing is the most
complex and critical implementation for memristor-based
architectures. However, implementation of memristor-based
neuromorphic architecture is feasible and designs have been
proposed by a number of researches. The scope of this line
of research includes the design of memristor-based crossbar
arrays using memristive synaptic properties for design and
implementation of cognitive functions and architectures.
Another prominent line of research includes the application-
specific designs considering anomaly detection and data
analysis using neuromorphic architectures. Memristor-based
architectures can aid in the deployment of pattern recog-
nition techniques. The previous studies have modeled the
memristor-based neuromorphic architectures and mitigated
the basic shortcomings of memristive neuromorphic architec-
tures including prevention of feature learning attacks, designs
of better performing crossbar arrays, research on suitable
memristor types for neuromorphic architectures, increase
in neuronal range and use of hybrid CMOS-memristor
components. The review of neuromorphic architectures with
memristors laid focus on the realizability of memristor-based
architectures and the attributes and properties of memristors
can be utilized to develop neuromorphic architectures.

17) NETWORKS PERSPECTIVE OF NEUROMORPHIC
ARCHITECTURES
Neuromorphic computation can incorporate the cogni-
tive decision mechanism in the current Internet compo-
nents. The computer science analogous function for the

Algorithm 3Memristor-Based Neuromorphic Network

1 Spike_voltage V = [1, 0]
2 Spikes S = [S1 . . . . . . . . . SN ]
3 Function neuromorphic_comp(S)

Data: Spikes of neural activity
Result: Output spikes after decision process

4 O = synapse_ftn(S)

5 potential = sum(potential,O)

6 if potential ≥ threshold then

7 generate_output_spike();
8 reset_potential();

9 else if time ≥ time_threshold then

10 discard_outdated_spikes();

11 end

12 neuromorphic_comp(spike_wait(Snew));

13 end

neuromorphic architecture is shown in Algorithm 3. The
function neuromorphic_comp(S) takes the binary spikes S as
inputs with voltage V at high or low levels. At the first stage,
function synapse_ftn() reshapes the synapses based upon the
priority and required function characteristics. Later, the sum()
function accumulates the spikes for a continuous period of
time. If the summation of spikes is greater than the threshold
voltage, then, an output spike is generated by the function
generate_output_spike(). Also, potential resets after the
generation of output spike. If the elapsed time is greater than
the threshold time, then, the outdated spikes are discarded
from the potential by discard_outdated_spike() function.
Lastly, the function neuromorphic_comp(spike_wait(Snew))
keeps repeating as long as an input is available at the
receiver’s end.

In networks, the asynchronous clock and colocalisation
of memory and computation can transform the packet
processors. All switches and network routing entities can
base their decisions from a range of network functions
including routing, congestion control, load balancing and
administrative policies. The decision can be derived in
less time due to the asynchronous clock which would
eliminate the delay in the packet processor.Moreover, a major
benefit of the neuromorphic computing is the increased
resilience, security and privacy of the proposed system
because all network packets can be addressed precisely based
upon the situation. It can also decrease the load on the
network by eliminating the need of control packets used
by various protocols (messenger applications etc.) because
neuromorphic architecture can itself cater for control packets
by making intelligent and timely decisions.

VI. DISCUSSION
In this section, we present the challenges and directions
of future research for memristor-based cognitive packet
processors.

A. CHALLENGES IN MEMRISTIVE NETWORKS
Memristor-based networks can implement complex network
functions in form of colocalization of memory and computa-
tions with applications in the domains of rule-based systems
and learning systems using TCAM, reconfigurable architec-
tures, reservoir computation architectures, neural network
architectures and neuromorphic computing architectures.
However, these benefits have an associated cost in terms of
the software and hardware challenges, and complexities in the
design process. In this section, we review the challenges for
memristor-based networks along with the possible remedies
for these problems.

