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ABSTRACT The limit sets of zeros of the partition function for λ-state Potts models on diamond-like
hierarchical lattice are the Julia sets of functions in a family of rational functions. In this paper, the consensus
problem of Julia sets generated by λ-state Potts models on diamond-like hierarchical lattice is studied. Two
types of the consensus problem of Julia sets are considered, one is with a leader and the other is with no
leaders. Based on these two types, two different control protocols are proposed respectively to make systems
achieve consensus of Julia sets. The simulations confirm the efficacy of control protocols.

INDEX TERMS Julia set, multi-agent system, consensus.

I. INTRODUCTION
In recent years, more and more scholars have participated in
the research of multi-agent systems. The consensus problem
of multi-agent systems is one of the hottest problems, and
a lot of achievements have been made [1], [2], [3], [4],
and [5]. Reference [1] investigated the consensus problem for
directed networks of agents with external disturbances and
model uncertainties on fixed and switching topologies. In [4],
a distributed fault-tolerant leader-follower consensus proto-
col for multi-agent systems is constructed by the proposed
adaptive method. In reference [5], a distributed observer type
consensus protocol based on relative output measurements is
proposed to achieve the consensus of multi-agent systems.
The so-called consensus means that a certain state of the
multi-agent system tends to be consistent by information
exchange among multiple agents connected by a network
after designing control protocols. The consensus problem is
widely used in artificial intelligence, the coordinated control
of unmanned aerial vehicles, and the urban traffic control.

The consensus problem of multi-agent systems is divided
into two types, one is with a leader [6], [7] and the other is
with no leaders [8], [9]. For the former, agents in the system
are divided into two types, namely the follower and the leader.
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Then control protocols are designed to make some states
of followers tend to the corresponding state of the leader.
Whereas, for the latter, the state of each agent in the system
is finally tended to a certain state by designing a control
protocol. Mei et al. [10] studied the distributed containment
control problem for networked Lagrangian systems with mul-
tiple dynamic leaders in the presence of parametric uncertain-
ties under a directed graph that characterizes the interaction
among the leaders and the followers. Li et al. [11] considered
two types of the consensus problem of linear multi-agent
systems subject to different matching uncertainties with no
leaders and with a leader of the bounded unknown control
input.

Mandelbrot set and Julia set play an important role in
the fractal theory. Famous mathematician Mandelbrot first
constructs the Mandelbrot and Julia sets from the complex
mapping z ← zα + c (α = 2) utilizing computer graphics
technologies [12]. Subsequently, their properties and images
have been studied extensively [13], [14]. The c-plane fractal
images from the complex mapping z ← zα + c (α = 2)
were studied in [14]. Dhurandhar et al. [15] discussed the
fractal feature of the generalized Julia sets from the gen-
eralized transformation function z ← zα + c, α < 0.
Kumari et al. [16] proposed a novel approach to visu-
alize Mandelbrot and Julia sets for complex polynomials
w(z) = zn + mz + r (n ≥ 2;m, r ∈ C) through a viscosity

128670
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0001-7924-5585
https://orcid.org/0000-0003-4200-2584


X. Lu, W. Sun: Consensus of Julia Sets of Potts Models on Diamond-Like Hierarchical Lattice

approximation method. To present the algorithms of genera-
tion of Mandelbrot and Julia sets for general complex poly-

nomial f (x) =
p∑
i=0

aix i (p ≥ 2, ai ∈ C for i = 0, 1, · · · , p.),

a general escape criterion is proposed via extended Jungck-
Noor iteration with s-convexity in [17]. Prajapati et al. [18]
studied the Julia sets linked to the entire transcendental func-
tion f (z) = aez

n
+ bz + c (a, b, c ∈ C; n ≥ 2) by

using the Mann iterative scheme. The physical significance
of the Mandelbrot and Julia sets has also been studied by
some scholars [19], [20]. In [19], from the figures of the
distribution of zeros of the partition function of an Ising and a
q-state Potts model on a diamond hierarchical lattice, we can
know that those zeros are just the Julia set corresponding
to the renormalization group transformation. The Julia set
in nonlinear complex dynamical systems describes a special
character, which portrays the degree of the variation of the
stable region. Due to the influence of noise or other factors,
sometimes it is necessary to restrict the size of the stability
region of the system, and sometimes it is required that multi-
ple and different systems show the same or similar behav-
ior and performance according to objective requirements.
By controlling the stability of fixed points or periodic orbits,
the stability region of the system can be controlled. Recently,
some scholars have studied the control and synchronization
of several classes of Julia sets [21], [22]. Feedback control
and synchronization of Julia sets of the discrete version of
the Volterra system are studied in [23].

