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ABSTRACT Uncertain conditions involving partial shading can be found in large-scale solar photovoltaic
(PV) systems. There is a possibility that the performance of the PV system will suffer as a result of partial
shading conditions (PSCs) because it creates multiple peaks in the power—voltage (P-V) characteristics.
Nevertheless, for the photovoltaic system to be utilized in the most effective manner, it needs to be run at a
global maximum power point (GMPP). A new strategy based on the falcon optimization algorithm (FOA)
is introduced in this paper for the tracking of GMPP. The perturb and observe (P&O) and the particle swarm
optimization (PSO) techniques have certain drawbacks that can be resolved using a new optimization method
known as the FOA. These limitations include a lower convergence speed and steady-state oscillations. The
tracking performance of the proposed method is evaluated and compared to that of three MPPT algorithms,
namely grey wolf optimization (GWO), PSO and P&O, for a PV array that is functioning under PSCs and
displaying numerous peaks. An implementation of the proposed FOA-MPPT algorithm on a PV system was
carried out with the help of MATLAB/SIMULINK. Simulation tests conducted under a variety of partial
shading patterns reveal that the proposed FOA outperforms all three MPPT algorithms: GWO, PSO, and
P&O. Simulation results show that the MPPT efficiency of FOA in four different partial shading conditions
15 99.93%, 99.82%, 99.80%, and 99.81%, Furthermore, the simulation results show that the tracking time
of proposed FOA in four different partial shading conditions is 0.4 s, 0.41 s, 0.39 s, and 0.41 s, respectively.
Moreover, the proposed FOA is tested using actual and measurable data from Neom, Saudi Arabia. According
to the simulation results, the proposed FOA generates significantly more revenue than other compared
algorithms.

INDEX TERMS Falcon optimization algorithm (FOA), maximum power point tracking (MPPT), partial
shading conditions (PSCs), photovoltaic (PV) system.

I. INTRODUCTION

Modern power grids have solar photovoltaic (PV) installed
as their most promising energy source [1]. The advancement
of this technology is based on the availability of the solar
resource and the necessity of reducing one’s carbon footprint.
Nevertheless, power output of PV generation, is extremely
dependent on environmental conditions, such as the tempera-
ture of PV cells and solar irradiance. Also, the optimal power
extraction from solar energy is hampered by PV systems’
nonlinear P-V curve [2]. Therefore, maximum power point
tracking (MPPT) algorithms must be included in all PV
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systems. The MPPT process is an optimization technique that
adjusts the PV to supply the most possible power to the load.
Additionally, there are a myriad of reasons that lower the
efficiency with which PV converts energy into usable form.
In addition, there are a number of power losses associated
with PVs due to partial shading from the sun. Due to the
fact that the current generated by a solar array’s panels varies
depending on the amount of shade they are subjected to,
bypass diodes are normally linked at the panels’ correspond-
ing outputs to reverse bias (disable) those panels generating
the lowest current in a hierarchical manner (in accordance
with the load’s power demand). As a result, the MPPT prob-
lem becomes non-convex because these diodes cause multiple
power peaks in the power- voltage (P-V) curve.
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When PV panels are exposed to full insolation, the MPPT
problem is conve; as a result, multiple traditional optimiza-
tion algorithms [3], [5], [6] have been presented to optimize
the PV array for maximum output power. However, due
to their restricted ability to explore, these algorithms most
often merge to local maxima under partial shading conditions
(PSCs).

When the ambient temperature and solar insolation fluctu-
ate, an MPPT scheme should adapt to get the most out of the
PV system. The process of maximum power point tracking
(MPPT) is compounded by nonlinear current-voltage (I-V)
characteristics and a power-voltage (P-V) curve that varies
greatly in line with variations in solar insolation and tem-
perature. Examples of well-known classical MPPT methods
are hill climbing (HC) [7] and perturb and observe (P&O)
[4], [8], [9]. Both techniques lead to power loss because of
oscillations around MPP brought on by the perturbation’s
constant up-and-down movement. Although the INC method
[10] mitigates these fluctuations, it does not eliminate them
entirely.

Under conditions of constant solar irradiance and temper-
ature, and only a single MPP in the P-V curve, the MPPT
techniques introduced by several researchers [11], [12] are
optimal. On the other hand, large PV installations with mul-
tiple PV modules connected in series and/or parallel are not
excellent fits for these techniques.

If even one module in a PV system is not performing as
expected, it can drag down the entire system. Partial shad-
ing conditions (PSC) can occur when the PV array receives
uneven amounts of sunlight from factors like passing clouds
or nearby objects casting shadows. PSC causes a drop in out-
put power of the PV system, the degree of which varies with
system configuration and shading pattern (SP). Due to the
multiple peaks appearing in the P-V curve that PSC causes,
conventional MPPT methods are unable to compensate for
the loss of power that results from PSC. This is because it can-
not distinguish between global and local peak. Methods exist
to mitigate the decrease in power output caused by PS; these
include rearranging PV arrays [13], implementing intricate
converter circuit topologies [14], and optimizing MPPT [15].
The use of a better MPPT algorithm is the most appealing
option because it does not require any structural changes to
an existing system. Therefore, many MPPT methods have
been developed to deal with GMPP under PSC [16]. Both
fuzzy logic [17] and artificial neural networks (ANNs) [18]
are forms of intelligent control that rely heavily on input
data. Particle swarm optimization (PSO) [19], [20], the firefly
algorithm [21] the artificial bee colony algorithm, the gray
wolf optimization (GWO) [22] and the bat algorithm [23] are
just some of the swarm intelligence algorithms that have been
used to keep track GMPP. Because of how easy they are to
create and put into practice, these algorithms are able to fol-
low the GMPP while PSC is active, with no oscillation around
the GMPP. The PSO, like any basic metaheuristic algo-
rithm, needs to be properly initialized and tuned on a regular
basis to achieve optimal tracking performance. Inadequate
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performance is the direct result of sloppy initialization and
tuning of the system’s parameters. For instance, due to the
attribute’s tendency to decrease randomness when scanning
for the optimal candidate, the tracking time and convergence
speed for particles with a large size are both relatively slow
[24]. Instead of using traditional metaheuristics, bioinspired
optimization approaches take their cues from the collective
intelligence of natural phenomena such as swarms, flocks,
herds, and schools of animals. These strategies use firefly,
bee, and bird behaviors in MPPT algorithms. Cuckoo search
(CS) [25], the flower pollination algorithm [24], [26] the
ABC, the firefly algorithm, the fractional chaotic ensemble
PSO [27], wind-driven optimization [28], improved differ-
ential evolution (DE) [29], genetic algorithm (GA) [30],
cat swarm optimization [31], and the sliding mode control
[32], are all examples of well-known bioinspired optimization
methods. According to several scholars [25], [31], [33] the
proposed algorithm’s drawbacks arise from the computa-
tional burden imposed by the exploring mechanism’s com-
plexity. In contrast to this proposed method, the drawbacks
of [34], [35], wherein the complex nature of the structure,
formula, and principle leads to early oscillation and tracking
time issues during GMPP tracking are less severe.

