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ABSTRACT In this paper, we develop a low-cost cellular internet of medical things (IoMT)-based
electrocardiogram (ECG) recorder for monitoring heart conditions and used in practical cases. In order
to remove noise from signals recorded by these non-clinical devices, we propose a cloud-based denoising
approach that focuses on utilizing deep neural network techniques in the time-frequency domain through
the two stages. Accordingly, we exploit the fractional Stockwell transform (FrST) to transfer the ECG
signal into the time-frequency domain and apply the deep robust two-stage network (DeepRTSNet) for
noise cancellation. Due to the practical use case, the various heart physiologies and noise levels in different
amplitudes and frequencies are needed to be robust against wide-range noises in actual conditions. We utilize
the MIT-BIH Apnea-ECG database (APNEA-ECG) with several different heart physiologies. Next, the
different noises consisting of muscle artifacts (MA), baseline wander (BW), and electrode motion (EM)
from the MIT-BIH Noise Stress Test Database (NSTDB) and random noise, are added to the signals. The
main focus of the noise generation part is the fast Fourier transformation (FFT) of the simulated noisy signal
and the practical noisy signal has a maximum cross-correlation to gain a better morphological resemblance
between realistic signals and the prepared datasets. Based on the results, DeepRTSNet outperforms prior
learning-based methods and conventional non-learning approaches in terms of signal-to-noise ratio (SNR),
root mean square error (RMSE), and percent root mean square difference (PRD). Moreover, outcomes reveal
that DeepRTSNet has an extraordinary performance with a certain amount of further complexity than others.

INDEX TERMS Internet of Medical Things, electrocardiogram signal, denoising, time-frequency domain,
deep learning.

I. INTRODUCTION

A. MOTIVATIONS AND STATE OF THE ART

Cardiovascular diseases (CVDs) are causing a significant
increase in deaths, based on data from the World Health
Organization (WHO) and the American Heart Association
(AHA) [1], [2]. CVDs, especially heart rhythm problems or
arrhythmias, are the most significant cause of unexpected
death [3]. Heart arrhythmias are irregular heartbeats, and
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arrhythmias occur when natural rhythms do not coordinate
correctly with electrical impulses in the heart. Electrocardio-
gram (ECG) is a simple, minimally invasive, and inexpensive
way of diagnosing and assessing arrhythmia. Introducing the
Internet of Things (IoT) leads to a new generation of mobile
monitoring healthcare devices which consist of vital sign sen-
sors, processors, and cellular communication modules. Uti-
lizing these wearable gadgets allows healthcare staff to mon-
itor the condition of patients from anywhere and anytime [4],
[5]. Besides the regular clinical tests, a cellular wearable IoT-
based ECG recorder can be a suitable solution for real-time
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monitoring and early heart disease diagnosis. Furthermore,
the patient’s signs can be recorded during various activities
and then sent to a cloud for analysis due to their portability.
Eventually, experts can find anomalies and alarm the critical
event of the patient. In terms of price and size, these devices
have fewer quality components than clinical recorders
[6], [7]. As a result, the obtained signals from these gadgets
have an additional amount of noise. Nevertheless, the main
noise components are baseline wander (BW), muscle artifact
(MA), and electrode motion (EM) [8], [9], [10]. Known as
BW, it is a low-frequency noise generated by breathing, elec-
trically charged electrodes or the movement of subjects [11].
Muscles cause MA during activity [12], and EM is pro-
duced by changing electrode impedance during recording
signal [13]. All these noises cover the significant features of
ECG signals utilized for disease diagnosis. Therefore, the use
of denoising methods for ECG signals is pivotal.
Consequently, before any other analysis, approximately
removing noise from ECG is compulsory. Bandpass filters
are used in the 0.1-100 Hz range, and their output pro-
ceeds via a moving average filter for further smoothing [14].
Furthermore, we can utilize an analog low-pass filter to elim-
inate high-frequency artifacts and keep the essential part of
data for processing [15]. For the target of canceling BW
and DC offset, high-pass can be a good suggestion [15].
Moreover, other filters like notch, median, Savitsky-Golay,
wavelets, and adaptive filters have good performance and
accuracy for ECG denoising during these years, [16].
However, all of these filters can successfully remove noises,
but facing different heart physiologies and types of noises,
especially when the morphology of the signal is crashed,
their accuracy decreases. Developing artificial intelligence
(AI) and neural networks (NN) leads to various advance-
ments in signal processing. Learning-based ECG denoising
reveals a good ability and performance to face noisy ECG
signals. In this case, convolutional neural networks (CNNs)
and denoising encoder-decoders have a primary role in learn-
ing the sparsity of data [17], [18]. As the correlation between
noise and signal increases, the one-dimensional approaches
cannot satisfy our goal of signal improvement. Accordingly,
two-dimensional (2D) methods must be employed to achieve
a better separation of noise from the clean signal, such as
time-frequency transformation that can be used to convert the
ECG signal to the time-frequency domain. Following that,
utilizing 2D CNN for denoising and, finally, hiring the inverse
of them to return the time-frequency representation to the
standard form of ECG signal for diagnosis [19], [20].