Since the 1980s, with the development of computer graph-
ics and the hard work of many scholars, the research on
complex analytic dynamical systems has gained new vitality
and attracted extensive attention from mathematicians all
over the world. Inspired by the Newton iteration method
and Möbius transformation group, Fatou [24] and Julia [25]
began to study the stability of iterative sequences of complex
analytic mappings and eventually established the Fatou-Julia
theory. Sullivan [26] obtained the final periodicity theorem
around 1980, which is a milestone achievement in modern
research on complex dynamical systems. In reference [27],
Zhou Weimin introduces a stochastic iterative system gen-
erated by rational functions on the Ricmaoo sphere. In the
1980s, Sullivan proposed the definition of conformal mea-
sure, which provided a new research field for the properties
of Julia sets of rational functions and made the dynamic
systems generated by rational functions closely related to
fractal and other disciplines. It has now been shown that the
singularities in many examples are distributed on the Julia
sets corresponding to the renormalization transformations,
that is, on the smallest closure containing all unstable periodic
points [28]. The partition function of Hamiltonian of λ-state
Potts models on diamond-like hierarchical lattice is

Z =
∑
σi

exp[K
∑
<i,j>

δ(σi, σj)], (1)

where K = βJ , β = 1
k1t

, k1 is the Boltzmann con-
stant, and t is the temperature. By using the method of

Migdal-Kadanoff renormalization group, Qiao [29] proved
that the limit sets of zeros of the partition function (1) are
Julia sets of the following rational functions

f nλ = (
z2 + λ− 1
2z+ λ− 2

)n, n = 1, 2, · · · (2)

where λ is a complex parameter. Based on the previous
consideration of the properties of Julia sets and the consensus
of multi-agent systems, we explore such interesting ques-
tion: Considering a multi-agent dynamic system generated
by some functions in the family (2), can control protocols
be designed by using the information exchange between
agents to make Julia sets corresponding to agents tend to
be consistent? That is, when there is a leader, the Julia set
corresponding to each follower tends to the Julia set of the
leader, or the Julia set corresponding to each agent tends to
some set when there are no leaders.

Inspired by the above discussion, the consensus problem of
Julia sets of λ-state Pottsmodels on diamond-like hierarchical
lattice is discussed in this paper. Section 2 introduces some
preliminary knowledge about the consensus problem of Julia
sets for multi-agent systems. Section 3 presents two different
control protocols for multi-agent systems with a leader to
achieve consensus. Section 4 also introduces two different
control protocols for multi-agent systems without leaders.

II. PRELIMINARIES
Some basic knowledge about the consensus problem of Julia
sets will be introduced here. The graph provides a unified
approach to represent various real networks with abstract
points and lines [30]. Topological properties of concrete net-
works can be obtained by studying abstract graphs. Graph
g = 〈v, ε〉 is used to represent the network connecting
multiple agents, where v = {1, 2, . . . ,N } is a set of nodes
or agents, and ε ⊂ v × v represents communication links
between agents, that is, (i, j) ∈ ε represents that there is a
communication link between the i-th agent and the j-th agent.
The graphs in this paper are undirected, then (i, j) ∈ ε is
equivalent to (j, i) ∈ ε. The structure of the graph can be
represented by an adjacency matrix A = (aij)N×N , where
aii = 0, aij = 1 if and only if (i, j) ∈ ε. Otherwise, aij = 0.
Definition 1: If (i, j) ∈ ε, then node j is called a neighbor

of node i. The set of neighbors of node i is denoted as
Ni = {j|(i, j) ∈ ε}.