Based on the flower pollination algorithm (FPA) and
the P&O method, [36] presented a hybrid MPPT. Utiliz-
ing chaos maps, other researchers [37], [38] improved the
FPA’s efficiency. To identify the GMPP throughout PSC, [39]
employed an enhanced leader adaptive velocity PSO. Five
series-connected modules were subjected to the bat algo-
rithm (BA) proposed by [40] which involved multiple shade
patterns. For four series-connected modules in five different
PSC, [35] utilized grass hopper optimization (GHO). [41]
developed an adaptive particle swarm optimization (APSO)
based MPPT system for five series-connected shaded mod-
ules. Various optimization strategies, such as the enhanced
leader particle swarm optimization (ELPSO) aided by P&O
[36] and the wind driven optimization algorithm (WOA) [28],
have been presented for interconnected PV systems. Com-
pared to the bio-inspired algorithm proposed in this paper,
other algorithms [24], [31], [38] take more than 0.5 s to track
the GMPP and are thus much slower. Multiple hybrids of
traditional MPPT and soft computing MPPT are presented in
the literature, including PSO mixed with ANFIS [42], Fuzzy
mixed with PSO [43], ACO mixed with P&O [44], PSO
mixed with P&O [45], and PSO mixed with DE [46]. Good
results and potential applications have been found for these
combination. Although the proposed methods in this paper
have a simple concept as well as structure, MPP tracking
using a mix of traditional and new forms of computing.
The MPPT approaches need extensive amounts of computer
programming in addition to high implementation costs and
computational complexity.

In an effort to counteract those shortcomings, the current
work proposes for the first time in the context of PV-MPPT
application a novel MPPT algorithm based on the falcon opti-
mization algorithm (FOA). The falcon’s hunting technique
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served as inspiration for the proposed metaheuristic algorithm
[47], the falcon optimization algorithm (FOA) is a robust and
reliable algorithm for solving stochastic population-based
problems; it has three stages of action settlement and needs to
call for adjustments to a number of parameters. The proposed
method was inspired by the chase technique used by falcons
when searching for prey in the air. Falcons are secretive birds
whose hunting strategies vary with their individual needs.
However, distinctive strategies emerge, and remarkable mod-
els retain fundamental assumptions about the flying journey.
According to work by Tucker [48], [49] falcons are the most
proficient fliers among birds. Because FOA requires less
work in parameter tuning than other MPPT approaches, the
author was inspired to incorporate it, and it is easy to put into
practice. Also essential to its success is a search mechanism
with three stages that allows for rapid convergence. The
authors made good use of the benefits of the FOA method to
build a robust MPPT technique that is quick to respond and
highly reliable. Further, the author was convinced that they
could modify the approach so that it works well with MPPT
applications. In this paper, four sets of PSC are assessed using
software simulation to determine the efficiency of the FOA
based MPPT in a wide range of environmental conditions.
The obtained results were then compared to those obtained
by using the GWO, PSO and P&O methods. The dominance
of FOA is demonstrated through a comparative evaluation
of other methods across multiple aspects. When compared
to metaheuristic algorithms, the proposed FOA is able to
decrease the initial oscillation that occurs through the track-
ing process. This contributes to a low loss of energy, improves
tracking performance, and makes it easier to track real global
MPP and minimize the oscillation that occurs around the
GMPP. The proposed FOA contains a straightforward search
mechanism that demonstrates good MPPT performance in the
presence of different PSCs. As a result, the power extracted
from the PV panel can be increased. The results of the pro-
posed FOA are validated by intensive simulation work in
order to demonstrate the efficiency as well as the benefits of
the method. In a general sense, the following are the most
significant contributions made by this work

e The FOA a novel and straightforward bio-inspired opti-
mization method, is proposed for tracking the global maxi-
mum power point (GMPP). it features GMPP tracking with
a low energy loss, a quick convergence speed, good accu-
racy, simple control scheme, and easy implementation. The
proposed FOA has been shown to be effective in a variety of
environmental conditions.

e The proposed FOA method is evaluated against the
standard P&O and many other well-known metaheuristics in
terms of tracking speed and accuracy of tracking, Simulation
results are used to verify the proposed FOA’s functionality
and effectiveness.

The reminder of the paper is laid out as follows. Section II,
covers the basics of solar PV modelling, and demonstrates the
effect of the PSCs on the functionality of the PV solar array
and in Section III, introduces the FOA, a novel bioinspired
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method. Section IV presents the comprehensive steps of the
FOA-MPPT implementation. Simulation studies involving
a variety of PSCs are analyzed in Section V. Section VI,
provides a thorough comparison of the proposed method
with different soft computing methods in the literature.
Section VII, presents a performance evaluation analysis of
FOA with the regard to the amount of energy saved, revenue
generated, and net energy yield. Section VIII, summaries the
final conclusions.