B. RELATED WORKS

1) 1oMT-BASED ECG EVENT RECORDER

A recent study [21] presents an IoT-based ECG monitor-
ing system that employed an AD8382 ECG sensor to read
patients’ data, Arduino Uno, and ESP8266 Wi-Fi module for
remote healthcare. This study created an IoT Blynk appli-
cation that can be installed on smartphones to process and

VOLUME 10, 2022

visualize ECG signals everywhere and at any time without
clinical infrastructure. Latency, connectivity, and battery life-
time are three issues that wearable sensors face regarding
vulnerability and limitations. To cope with these issues, [22]
suggested a method for empowering the gateway; therefore,
all tasks that require high power consumption are accom-
plished locally on multi-core processors. Furthermore, the
authors explore the performance of real-time Compressive
sensing (CS)-based recovery of ECG signals on an [oT gate-
way embedded with ARM’s big.littleTM multicore. ECG
signal monitoring with an abnormal beat detection algorithm
is introduced in [23]. An average single format-based identi-
fication technique requires much memory to create a layout,
and strange beats make it hard to produce a common beat
format. Hence authors propose a dependable strategy for
producing a typical beat layout utilizing a format cluster
with Pearson likeness. The proposed technique utilizes the
weighted mean to limit memory use in the format cluster gen-
eration step. The authors in [24] show the possibility of ECG
observation with sewn material anodes rather than customary
gel terminals in a 3-lead, chest-mounted setup. The material
terminals are sewn with silver-covered string covering criss-
cross examples into an inextensible texture. Sensor approval
included ECG observing and solace overviews with human
subjects, stretch testing, and wash cycling. The cathodes are
tried with the BIOPAC MP160 ECG information-obtaining
module. In [25], a portable, practical framework,” NeuroSpy,’
utilizing off-the-rack jellybean segments, is planned, which
is useful and insightful like industrially accessible gadgets
from various merchants. The created framework has lower
creation and execution costs by 2.22-90 than conventional
business gadgets. This framework can process various bio-
logical inputs, including EEG and ECG, and track the human
internal heat level over time. In order to identify certain
cardiac diseases, a processing algorithm in IoT-based devices
is introduced in [26]. Even though this device can detect heart
diseases alone, it can simultaneously transmit data to a remote
cardiologist. Furthermore, the proposed computing algorithm
is developed in the LabVIEW environment, and this paper
focuses on removing and updating the device’s memory.

2) TIME-FREQUENCY DOMAIN AND ECG DENOISING

The QRS complex is one of the significant features of ECG
signals that can help us analyze heart conditions. In order
to increase the number of correct R-peaks detection, [27]
introduces a new technique based on Fractional Stockwell
transform (FrST). The authors * main focuses are artifact can-
celation, enhancing accuracy, and detecting the QRS complex
for unconventional heartbeats that do not belong to the five
heart standard beat classes. Different noise sources influence
the ECG signal, leading to its morphological damage. That is
the motivation of [28] to develop a Stockwell transform (ST)-
based noise removing method, in which ST is used for esti-
mating the noise level and above the specific level removed
with better performance compared to wavelet-based tech-
niques. Another FrST-based denoising technique with greater
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robustness is investigated in [29] that the MIT-BIH Arrhyth-
mia and the European ST-T databases are used as a dataset.
For simulating BW and MA noises, the authors add Gaussian
noise at 5 dB, 10 dB, and 15 dB classes to datasets in which
their proposed method can successfully cancel noise evalu-
ated with Root-Mean-Square Error (RMSE), Percent Root
Mean Square Difference (PRD), and Signal-to-Noise Ratio
(SNR) parameters. The ECG test of patients with implanted
pacemakers is burned with EMG noises that disrupt the pace
of pulse artifact detection. Accordingly, [30] introduces a
methodology based on ST, Shannon energy computing, and
threshold rule for identifying pace artifacts on noisy ECG
caused by EMG noise. The time-frequency domain is poten-
tially one of the promising techniques that can accurately
recognize integrated noises with ECG. The mixture of high-
order synchrosqueezing transform (FSSTH) and non-local
means (NLM) for the aim of ECG noise cancellation is used
in [31]. First, the signal is converted into intrinsic modes
functions (IMFs), and noisy IMF components are canceled by
detrended fluctuation analysis (DFA) for the next step. Next,
the remained components are filtered by NLM. Ultimately,
a clean ECG can be brought from filtered IMFs.