1) SNEAK PATH CURRENTS
A major challenge for memristor-based crossbar array
architectures is the unwanted current paths in the networks.
In architecture designs, these current paths act as a sys-
tem noise and are called Sneak path currents. Majority
approaches to avoid sneak path currents focus on multi-stage
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reading [118], development of an unfolded architecture [119],
application of diode gating [120], employment of transistor
gating [121], use of complementary memristors [122], appli-
cation of nonlinearity characteristics ofmemristors [123], and
use of Analog Current (AC) sensing [124]. Contrary to the
previous approaches, Zidan et al. [125] analyzed the sneak
path currents in a memristor crossbar array, evaluated the
power consumption and compared the energy statistics with
the preceding researches. The authors proposed a solution for
avoiding sneak path currents by gating the memory cell with
a three terminal memristor. The proposed approach showed
better noise margin and array size scalability for sneak path
currents. However, sneak path currents still pose a major
challenge for novel architectural configurations.

2) HARDWARE CHALLENGES FOR MEMRISTOR
CROSSBAR ARRAYS
The implementation of a large scale memristor crossbar array
also poses challenges for neuromorphic chips and neural
network accelerators in terms of the computational model
implementations. Shin et al. [126] designed a large scale
memristor-based crossbar array architecture and studied its
characteristics including matrix vector multiplication aspects
for neural networks. Extensive experiments showed that IR
drop, crosstalk and ripple effects are the major hardware
challenges in the implementation of nanoscale devices and
these effects can reduce the signal strength and increase noise
in the system. Hence, scaling aspects are quite critical for
diverse applications of memristor-based architectures.

3) AGING EFFECT IN MEMRISTORS
A major challenge in memristor-based crossbar array archi-
tectures is the aging effect in memristors. During program-
ming of conductances in memristors, the high voltage pulses
damage the filament in memristors and it decreases the
number of available conductance cycles in the long term
operation. To counter this issue, Zhang et al. [127] proposed
the use of software and hardware training, along with the past
aging status, for estimation of neural weights in programming
the neural network. Also, the authors suggested that the
selection of lower weight (conductance) values can ultimately
lead to an increase in the life of memristor crossbar arrays
by up to ten times without any reduction in classification
accuracy of neural network.

4) LIMITATIONS IN MEMRISTORS
Stable switching and performance are a major challenge
for memristor-based upon novel materials. For efficient
and optimal implementation, the study on novel materials
is required which can provide promising characteristics
for memristors in neuromorphic computing. In this regard,
Wang et al. [128] reported a newmemristor with composition
of Pd/Al2O3/TOX/Ta and exhibiting bipolar analog switch-
ing behaviors which can efficiently exhibit the characteristics
of an artificial synapse. The researchers showed all properties
of neurons including STDP, paired-pulse facilitation and long

term potentiation/depreciation on the device and it consumed
only 50 pJ of switching energy per spike. However, more
widespread analysis of novel materials is required for stable
memristor characteristics.

5) LIMITATIONS IN MEMRISTIVE NEUROMORPHIC
FEATURES
Requirements of spiking neural networks in neuromor-
phic computing poses significant challenges on the usage
of memristors inside the brain inspired networks. Some
predecessor researches worked over the development of
novel stable and application-specific memristors spanning
over various structural dimensions. Murray [129] developed
an Ag-in-oxide memristor which gives properties simi-
lar to Ca+2 ions in brain and efficiently exhibits short
and long term plasticity properties. In another research,
Wang et al. [130] developed a novel Ag/Ag : Ta2O5/Pt
self-doping memristor and showed through experiments that
the proposed memristor can efficiently emulate the brain
spiking properties. Contrary to the researches promoting
oxide-based memristors, Majumdar et al. [131] showed the
cycle-to-cycle variability of oxide-based memristors and
proposed a new type of memristor-based upon solution-
processable ferroelectric tunnel junctions with P(VDF −
TrFE) copolymer barriers. The proposedmemristor exhibited
promising switching, energy and behavioral characteristics
for neuromorphic architectures. Considering the information
storage and synaptic characteristics, Dang et al. [132] pro-
posed and fabricated a bio-degradable biomimetic synaptic
memristor-based upon W/MgO/ZnO/Mo components on a
silk protein substrate. The proposed device can be dissolved
in special solutions in sevenminutes which provides an added
security layer to the neuromorphic devices and can emulate
the apoptotic process of biological neurons. However, more
research is required into suitable materials for embedding
brain liking synaptic response with information security and
privacy in the memristors.