Il. PHOTOVOLTAIC MODELS

The PV system under study is shown in Fig 1 together
with the DC-DC boost converter and the battery. Numerous
researchers place a high value on PV cell modelling because
of the significant impact that nonlinear characteristics and
variations in environmental conditions have on PV cell per-
formance. It is possible to create an accurate PV cell using
either a single or double diode model. The single-diode
model (SDM) is widely used because it is straightforward
to implement and requires fewer parameters than alternative
models [50]. Current source is denoted by I, while series
and parallel resistances are denoted by R, and Ry, accordingly
indicating contact and leakage losses. The sum of the currents
produced by PV cells can be calculated using kirchhoftf’s
current law (KCL) applied to the equivalent circuit, as shown
in (1).

V + IR, V + IR
I=1Iy—1I —1|- 1
oo (S7) 1 o

where PV current, leakage current, are denoted by I, and
1,, respectively. It can be expressed as V; = NskTq, where
V; and a stand for the thermal voltage and the ideality factor
of a diode D, respectively. In this equation, k represents the
Boltzmann constant, and its value is 1.38 x 10723 J/K. T rep-
resents the temperature of a photovoltaic cell in Kelvin, and g
and Ny represent the charge of an electron (1.6 x 10'° C) and
the number of cells in series, I, and /, can both be determined
by applying (2) and (3).

G
Ioh = [Ipn stc + ki (T — Tsrc)] Gsre 2

where k; represents the coefficient of short circuit current
and I, stcn represents the PV current under standard test
conditions (STC), which are defined as 25°C and 1000W/m2,
respectively.
Isc.stc + ki (T — Tstc)
v, +k (T T,

exp( 0c,sTC nvr( STC)) 1
where k, represents the coefficient of open circuit voltage,
Isc st represents the short circuit current under STC, and
Vsc st represents the open circuit voltage under STC. One
can rewrite Eq.(1) as Eq.(4) to determine the total current
produced by a PV module when subjected to a partial shading
effect.

1, = 3

V 4+ IR, V + IR,

IZN”m{I””_I"[”p(aVIN Y)_l]}_ R
sm S

)
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FIGURE 1. A schematic representation of the PV system.

Number of PV modules connected in parallel and in series,
respectively, denoted by Npm, and Ngp,.

A. EFFECT OF PARTIAL SHADING CONDITIONS

PV modules are linked in series and parallel in order to
generate enough power for the plant’s intended use [51]. Also,
not all PV panels receive the same amount of irradiation due
to factors like passing clouds, building shadows, and dust.
Partial shading is the result of this unequal irradiance [50].
The current drawn by the shaded PV panel would be equal to
the current drawn by the rest of the PV string in this situation.
Furthermore, the PV panel that is shaded tends to lose its
ability to produce current, and the temperature of that panel
rises, leading to hot-spots ultimately damaging the PV panels.
A bypass diode across each panel can solve this problem. The
author in this paper considered four distinct patterns over a
set of four PV panels wired in series (4S), all of which were
constructed using a Sharp NT-180/4 U PV module, in order
to better comprehend the impact of partial shading. Table 1
displays the PV module’s detailed specifications.

To prevent the flow of current in the reverse direction,
a blocking diode is wired into each string. In Fig. 2(a), there
are four different patterns

1.) In the first Patternl, there is no shading at all. With
this setup, each of the PV panels (M, M>, M3, and M) will
receive the same amount of sunlight (1000W/m?). Each PV
panel has the potential to produce the same amount of current.
As aresult, it creates a P-V curve where the global maximum
power point (GMPP) is held in a single peak. The single peak
in the P-V curves of Fig.2(b) is denoted by P;.

2) Pattern 2: represents a condition of partial shading
where Module M|, receives IOOOW/mZ, Module M; receives
100W/m?2, and modules M3, My receives 300W/m? and
200W/m? of irradiation respectively. The amount of current
produced by the PV string is equivalent to the amount of
current produced by the PV modules that are shaded because
of the presence of shade. In addition, having a bypass diode
across each panel will assist in bypassing the maximum
current produced by un-shaded PV panels. Because of this
disparity in currents, four distinct peaks to appear in the PV
curves, which are denoted by the symbols P», P3, P4 and Ps
in Fig. 2.(b). In Pattern 2, the points P», P3, P4 are referred to
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FIGURE 2. Evaluation of partial shading PV module (a) shading patterns,
and (b) P-V curve.

as the local maximum power point (LMPP) and the point P»
is referred to as GMPP.

3) Pattern 3: the photovoltaic modules M, M, M3, and My
in this configuration are supplied with 1000W/m?2, 700W/m?,
500W/m?, and 300W/m? of sunlight, respectively. Each of
the four photovoltaic modules receives one of four different
shades; consequently, each panel generates its own current
based on the shade it receives. This causes multiple peaks to
appear in the P-V curves. In Fig, 2(b), its points are denoted
by the letters Pg, P7, Pg, and Py respectively. Within these
four peaks, there is only one point that is regarded as GMPP,
and that point is Pg. The other points are regarded to be LMPP.
As a consequence, there are multiple peaks over the P-V
curves due to the conditions of partial shade. The existence of
multiple peaks will make it very hard for conventional MPPT
algorithms to attain GMPP. The power generating capacity
may drop by a significant amount if these algorithms track
the LMPP instead of GMPP, which has a negative impact on
the PV system’s performance. Therefore, the author in this
paper developed a novel MPPT technique to track maximum
power regardless of any PSC or patterns.