The discrete fractal system corresponding to the function
in family (2) is shown below:

zi(n+ 1) = f iλ(zi(n)) (3)

Definition 2: The trajectory of system (3) is denoted as
{zi(n)}∞n=0. The set

K = {zi(0)|{zi(n)}∞n=0is bounded}

is called the filled Julia set of system (3), and the boundary
of K is called the Julia set of system (3).
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III. CONTROLLERS OF CONSENSUS OF JULIA
SETS WITH A LEADER
Let Jm be the Julia set corresponding to the leader, which is
generated by the discrete fractal system

zm(n+ 1) = f mλ (zm(n)), (4)

where m is some integer. The Julia set corresponding to the
i-th follower is denoted as Ji, which is generated by the
following discrete system

zi(n+ 1) = f iλ(zi(n)). (5)

f mλ and f iλ (i ∈ {1, 2, . . . ,N } and i 6= m) are both functions in
family (2).
Definition 3: The consensus problem of Julia sets with

a leader is to design a control protocol ui(zm(n), z1(n),
z2(n), · · · , zN (n); k) to join the system (5) corresponding to
the i-th follower, and the Julia set Ji(k) generated by the
system

zi(n+ 1) = f iλ(zi(n))

+ ui(zm(n), z1(n), z2(n), · · · , zN (n); k), (6)

satisfies lim
k→k0

Ji(k) = Jm, where i = 1, 2, · · · ,N and k is a

control parameter, and k0 is some constant or∞.

A. THE FIRST METHOD
Take

ui(zm(n), z1(n), z2(n), · · · , zN (n); k)
= k[f iλ(zi(n))− f

m
λ (zm(n))]

+ (k + 1)
∑
j∈Ni

aj0[f
j
λ(zj(n))− f

m
λ (zm(n))], (7)

where aj0 = 1 if and only if there is a communication link
between the j-th agent and the leader. Otherwise, aj0 = 0.
Obviously, it is impossible that aj0 = 0 for all j ∈ Ni, because
there needs a communication link between some followers in
Ni and the leader to achieve consensus. Then

zi(n+ 1)− zm(n+ 1)
= (k + 1)[f iλ(zi(n))− f

m
λ (zm(n))]

+ (k + 1)
∑
j∈Ni

aj0[f
j
λ(zj(n))− f

m
λ (zm(n))]. (8)

Julia set is the boundary of the set of initial points with
bounded trajectories, so only the points remaining bounded
after iteration are considered. Then there exists M > 0 such
that |f iλ(zi(n))| < M for any i ∈ {1, 2, · · · ,N ,m}, thus

|zi(n+ 1)− zm(n+ 1)|
≤ 2M |k + 1| + 2M |Ni||k + 1|
= 2M (|Ni| + 1)|k + 1|.

Let k → −1, then |zi(n + 1) − zm(n + 1)| → 0 for any
i ∈ {1, 2, · · · ,N }. So the consensus of trajectories between
followers and the leader leads to the consensus of Julia sets.
Next, take rational function f i2 = ( z

2
+1
2z )i in family (2) to

show the consensus of Julia sets with a leader. Fig.1(a) is
the Julia set of the leader when i = 2, Fig.1(b), (c) and (d)
are Julia sets of followers when i = 3, i = 4 and i = 5
respectively. Denote the leader system as node 1, and the

three followers as node 2, node 3 and node 4. Assume that
the adjacency matrix of the system composed of these four
nodes is

A = (aij)4×4 =


0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0

 , (9)

where aij = 1 if and only if there is a communication link
between the i-th node and the j-th node. Otherwise, aij = 0.