B. FUTURE DIRECTIONS FOR MEMRISTIVE NETWORKS
Memristor-based packet processors can provide better energy
efficiency along with the colocalization of memory and
computation for better performance. The past trends for
the memristor-based research in computation and memory
architectures are presented in Fig. 14. Previous trends show
that memristive neuromorphic computing has been the most
studied topic followed by the novel computational crossbar
architectures and neural networks in the field of memristive
computational research. Based upon the past trends, future
directions of research are discussed in this section.

1) NOVEL NETWORK FUNCTIONS
The development of novel network functions built upon novel
components andmaterials is a prominent line of research. It is
pertinent to mention that the packet processing architectures
depend highly upon the conventional components and
network functions which are energy hungry with lower
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FIGURE 14. Classification of memristor-based networks research.

performance gains. By introducing new components, state-
of-the-art protocols face challenges in coping with the new
functionalities. As a result, new protocols and novel network
functions built upon new architectures are required to harness
the benefit of cognitive components.

2) FUTURE COGNITIVE PACKET PROCESSORS
Research on future cognitive packet processors, by incorpo-
rating AI and benefiting from novel self learning network
functions, is another line of research. Neuromorphic com-
puting and neural networks are already trying to emulate the
human brain by developing complex learning functions and
research on novel architectures can strengthen this line of
research. Moreover, shift from synchronous to asynchronous
clock inside a computer architecture and harnessing the
colocalization of memory and computation inside a single
unit is another major challenge. Hence, research on novel
packet processors is required which can deviate from von
Neumann architectural configurations and develop energy
and performance efficient architectures.

3) NOVEL FUNDAMENTAL COMPONENTS
Similar to the resistors withmemory (memristors), significant
performance attributes are expected for capacitors and induc-
tors with memories (namely memcapacitors and memin-
ductors) [133]. In this regard, Jeltsema and Schaft [134]
investigated the practicality of ideal memcapacitors and
meminductors. The authors proved through mathematical
evaluations that ideal memcapacitors and meminductors
violate the first law of thermodynamics, which make their
existence infeasible. The study suggests the use of non-
ideal memcapacitors and meminductors which are not a
source of free energy harvesting, but, their existence is
much more practical and their properties can be utilized to
make high performance devices. Perhaps, more research into
novel fundamental components is a promising future research
direction and it can chalk out the feasibility of energy efficient
and cognitive packet processors.

4) NEW RESISTIVE ARCHITECTURES
The research on novel resistive architectures is a critical
requirement to harness the full potential of resistive compo-
nents. Lee et al. [135] conducted a thorough review and analy-
sis of shortcomings of the previous non-resistive architectures

FIGURE 15. Domains of memristor related research in comparison to our
survey paper.

FIGURE 16. Classification of prior surveys.

and advantages of moving towards resistive architectures.
The study suggested that slow-down of Moore’s law and less
improvement in computer architectures is a signal of moving
towards new base designs for computer architectures. Also,
comparison of previous studies shows that resistive switching
can co-localize computing and memory capabilities which
provides enhanced benefits in switching speeds, endurance,
retention and stacking capabilities. Moreover, emulating the
brain’s spiking neural capability further promotes resistive
switches for development of cognitive functions and data
intensive compute applications. Hence, research on novel
resistive architectures is one of the prominent lines of future
research.