4) Pattern 4: each panel creates its own current depen-
dent on the shades it collects. As a consequence of this, the
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P-V curves display numerous peaks. In Fig. 2(b), its points
are indicated by the letters P19 P11, P12, and Pj3, in that
order. P13 is the only position among these four peaks that is
considered the GMPP. The remaining points are considered
to represent LMPP.

1ll. FALCON OPTIMIZATION ALGORITHIM (FOA)
Metaheuristics are algorithms that take their cues from nature
and can be used to find approximate solutions to computa-
tionally challenging optimization problems. Animal swarm-
ing behaviour patterns (such as those of the ant, cuckoo
[52], bee, pigeon, bat, and so on have been employed in
metaheuristics [53]. Identity, illation-free tools, flexibility,
and the ability to avoid local optimums are just a few of the
remarkable characteristics underlying metaheuristics [54].
A falcon’s hunting habits inspired the metaheuristic algorithm
proposed by [47]. The falcon optimization algorithm (FOA)
is a robust method for solving stochastic population-based
problems; it consists of a three-stage process that requires
adjustments to a number of parameters. The proposed method
was inspired by the hunt technique used by falcons when
they are in flight in search of their prey. Reclusive falcons
adapt their hunting strategies to their specific food needs.
Therefore, unique strategies emerge, and incredible mod-
els retain presumptions about the flight. Tucker claims that
among birds, falcons are the most proficient fliers. In different
stages of elevated hunting, the fitting objectives are exam-
ined to determine whether or not they exceed the boundaries
of flying achievement [48]. Stoops have been observed to
approach speeds that are greater than 200 miles per hour
(320 kilometers per hour), making the falcon one of the most
rapid animals on the planet. Falcons are able to take easy
breaths thanks to the presence of a series of small tubercules
in their beaks. These direct the flow of air through high-
velocity stoops. The majority of hunting takes place during
the course of the day (including morning and night). Most
of their prey consists of smaller and medium-sized birds, but
they will also eat insects like grasshopper, worms, locusts,
and crickets [55]. The falcon flies in a variety of routes to
get to its prey. The first part of each route is a logarithmic
spiral, during which the falcon maintains its head perfectly
straight and eyes focused on the prey with extreme accuracy;
the second part is a straight segment, during which the falcon
flies directly forward towards the prey and dives when the
prey is in its vision. Therefore, the process by which a falcon
achieves locomotion can be broken down into three stages.
Stage 1: involves the falcon looking for prey; stage 2: involves
the falcon enhancing its dive by means of a logarithmic spiral;
and stage 3: involves the actual diving of the falcon itself,
which may or may not result in the successful capture of
prey. In any other circumstance, a falcon is quick to change its
action in response to the experiences it has had. Fig. 3 presents
a graphical illustration of the flying path taken by a falcon
during a hunt.
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FIGURE 3. A representation of a falcon’s flight route during a hunt.

IV. IMPLEMENTED OF FOA INTO MPPT APPLICATION
The FOA represents a new category of algorithms that take
inspiration from the natural world. The PV power is used as
the objective function and the duty ratio D of the DC/DC
converter serves as the position of the falcon. Fig. 4 presents
a flowchart of the proposed falcon optimization algorithm
(FOA), and the different steps required to put the FOA method
to use in an MPPT application are described as follows

Step 1: Setup the initial problem data and control param-
eter adjustments. Constraints, decision variables, and the
optimization problem are all laid out. Then, the adjustable
FOA parameters, including the number of falcons (NP), the
values of the cognitive coefficient (c.), social coefficient
(s¢), the maximum speed (V4x ), following constants (f.), the
awareness probabilities (AP) and dive probabilities (DP) are
presented.

Step 2 (Initialize Position and Velocity of the Falcons):
The boundary conditions will determine the falcons’ initial
velocities and locations in a D-dimensional space, with each
falcon’s location defined with respect to the total number of
NP applicants in that space. In an MPPT application, the
duty cycle d is chosen as the falcon’s agent. The following
equation can be used to ensure that the searching area is
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initially divided fairly between each searching agent (duty
cycle d).
k
ds =
(ss+1)

&)

where d(’)‘ represents the falcon’s (duty cycle) initial position
with order k in the swarm, and ss is the size of the swarm.

The speeds are chosen at random from between the max-
imum and minimum values of V, which are respectively
defined as follows

Vinax = 0.1 x ub (6)
Vinin = —Vinax (7)

where ub represents the maximum value (each dimension’s
boundary area).

Step 3 (Assess Fitness and Identify Global and Individ-
ual Best Positions): Here, the DC/DC converter is operated
through its available duty ratios (falcon positions) in rapid
succession. The instantaneous PV power output is utilized as
a measure of optimum position of each duty cycle d to the
prey. This process is done with each duty cycle d, and with
respect to MPPT, the objective fitness function (f) is given
as:

f (d) = max Ppy(d) ®

The fitness value for each falcon is determined. The best
overall solution is then assigned to the gpess position, while
Xpest poOSition is given to the best position attained by each
individual falcon. With the logic that governs the move that
occurs behind the dive and awareness probability in mind, the
selected positions are used to generate new ones. FOA-based
MPPT aims to maximize PV output power. The output power
from PV is measured using the PV voltage and PV current.

Step 4 (Generate New Positions and Update the Falcon
Positions): In the beginning, two random numbers, known as
rap and rpp, are produced for each falcon using a uniform
distribution so that they can be compared with the aware-
ness and dive probabilities. If 4p is less than the awareness
probability AP, the falcon makes a movement indicative of its
search for prey, taking into account its own and other falcons’
past experiences as follow:

Xiter+1 = Xiter + Viter + st Xpesr — Xiter)
+ 857 (8pest — Xiter) 9)

where Xj;» and Vi, represent the falcon’s present position
and velocity. The presented algorithm is very much like the
search carried out by the PSO algorithm.