Synchronization of Julia sets between two systems is to
design control protocols such that the Julia set of one system
eventually tends to the Julia set of another. If aj0 = 0 for
all j in (7), then the consensus problem is transformed into
the synchronization problem. Take the control parameter k
as −0.5 in (7), then the Julia sets corresponding to followers
after control are shown in Fig.2. Fig.2 illustrates that although
the Julia set corresponding to any follower eventually tends
to the Julia set of the leader, the process is not consistent.
Conversely, suppose that aj0 = 1 for all j ∈ Ni in (7) and
the adjacency matrix of the multi-agent system is matrix (9),
so the systems of followers after control are

z3(n+ 1) = f 32 (z3(n))+ k[f
3
2 (z3(n))− f

2
2 (z2(n))]

+ (k + 1)[f 42 (z4(n))− f
2
2 (z2(n))],

z4(n+ 1) = f 42 (z4(n))+ k[f
4
2 (z4(n))− f

2
2 (z2(n))]

+ (k + 1)[f 32 (z3(n))− f
2
2 (z2(n))

+ f 52 (z5(n))− f
2
2 (z2(n))],

z5(n+ 1) = f 52 (z5(n))+ k[f
5
2 (z5(n))− f

2
2 (z2(n))]

+ (k + 1)[f 42 (z4(n))− f
2
2 (z2(n))].

When the control parameter k takes different values, the Julia
sets corresponding to the above discrete systems are shown
in Fig.3. It can be seen from Fig.3 that they eventually tend
to the Julia set of the leader as k tends to−1, and the process
is also consistent.

B. THE SECOND METHOD
Gradient control methodology [31] is a general technique for
controlling nonlinear systems and it is used to achieve the
control of Julia sets in [32]. Based on the gradient control
method, the control protocol in the consensus of Julia sets of
Potts model is designed as

ui(zm(n), z1(n), z2(n), · · · , zN (n); k)

= −
k

1+ k
[f iλ(zi(n))− f

m
λ (zm(n))]

+
1

1+ k

∑
j∈Ni

aj0[f
j
λ(zj(n))− f

m
λ (zm(n))], (10)

where aj0 has the same meaning as it is in the first method.
Then

zi(n+ 1)− zm(n+ 1)

=
1

1+ k
[f iλ(zi(n))− f

m
λ zm(n)]

+
1

1+ k

∑
j∈Ni

aj0[f
j
λ(zj(n))− f

m
λ (zm(n))]. (11)

Similarly, we only consider the points remaining bounded
after iteration, so suppose there exists T > 0 satisfying
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FIGURE 1. Julia sets of the discrete fractal system (3) with different
values of i when λ = 2.

|f iλ(zi(n))| < T for any i ∈ {1, 2, · · · ,N ,m}, thus

|zi(n+ 1)− zm(n+ 1)|

≤ 2T |
1

1+ k
| + 2|Ni|T |

1
1+ k

|

= 2T (|Ni| + 1)|
1

1+ k
|.

FIGURE 2. Julia sets of followers when k = −0.5.

Let k → ∞, then |zi(n + 1) − zm(n + 1)| → 0 for any i ∈
{1, 2, · · · ,N }. Finally, the consensus of trajectories between
followers and the leader leads to the consensus of Julia sets.

Next, the example in the first method is still used to show
the consensus of Julia sets with the leader. If it is true that
aj0 = 0 for all j ∈ Ni in (10), then the consensus problem is
transformed into the synchronization problem. When k is 2,
the Julia sets corresponding to followers are shown in Fig.4.
It can be seen from Fig.4 that they all tend to the Julia set
corresponding to the leader in the end. That is, they achieve
consensus, but the process is inconsistent. If aj0 = 1 for all
j ∈ Ni in (10) and the adjacency matrix of the multi-agent
system is still matrix (9), then the systems of followers after
control are

z3(n+ 1) = f 32 (z3(n))−
k

1+ k
[f 32 (z3(n))− f

2
2 (z2(n))]

+
1

1+ k
[f 42 (z4(n))− f

2
2 (z2(n))],
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FIGURE 3. Julia sets of followers with different values of parameter k .
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FIGURE 4. Julia sets of followers when k = 2.

z4(n+ 1) = f 42 (z4(n))−
k

1+ k
[f 42 (z4(n))− f

2
2 (z2(n))]

+
1

1+ k
[f 32 (z3(n))− f

2
2 (z2(n))

+ f 52 (z5(n))− f
2
2 (z2(n))],

z5(n+ 1) = f 52 (z5(n))−
k

1+ k
[f 52 (z5(n))− f

2
2 (z2(n))]

+
1

1+ k
[f 42 (z4(n))− f

2
2 (z2(n))].