5) COMBINATION OF MEMRISTORS AND TRANSISTORS
Considering the widespread adoption of transistors in net-
work components, a prominent future direction is the hybrid
use of transistors and memristors. It also promotes the
construction and usage of new components which employ
the best properties of both components. In this regard,
Talsma et al. [136] proposed the use of memtransistor (or
synaptic transistors) for development of ANNs. The authors
highlighted that the proposed Single walled carbon nanotubes
(SWCNT) transistor exhibits spike timing dependent plas-
ticity like the neurons in brain, which aids in human like
learning behavior. The study showed through simulations
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FIGURE 17. Subset of memristor-based researches referred in our survey paper.

that the proposed memtransistor-based ANN exhibits anti-
hebbian learning (like human brain) and plasticity effects
(like brain neurons). However, more research on a wide array
of novel materials with new features is required to explore the
use of memtransistors in packet processors.

VII. RELATED WORK
In this section, we review the relevant related researches
in order to study the advent of the cognitive network
architectures. Fig. 15 presents an overview of various
dimensions in related literature catered by the previous

researches. The classification of related work in form of a
pie chart is shown in Fig. 16 and it shows that surveys on
neuromorphic computing gained a lot of attention by the
research community.

A. RULE-BASED SYSTEMS USING TCAM
The amount of research in the domain of network mem-
ories has always been limited considering the challenging
scope of hardware implementation, requirement of physical
resources and necessity of a wide range of expertise.
However, some researchers explored the network memories
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TABLE 3. Summary of existing surveys and reviews related to memristive modeling, network memories and computational architectures.

especially CAMs, in order to survey the available circuits and
architectures [137]. A glimpse of the relevant research and
comparison to our survey paper has been presented in Table 3.
Here, we would like to highlight some surveys reviewing
network memories, but, they have not been mentioned in
Table 3 because scope of their study is not directly related
to our survey paper. In this context, Taylor [138] presented a
thorough taxonomy of packet classification which is directly
used by network memories including CAMs and TCAMs.
Their survey showcased the routing table implementation
strategies for TCAM and laid the foundation for future
research. In another research, Sakellari [139] reviewed the
cognitive packet networks in context to their Quality of
Service (QoS) requirements for multimedia applications.
Contrary to our survey paper focusing on memristor-
based TCAM memories, Bjerregaard and Mahadevan [140]
explore the network on chip architectures. The survey
reviews the studies for moving from computation-centric to
communication-centric architectures and implementation of
scalable communication infrastructures. Our survey comple-
ments their efforts in further strengthening the domain of
cognitive network memory architectures.

B. NOVEL COMPUTING ARCHITECTURES USING
NEW MATERIALS
Historically, pace for the development of novel components
using new materials slowed down with time due to a shift

in focus from hardware side to the application side of
network designs [141], [142], [143]. In this context, the
research on memristors was conducted theoretically and
computational architectures focused on the software side by
using the network resources more efficiently. Several studies
[144], [145], [146] presented the theoretical formulations,
properties characterization and coupling of memristors with
other components. Some surveys in the domain of memristor
applications for novel components have been conducted in
the recent past with a special focus on memristor modeling,
characterization, Hierarchical Temporal Memory (HTM)
applications and crossbar array architectures, as shown in
Table 3. However, scope of these surveys does not span over
memristor-based network memories and cognitive packet
processors.

C. NEURAL NETWORKS
Since the development of neural networks in 1944 by
Warren McCullough and Walter Pitts, neural networks have
fascinated the research community owing to their potential
of solving complex pattern recognition problems [147].
A number of studies have surveyed and reviewed neural
networks including [148] with a special focus on automatic
target recognition, [149] emphasizing the fuzzy neural
networks and [150] showcasing neural networks for complex
problems including traveling salesman problem. In recent
past, neural network surveys have showed great performance
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TABLE 4. Summary of existing surveys, reviews and tutorials related to neural networks and neuromorphic computing architectures.

for resource constraint applications [151], natural language
processing [152] and application-specific research problems
like breast cancer detection [153]. However, the scope of
these surveys is more diverse and lacks an implementation
perspective in context to networks with a focus on cognitive
materials. Table 4 presents the relevant neural network
surveys with findings relevant to the field of networks.
A comparison of studies shows that our survey highlights
and compares a thorough implementation perspective of
memristor-based neural networks which has not been pre-
sented before.