If the awareness probability AP, is lower than r4p, then dive
probability DP can be compared with rpp, if DP is lower
than rpp,, the falcon will then select one of the targets as
its prey (Xchosen), marking the successful completion of the
fundamental step in the hunting process. A logarithmic spiral
can be obtained from through:

Xiter+1 = Xiter + | Xchosen — Xiter| X eprt cos (2mt) (10)
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where b is a constant that defines the condition of the spiral
logarithm has a value of 1, and t is a variable between —1
and 1 that indicates how close the next position of the falcon
would be to the true target.

In the event that DP is larger than rpp, the fitness value
(of) of the selected prey is evaluated in relation to the fitness
value (of) of the falcon, and the prey that is determined to be
the fittest is the one the falcon will chase after, in a manner
analogous to a dive step:

Xiter—H = Xiter + Viter +fcr (Xchosen - Xiter) (11)

If not, the falcon will keep flying from where it is in the
optimal position:

Xiter+1 = Xiter + Viter + ccr Xpesr — Xiter) (12)

The new position is then tested for velocity and boundary
conditions. Following this, the Xp.; and gpess values are
updated to represent the new fitness levels. The phenomenon
of klepto-parasitism between falcons is included in all proce-
dures described in Step 4, while examining a single candidate
solution. Because of this, every generation, one falcon can
look at other falcons to be potential targets, even prey, for the
various movements it performs.

Step 5 (The Determination of Convergence): The optimiza-
tion process is terminated once a predetermined number of
iterations have been completed or when all falcons position
changes are less than a predetermined threshold. At this point,
the duty cycle at which the DC/DC converter operates is used
as output in order for it to be able to track GMPP.

V. SIMULATION RESULTS

A MATLAB/Simulink environment is used to model and
examine the proposed FOA-MPPT method. Fig. 1 shows a
block diagram of the PV system’s modelling, which displays
the PV array, DC-DC converter and the MPPT controller.
The circuit component parameters values can be shown in
Table 2. In this setup, four individual PV modules are linked
in series to create the arrays. The DC-DC boost converter
MPPT algorithm’s sampling time is set to 0.01 s since it is
critical that MPP readings are obtained once the system has
reached the steady-state condition. This value is selected to
account for the transient response of the MPPT inputs, such
as the PV voltage and PV current, in order to prevent a delay
in the tracking of maximum power and avoid failure. The
simulations in Figs. 5 to Fig.8 demonstrate that PV system
is tested under different PSCs.

The inductance is determined so that the inductor current
I1 is a steady and never goes to zero, allowing the converter
to function in continuous current mode (CCM). This means
that the minimum value of inductor L is determined as [56]:

_ Vin X (Vour — Vin)
AiL Xfy X Vaut
where V;, denotes the typical input voltage, Voyr is the

desired output voltage, and Ai; represents estimated inductor
ripple current (20% to 40% of the output current).

(13)
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FIGURE 4. Flowchart of the proposed falcon optimization algorithm.

The following formulae can be used to change the values
of the output capacitors in order to get the required level of
ripple in the output voltage [56]:

TouT gy X D
fg X AVgu[

where Coyus(miny 18 the minimum output capacitance, Loy (max)
is the maximum output current of the application, and AV,
is desired output voltage ripple.

Cout(min) = (14)

A. PERFROMANCE EVULATION

The effectiveness of the MPPT methods is evaluated using
the following three indicators:

1) Tracking Efficiency n
Py,

Pypp

x 100% (15)

where P, is the actual maximum output power and
Pypp is the theoretical maximum output power.

2) Tracking Time T
T is the amount of time it takes for the photovoltaic
system to attain a stable PV output. One way to
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TABLE 1. Specification of PV module [57].

Specification of single PV Values
module
Maximum Power at MPP 45W
(Pmpp)
Open Circuit Voltage (V) 112V
Maximum Voltage at MPP 896V
(Vinpp)
Short Circuit Current (Isc) 56 A
Maximum Current at MPP 5.02 A
(IMPP)
Configuration of PV module 4-Series

measure it is by counting the number of sampling
cycles.
3) Tracking the Rate of Success o

N,
o =—2L x 100% (16)
N,

s

where the number of times that the target was suc-
cessfully tracked, denoted by Ny, and the number of
simulated times is denoted by Ny. The requirement for
determining whether or not the MPPT method was
effective in tracking is whether or not it was able to
successfully track the GMPP and fits the following
criteria:

n > 95% (17)

Vm—V

Im WPl < 0.02 (18)
Vmpp

V., refers to the voltage that is actually produced, while

Vupp is the voltage that is theoretically expected at

MPP.

Table 3 shows the irradiance profile for the several patterns
employed in this study.

B. ANALYZING SPECIFIC CASES

1) CASE 1

As shown in Fig. 2(b), there are no LMPPs in Case 1 with
GMPPs of 180W. Fig. 5 displays the tracking waveforms
generated by the four MPPT methods. The proposed FOA
method is shown to have the highest tracking efficiency
(99.93%) out of the other MPPT methods tested, with PV
output power of 179.9W, and complete convergence towards
GMPP occurring in 0.4s. With a PV output power of 179.81W
and a tracking efficiency of 99.88%, the GWO method tracks
the GMPP in 0.81s. With a PV output power of 179.75W and
a tracking efficiency of just 99.85%, the PSO method takes
almost 1s to attain the GMPP.

The entire tracking process takes only 0.59s with the P&O
method, and its accuracy reaches up to 98.88% as a result of
continual oscillation that appears around the GMPP. Hence,
the FOA method has the quickest tracking speed.
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FIGURE 5. Simulation waveforms under case 1 of the (a) PSO method (b) GWO method (c) FOA method (d) P&O

method.

TABLE 2. Specification of parameters of circuit component.