When the control parameter k takes different values, the Julia
sets corresponding to the above discrete fractal systems are
shown in Fig.5. It can be seen from Fig.5 that they eventually
tend to the Julia set corresponding to the leader, and the
process is also consistent.

IV. CONTROLLERS OF CONSENSUS OF JULIA
SETS WITH NO LEADERS
It is assumed that the multi-agent system is composed of
discrete systems

zi(n+ 1) = f iλ(zi(n)), i = 1, 2, · · · ,N , (12)

where f iλ are functions in family (2).

Definition 4: The consensus problem of Julia sets without
leaders is to design a controller ui(z1(n), z2(n), · · · , zN (n); t)
added to the i-th agent, and the Julia set Ji(t) generated by the
system

zi(n+ 1) = f iλ(zi(n))+ ui(z1(n), z2(n), · · · , zN (n); t),

i = 1, 2, · · · ,N , (13)

satisfies lim
t→t0

Ji(t) = J , where t is a control parameter, t0 is

some constant or∞, and J is a certain set.

A. THE FIRST METHOD
Take

ui(z1(n), z2(n), · · · , zN (n); k, l)

= kf iλ(zi(n))+ l
∑
j∈Ni

aij[f
j
λ(zj(n))− f

i
λ(zi(n))], (14)

where aij = 1 if and only if there is a communication link
between the i-th agent and the j-th agent. Otherwise, aij = 0.
Thus

zi(n+ 1)− zj(n+ 1)

= (k + 1)[f iλ(zi(n))− f
j
λ(zj(n))]

+ l{
∑
p∈Ni

aip[f
p
λ (zp(n))− f

i
λ(zi(n))]

−

∑
q∈Nj

ajq[f
q
λ (zq(n))− f

j
λ(zj(n))]}. (15)

By the definition of Julia set, we only consider the initial
points remaining bounded after iteration, then there exists
M > 0 such that |f iλ(zi(n))| < M for any i ∈ {1, 2, · · · ,N }.
Therefore

|zi(n+ 1)− zj(n+ 1)| ≤ 2M |k + 1| + 2Ml(|Ni| + |Nj|).

Let k →−1 and l → 0, then |zi(n+ 1)− zj(n+ 1)| → 0 for
any i and j. Finally, the consensus of trajectories leads to the
consensus of Julia sets.

Next, a multi-agent system composed of discrete fractal
system z3(n + 1) = f 36 (z3(n)), z4(n + 1) = f 46 (z4(n)) and
z5(n + 1) = f 56 (z5(n)) will be taken to achieve consen-
sus of Julia sets without leaders. Denote these three sys-
tems or agents as node 1, node 2 and node 3. Suppose
that the adjacency matrix corresponding to the multi-agent
system is

A = (aij)3×3 =

0 1 0
1 0 1
0 1 0

 , (16)

where aij = 1 represents the existence of a commu-
nication link between the i-th node and the j-th node.
Otherwise, aij = 0. Original Julia sets of the above three
discrete fractal systems are shown in Fig.6. Controllers (14)
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FIGURE 5. Julia sets of followers with different values of the parameter k .
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are added to (12) respectively, then the controlled
systems are

z3(n+ 1) = f 36 (z3(n))+ k[f
3
6 (z3(n))]

+ l[f 46 (z4(n))− f
3
6 (z3(n))],

z4(n+ 1) = f 46 (z4(n))+ k[f
4
6 (z4(n))]

+ l[f 36 (z3(n))− f
4
6 (z4(n))

+ f 56 (z5(n))− f
4
6 (z4(n))],

z5(n+ 1) = f 56 (z5(n))+ k[f
5
6 (z5(n))]

+ l[f 46 (z4(n))− f
5
6 (z5(n))].