D. NEUROMORPHIC COMPUTING
In comparison to multiple sub-domains in our survey paper,
most of the relevant related literature surveys exist in the area
of neuromorphic computing. Table 4 presents their contribu-
tions in comparison to our survey paper. In this subsection,
we would like to showcase some neuromorphic studies
presenting some major findings but not directly related to
our survey paper. In this regard, Yang and Kim [154] present
the Intel’s neuromorphic chip design and compare it with
other neuromorphic chips for emulating brain functioning.
Olin-Ammentorp and Cady [155] reviewed the neuromorphic
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computing research and presented the associated neural
networks and architectures for practical implementations.
Li et al. [156] completed a thorough review of memristor
usage in neuromorphic devices. The major focus of all these
researches was the study of hardware challenges and material
properties. Nawrocki et al. [157] present a review on the
available neuromorphic architectures and systems along with
their implementation strategies. Rajendran and Alibart [158]
reviewed the neuromorphic architectures in the light of
emerging memory devices and compared the performance
with the brain’s cognitive functioning. However, comparison
of all previous surveys and reviews showed that our survey
presents the fundamental concepts in understanding the
implementation of cognitive packet processors.

E. OUR SURVEY AND CONTRIBUTIONS
Our survey plays a fundamental role in extending the research
on networks from an implementation perspective. Moreover,
our survey extends the cognitive view of networks for
the current performance and resource constraint networks.
Fig. 17 shows the taxonomy of major researches regarding
memristor-based architectures referred in our survey paper.
The major contributions of our survey paper in comparison
to previous surveys and reviews are summarized in below
lines;
• Memristor-based packet processors: Our survey
presents a thorough technical review for using mem-
ristors in the design of cognitive packet processors
with a Networks perspective. We present the memristive
analysis for the computer science and computer
networks domains.

• Rule-based systems using memristors: We study the
use of memristors for rule-based systems using TCAM
architectures. We show the state-of-the-art architectural
configurations and challenging power requirements for
TCAM. We present a thorough review of all researches
presenting a nanoscale implementation of memristors
inside TCAM.

• Memristor-based Learning systems: We highlight the
use of memristors for computational tasks based
upon the learning systems. We discuss the design of
reconfigurable architectures and reservoir computation
architectures. We present an elaborate review on the
use of memristors for neural networks in reference to
the related research. We present a detailed analysis on
memristor-based neuromorphic computing. We com-
pare the previous state-of-the-art approaches and present
findings for future researches.

Comparison of our survey with previous surveys shows
that our survey plays a fundamental role in understanding
memristor-based architectures for future cognitive networks.
We also explore the challenges and future directions of
research for memristor-based architectures. Moreover, the
key insights in our survey paper open the horizon for future
research in the domain of novel cognitive materials for use in
future packet processors.

VIII. CONCLUSION
This survey reviews the memristor-based cognitive com-
putational architectures for energy efficiency and cognitive
functionality in network packet processors. Research shows
that memristors provide better read and write properties in
form of less power consumption and stateful operations. The
programmability of memristors can be used for deployment
of complex network functions in rule-based systems and
learning systems at packet processors. In rule-based systems,
memristors can be used for cognitive information handling
through TCAM architectures. The non-volatile and stateful
response of memristors can be used to store and search entries
in one clock cycle, but, with less energy and area consumption
due to the memristive atomic operations and nanoscale size.
Learning systems can benefit from the programmability of
memristors through crossbar array architectures and reservoir
computation architectures. The computational components
can be extended to neural network architectures by con-
necting memristive network in form of an array of neurons
with programmable memristive conductances analogous to
the neural weights. Moreover, removing synchronous clock
in combination with the model of spiking neural networks
can aid in developing neuromorphic architectures using
memristors. Despite benefits, memristor-based networks
face the challenges of sneak path currents, aging effects,
combination with CMOS and absence of software protocols
to harness from the benefits of memristors. The survey shows
that the development of novel network protocols, and network
components built upon new network functions utilizing the
colocalization of memory and computation are critical factors
for future packet processors.
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