Specification of single PV Values
module
Input Voltage at MPP (V;,) 441V
Output Voltage at MPP (V) 48V
Switching Frequency (f;) 20 kHz
L 400 uH
C; 1 mF
Cour 1 mF

2) CASE 2

As can be shown in Fig. 2(b), there are three LMPPs in Case 2
with GMPPs of 37.4W. (b). Fig. 6 displays the tracking
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TABLE 3. Irradiance profile for various patterns.

Pattern No. Irradiation profile in W/m?
Patternl G,=1000, G,=1000, G5=1000, G4,=1000
Pattern2 G,=1000, G,=100, G3=300, G4=200
Pattern3 G=300, G,=1000, G5=600, G,=800
Pattern4 G,=600, G,=700, G5=1000, G,=500

waveforms generated by the four MPPT methods. The pro-
posed FOA method follow the GMPP with tracking efficiency
99.82%, has PV output power of 37.34W and with tracking
time of 0.41s. GWO method required a longer tracking time
of in 0.9s and has tracking efficiency of 99.49%. With a PV
output power of 37.21W. The PSO method shows excessive
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FIGURE 6. Simulation waveforms under case 2 of the (a) PSO method (b) GWO method (c) FOA method (d) P&O
method.

has successfully identified the correct GMPP at this time,
it still demonstrates oscillation around the GMPP. It has a

oscillation toward convergence to GMPP with tracking time
of 1.1s and tracking efficiency of 98.23%, Although the P&O

method had quick convergence time of roughly 0.4s, it was
unable to identify the GMPP, and it ended up settling at the
LMPP (29.32W) with tracking efficiency of 78.39%.

3) CASE3

As shown in Fig. 2(b), there are three LMPPs in Case 3 with
GMPPs of 88.54W. Fig. 7 displays the tracking waveforms
generated by the four MPPT methods. The proposed FOA
method successfully tracks the GMPP with a short time of
0.39s and tracking efficiency of 99.80%, and has PV output
power of 88.37 W. The GWO method converges to the GMPP
within 0.7s and has a tracking efficiency of 99.77%. With
a PV output power of 88.34 W. The PSO method shows a
longer convergence time toward the GMPP with 1.1s and
tracking efficiency of 99.75%. Although the P&O method

VOLUME 10, 2022

tracking efficiency of 94.77%, PV output power of 83.63 W,
and tracking time of 0.38s.

4) CASE 4

As shown in Fig. 2(b), there are three LMPPs in Case 4 with
GMPPs of 99.51W. Fig. 8 displays the tracking waveforms
generated by the four MPPT methods. The proposed FOA
method converges to the GMPP within 0.41s, has a tracking
efficiency of 99.81%, and a PV output power of 99.32W.
The GWO method reaches the GMPP within 0.9s, which is
longer than the aforementioned method, and has a tracking
efficiency of 99.74%. With a PV output power of 99.26W,
the PSO method tracks the GMPP in 1.35s with a tracking
efficiency of 99.70%. With a PV output power of 99.21 W.
However, the P&O method gets stuck at LMPP. It has a
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FIGURE 7. Simulation waveforms under case 3 of the (a) PSO method (b) GWO method (c) FOA method
(d) P&O method.

tracking efficiency of 53.88% and a PV output power of
53.62W.

The tracking curves shown from Fig. 5 to Fig. 8 indicate
that although the GWO method and PSO method guarantee
global convergence, this takes a long time. Hence, PSO and
GWO methods causes a significant amount of power loss.
In addition, fluctuations appear in the PV power waveform
when GWO and PSO-based search continue for a longer
period of time. Even though the P&O method has a short
convergence time, it usually fails to detect the GMPP, and
PV output power oscillations continue even after reaching the
steady-state condition.

Based on the simulation results presented in Figs. 5-8, the
FOA can outperform the GWO, PSO, and P&O methods in
terms of faster convergence to GMPP, minimal steady-state
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oscillations, and higher tracking efficiency. This is demon-
strated by the fact that the FOA is able to effectively deal with
any PSC. Table 4 provide a summary of the simulation results.
The tracking efficiency given in the tables is computed as
the ratio of the average power production from the PV array
while itis in the steady-state condition to the maximum power
available from the PV array under given pattern. Thus, the
FOA-based MPPT performs better than the other three MPPT
methods.

5) SUMMARY

Analysis of these four cases demonstrates that the proposed
FOA method seems to have the best overall performance of
the four MPPT methods, maintaining ideal tracking ability
while achieving high tracking efficiency in a relatively short
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FIGURE 8. Simulation waveforms under case 4 of the (a) PSO method (b) GWO method (c) FOA method (d) P&O

method.

amount of time. The data show that the proposed FOA method
excels at handling complex PSCs.

VI. COMPSTIVE STUDY OF THE PROPOSED FOA WITH
DIFFERENT SOFT COMPUTING METHODS IN THE
LITERATURE

A. QUALITIATIVE ANALYSIS

Over the last few decades, new methods have been devel-
oped for MPPT applications, and some of these have the
potential to reach a GMPP, even under the case of PSC. The
contribution of a variety of methodologies that have been
proposed for the performance enhancement of PV systems
have helped to make the positive impact of environmentally
friendly methods of power generation more obvious in recent
years. A comparative assessment between the FOA method
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and other methods that have been developed in the MPPT
is carried out in order to gain a better understanding of the
contribution that the FOA method has made to the field of
MPPT application. Specifically, the six most important cri-
teria that determine the system’s performance are evaluated,
and a bar chart based on the findings of the study is displayed
in Fig. 9. The following is a list of the several parameters that
explored for the study: ability to track GMPP under PSC, con-
vergence speed, switching stress, robustness, ability to track
MPP under normal condition, and dependence on individual
panels. It is clear that the FOA method has a robust bar chart.
More importantly, the chart information allows the following
rankings to be assigned to the different methods: FOA, GWO,
PSO, ANN, P&O, in that order. Being able to make a direct,
qualitative comparison of a large number of other methods
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TABLE 4. Performance comparison of the four MPPT Methods under four
PSCs.