When the control parameter l takes 0.2 and k takes different
values, the Julia set of each system is shown in Fig.7. When
the control parameter l takes 0.1 and k takes different values,
the Julia set of each system is shown in Fig.8. It can be seen
from figures that when l is fixed, as k gets closer and closer
to −1, the Julia set of each system becomes more and more
similar, and consistently tends to a certain set in the end.

B. THE SECOND METHOD
Take

ui(z1(n), z2(n), · · · , zN (n); k, l)

= −
k

1+ k
f iλ(zi(n))+

1
k + 1

∑
j∈Ni

aij[f
j
λ(zj(n))− f

i
λ(zi(n))],

(17)

where aij = 1 if and only if there is a communication link
between the i-th agent and the j-th agent. Otherwise, aij = 0.
Then

zi(n+ 1)− zj(n+ 1)

=
1

k + 1
[f iλ(zi(n))− f

j
λ(zj(n))]

+
1

k + 1
{

∑
p∈Ni

aip[f
p
λ (zp(n))− f

i
λ(zi(n))]

−

∑
q∈Nj

ajq[f
q
λ (zq(n))− f

j
λ(zj(n))]}. (18)

In the same way, we only consider the points where the
corresponding trajectories are bounded, so there exists T > 0
satisfying |f iλ(zi(n))| < T for any i ∈ {1, 2, · · · ,N }. Thus

|zi(n+ 1)− zj(n+ 1)|

≤ 2T |
1

k + 1
| + 2T |

1
k + 1

|(|Ni| + |Nj|)

= 2T |
1

k + 1
|(1+ |Ni| + |Nj|).

Let k →∞, then |zi(n+ 1)− zj(n+ 1)| → 0 for any i and j.
Finally, the consensus of trajectories between agents leads to
the consensus of Julia sets.

Still use the previous example in the first method to analyze
the consensus of Julia sets without leaders. Suppose the adja-
cency matrix of the multi-agent system is matrix (16), then

FIGURE 6. Julia sets of discrete fractal system (12) with different values
of i when λ takes 6.

the systems after adding controller (17) are

z3(n+ 1) = f 36 (z3(n))−
k

k + 1
[f 36 (z3(n))]

+
1

k + 1
[f 46 (z4(n))− f

3
6 (z3(n))],

z4(n+ 1) = f 46 (z4(n))−
k

k + 1
[f 46 (z4(n))]

+
1

k + 1
[f 36 (z3(n))− f

4
6 (z4(n))

+ f 56 (z5(n))− f
4
6 (z4(n))],

z5(n+ 1) = f 56 (z5(n))−
k

k + 1
[f 56 (z5(n))]

+
1

k + 1
[f 46 (z4(n))− f

5
6 (z5(n))].

When the parameter k takes different values, the Julia set
corresponding to each system is shown in Fig.9. It can be
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FIGURE 7. Julia sets of discrete fractal system (13) with different values of k when l
takes 0.2.
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FIGURE 8. Julia sets of discrete fractal system (13) with different values of k when l
takes 0.1.
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FIGURE 9. Julia sets of discrete fractal system (13) with different values of k .
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seen from Fig.9 that the Julia set corresponding to each agent
consistently tends to a certain set as the absolute value of k
becomes larger and larger.

V. CONCLUSION
In this paper, the consensus problem of Julia sets of λ-state
Potts models on diamond-like hierarchical lattice is studied.
Two types of consensus problems are considered, one is with
a leader, and the other is with no leaders. Two different control
protocols are designed for Julia sets of λ-state Potts models
with a leader and with no leaders, respectively. For consensus
of Julia sets with a leader, the Julia sets corresponding to
followers after control consistently tend to the Julia set of the
leader in the end. For consensus of Julia sets with no leaders,
the Julia set corresponding to each agent consistently tends to
a certain set.

Although only the consensus problem of Julia sets of
λ-state Potts models on diamond-like hierarchical lattice is
discussed, the methods employed in this paper are also appli-
cable to models of rational functions in general. In the future,
we will try to study control and consensus of Julia sets
generated by other types of iterations, such as Mann iteration
scheme [18], Halpern method [16], viscosity approximation
method [16] and so on.
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