Shading  Algorithm  Voltage Current Power  Tracking Tracking
Pattern at MPP  atMPP  atMPP  Time(s) Efficiency(%)
™) (A) W)
Patternl P&O 37.3 4.7 177.9 0.58 98.88
PSO 353 5.01 179.75 1 99.85
GWO 345 5.21 179.81 0.81 99.88
FOA 34.95 5.15 179.9 0.4 99.93
Pattern2 P&O 29.42 0.99 29.32 0.38 78.39
PSO 7.9 4.65 36.74 1.1 98.23
GWO 7.41 5.04 37.21 0.9 99.49
FOA 7.42 5.03 37.24 0.41 99.82
Pattern3 P&O 29.36 2.84 83.63 0.38 94.77
PSO 28.37 3.10 87.33 1.1 99.75
GWO 28.36 3.11 87.34 0.7 99.77
FOA 28.37 3.11 87.37 0.39 99.80
Pattern4 P&O 17.82 3,01 53.62 0.43 53.88
PSO 382 2.60 99.21 1.35 99.70
GWO 384 2.59 99.26 0.9 99.74
FOA 38.4 2.58 99.32 0.41 99.81
100
80
mFOA |
mGgwo 60
P&O 40
B ANN 20
m PSO
0
T T T T T T
A B cC D E F

A-Ability to track GMPP under PSC, B-Convergence speed, C-Switching
stress, D-Robustness, E- Ability to track MPP under normal condition, F-
Dependence on individual panels

FIGURE 9. Analysis and comparison of a variety of soft computing
methods found in the literature.

makes it simple to determine a method’s performance. Based
on the data presented in the bar chart, the following outcomes
about the FOA method can be drawn: It has the following
desirable properties: (1) it is robust and reliable; (2) it has
a straightforward design and can be easily programmed and
compiled; (3) it can differentiate between LMPPs and GMPPs
when running under PSC; (4) it converges quickly and does
not exhibit steady-state oscillations.

B. STASTICAL ANALYSIS

By applying quantitative analysis, such as the mean, maxi-
mum, and standard deviation of the PV power, this section
makes a comparison between the performance of the pro-
posed FOA algorithm and other MPPT algorithms that have
already been developed. The mean was utilized in order
to examine the exactness of the different MPPT algorithms
while, the standard deviation was utilized in order to ascertain
the level of dispersion that existed within the power data sets.
Two nonparametric assessments, the Wilcoxon rank-sum and
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TABLE 5. Ranking of the FOA according to Friedman ranking test.

Algorithm  Friedman Friedman Friedman Friedman  Overall
Ranking Ranking  Ranking Ranking  Ranking
at at at at
Patternl Pattern2 Pattern3 Pattern4
FOA 1 1.25 1.25 1 1
PSO 3.25 3.25 3.5 3 3
P&O 35 3.25 3 35 4
GWO 225 2.25 2.25 2.5 2

the Friedman ranking tests, were carried out in order to
examine the performance of each MPPT algorithms.

A nonparametric Friedman ranking test was performed
to decide where the proposed algorithm lies in the overall
rankings. The outcomes of the Friedman ranking test are
presented in Table 5, which reveals that the proposed FOA
algorithm beat other algorithms when it came to tracking the
GMPP under different patterns.

A nonparametric method for comparing the results
obtained from two distinct approaches is known as the
Wilcoxon rank-sum assessment. The presence of the null
hypothesis indicates that there is no discernible difference
between the ranks produced by the various techniques of
comparison. The alternative hypothesis examines the ques-
tion of whether or not the outcomes of the comparative
technique may be classified according to rank. At this point,
a significance level of 5% was used to the Wilcoxon rank sum
calculation.

The sign “4” indicates that the FOA algorithm was signif-
icantly better than the other algorithm, the sign A’ indicates
that the FOA algorithm had performance that was comparable
to the other algorithm, and the sign “—” shows that the
FOA algorithm performed poorly when compared to the other
algorithm. Table 6 presents the statistical findings that were
derived by evaluating all four methods in accordance with the
aforementioned four patterns.

VII. RESULTS OF THE DAY-BY-DAY SIMULATION

Saudi Arabia is a country exposed to a significant quantity
of solar irradiation on its land and has a high average num-
ber of hours of daylight throughout the year, particularly
during the months of June, July, and August. For the pur-
poses of this study, data relating to Neom City is analyzed.
This data is utilized as input in this section for the soft-
ware MATLAB/Simulink, which is used to calculate the total
power that could be produced from photovoltaic systems.
This solar atlas is shown in Fig. 10. Fig. 11 shows the monthly
average solar irradiation observed at Neom for each month in
the year 2021.

The goal of the method is to identify GMPP during shad-
ows caused by obstructions on rooftops that are present in the
environment. Even when such obstructions are continually
existing at or near to the position of the PV system, it is possi-
ble that they do not cause shadow on a daily basis. This is due
to the fact that the presence of a shadow is also dependent on
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TABLE 6. Wilcoxon rank-sum test statistical findings.

Shading  Algorithm Power(W)
Pattern
Max Mean SD Rank-
Sum

Pattrnl P&O 177.9 168 16.11 +)
PSO 179.75 145.8 18.37 )
GWO 179.81 170.1 18.78 )
FOA 179.9 174.9 17.66

Pattern2 P&O 29.32 25.43 7.62 +)
PSO 36.74 30.62 9.78 +)
GWO 37.21 33.56 3.27 +)
FOA 37.24 3395 7.29

Pattern3 P&O 83.63 80.92 3.99 )
PSO 87.33 79.15 14.17 +)
GWO 87.34 79.50 13.04 )
FOA 87.37 82.09 12.34

Patternd P&O 53.62 34.88 5.26 )
PSO 99.21 93.21 16.90 )
GWO 99.26 81.6 22.06 +)
FOA 99.32 90.94 14.31

ONI: Long-term average of annual totals of direct normal iradiation

KWhim?
400 700 1000 1300 1600 1900 2200 2500 2B0O 3100 3400 3700

FIGURE 10. A Solar Atlas of Saudi Arabia (NEOM location).

the irradiance conditions. The primary cause of shadow is the
obstruction of the direct irradiance component by an object,
and the associated decrease in energy production may be
observed more or less clearly. Fig. 12(a) shows the irradiation
profile under a clear day in June, which compares the output
of two solar panels that are physically close to one another
and have micro-inverters installed. In the morning, one of
the panels was covered with a shade (the green line). The
difference in output caused by shadows is seen quite clearly
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FIGURE 11. The intensity of solar irradiation varies during the period of
the year [58].
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FIGURE 12. Solar irradiation of (a) clear day of two PV panels shaded
panel (green line) and unshaded panel (red line) (b) cloudy day [58], [59].
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in the figure, which represents a day with clear conditions.
Fig. 12(b) shows the irradiation profile under a cloudy day.
Using Atlas data, a simulation is run in real time to evaluate
a 180W PV system. This data can be used to assess the
dynamic efficiency of MPPT algorithms. The results of the
test of the three MPPT algorithm under clear sky day are dis-
played in Fig.13. The results show that the power output from
the FOA and traditional P&O are comparable, although the
conventional P&O shifts away from the MPP at some points.
However, the PSO method oscillates excessively during the
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FIGURE 13. PV power and PV voltage of three MPPT methods under
irradiation of clear day.
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FIGURE 14. PV power and PV voltage of three MPPT methods under
irradiation of clear day with one shaded panel.

tracking of GMPP. Fig, 14 shows the simulation results of
the FOA method, P&O method, and PSO method when one
of the PV panels is shaded (Fig. 12.(a)). It is clear that the
P&O method has successive steady state oscillation in the
PV power waveforms. The PSO method suffers from large
oscillation while performing dynamic tracking. Fig. 15 shows
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TABLE 7. Long-term tests were used to evaluate the proposed method'’s
performance and the proposed GMPPT method’s profitability.

Energy

Weather Tracking Extracted Annual Revenue in
Condition Method per Day '?xg SR
(kWh)
P&O 10.506 126.074 22693.32
Steady
Change PSO 16.50 198.00 35640
Proposed 17.67 212.09 38176.2
. P&O 3.198 38.376 6907.7
Rapid
Change PSO 4555 54.660 9838.8
Proposed 5.157 61.884 11139

8

PV Voltage (V)
8

PV Power (W)

S 10 15 20 25
Time (Houss)

FIGURE 15. PV power and PV voltage of three MPPT methods under
irradiation of cloudy day.

the simulation results when the system is tested under a
cloudy day (Fig.12.(b)). The simulation results show that
FOA method has good performance for dynamic tracking.
However, the P&O method has bad performance, low PV
output power, and low efficiency, resulting in huge losses in
the PV system. The PSO method suffers from high switching
transients while working under dynamic tracking. The overall
outcome places the FOA method first, followed by other
methods. This demonstrates without a doubt that FOA is
among the most powerful methods that works for MPPT.
The numerical findings for the long-term test are shown
in Table 7. The findings reveal the total power generated on
a daily and annual basis, as well as the estimated income
earned by applying a selling rate to the generated energy in
Saudi Arabia in 2022 (0.18 SR per kWh). This demonstrates
that proposed method may improve revenue and generate
more extra income than the compared MPPT methods, which
benefits the operating day. The proposed FOA may increase
overall energy by 6.7% and 40.5% under steady change
conditions compared to the PSO method and P&O method.
In addition, it may increase overall energy by 11.6% and 38%
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under rapid change conditions compared to the PSO method
and P&O method. According to short-term testing, the pro-
posed method’s ability to work under PSC reduces power
loss. In summary, short-term tests indicate that tracking speed
might be enhanced, as seen by each track having a smaller
power loss compared to other MPPT methods. As a result,
when operated for a longer period of time using the proposed
method, the amount of energy produced by the PV system
increases.

VIIl. CONCLUSION

In this study, a novel falcon optimization algorithm was
employed to track the GMPP for the PV system. Analyses
were performed on the output characteristics of the PV array
while it was subjected to PSCs, and the operating concept
of the proposed FOA was presented. In the study, the fun-
damental idea behind the FOA-based MPPT algorithm as
well as its most important variables were discussed in depth.
The proposed method has a high level of performance and
is able to successfully track the GMPP under a variety of
PSCs. Through the use of simulations, the FOA method’s
performance was evaluated and analyzed for verification pur-
poses. According to the findings of the simulations, the FOA
that was developed demonstrates greater performance when
compared to the other MPPT algorithms. The proposed FOA
has a fast tracking speed and its efficiency in tracking GMPP
is greater than 99% across a wide range of different environ-
mental conditions. The FOA is able to discern between a local
peak and a global peak regardless of the shadow conditions
that are present, as demonstrated by simulation tests that were
carried out using four different shading conditions. In addi-
tion, an analysis of the proposed FOA in comparison to other
soft computing methods found in the literature (based on the
criteria given) was presented in Section VI. Specifically, the
critical six factors that determine the system’s performance
were studied, and based on the information shown in the bar
chart, FOA was ranked in top place, followed by GWO, PSO,
ANN, and P&O. Also, the Friedman and Wilcoxon rank-
sum tests demonstrate that FOA is significantly superior to
the other MPPT methods evaluated. It is expected that PV
researchers who are looking for an efficient operation of PV
systems will be interested in the proposed FOA.
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