3) Al AND CONVENTIONAL METHODS FOR ECG DENOISING
It is generally held that standard methods for denoising ECG
such as Savitsky-Golay, wavelet, notch, median, and band-
pass filters, can be accurate with less complexity. In [32],
a g-lag unbiased finite impulse response (UFIR) filter is used
in discrete-time state-space for denoising ECG signal and
enhancing feature extraction, which has a better performance
in comparison with conventional methods. In [33], sparse
optimization and a low-pass filter are utilized for ECG noise
cancellation and BW estimation regarding the diverse signal
features. An iterative optimization model for ECG signal
denoising is discussed in [34], where the BW signal is con-
sidered as a low-pass signal, and the ECG signal is referred
to as a sequence of sparse signals. Moreover, the authors use
the banded matrix to characterize the optimization problem
and the majorization-minimization (MM) algorithm for con-
vergence. However, model-based Bayesian filtering is one
of the promising techniques for denoising, relying on pre-
defined causes of heavy pre-processing, and cannot guar-
antee performance when morphologies are changed. In this
regard, [35] proposes a Bayesian technique based on the
Kalman filter, one for removing QRS complex noise and the
other for R and T wave denoising. Emerging Artificial Intel-
ligence (Al), especially Deep Learning (DL), set the stage for
automatic noise cancellation in medical signals. The modified
frequency slice wavelet transform (MFSWT) is mixed with
a convolutional neural network (CNN) in [36] to tackle the
issues of the influence of noise on ECGs that are recorded by
wearable devices. In [37], a CNN-based two-step ECG noise
reduction is presented. First, the U-net model is employed
to remove noises that lead to distorting the ECG waveform.
To cope with this issue, the DR-net model is used in the
next step to correct the waveform. A different approach for
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ECG signal denoising is proposed in [20], where the FSSTH
transform is used for transforming the signal into a time-
frequency domain image. Then, the image’s imaginary and
real parts are considered as inputs to the deep convolutional
encoder-decoder network, evaluated with PRD, SNR, and
RMSE. Reference [38] studies the redundant convolutional
encoder-decoder for canceling noise from the QRS complex
for the ECG signals obtained from armband gadgets. The
authors assess the method with SNR, cross-correlation, and
the percent of correct R-peaks detection.

C. NOVELTY AND CONTRIBUTIONS

The conventional non-learning denoising approaches, mainly
designing filters, are considered a primary solution due to
efficiency and less computational complexity. As the variety
of noise resources and data sparsity increases, these methods
cannot provide reliable performance. DL-based approaches
are developed to cope with this problem, which are more
trustworthy. These models need an appropriate training
dataset in practical use cases (nonclinical ECG recording
environments such as cellular loMT-based ECG recorders).
It is required to familiarize the DL algorithm with the char-
acteristics of actual conditions in terms of the wide range of
clients with different physiologies, morphological signal sup-
pressing, and features masking caused by high noise levels.
We are encouraged to propose a new solution to tackle the
previous model’s problem based on these bottlenecks. The
summary of the main related works and comparison with our
contributions can be found in Table. 1. Our contributions can
be summarized as follows:

« The typical noise generation methods use BW, MA, EM,
and random noise with different intensities, frequencies,
and a little morphological change leading to denoise by
existing methods. In contrast, these approaches do not
close to the practical use cases where noises severely
suppress the ECG signal, and its vital features are
masked. To solve this problem, we generate the noise
using two different methods. The first is a combina-
tion of BW, MA, EM, and random noise, significantly
changing the clean signal’s morphology. The second is
related to adding each of these noise components lonely.
In addition, the fast Fourier transform (FFT) of these
simulated noisy signals has a high cross-correlation with
the noisy practical ones.

« Due to practical use cases, our denoising approach faces
many clients with a wide range of heart physiologies
and morphologies that can differ from each other caused
of natural factors or diseases. To be adaptive in dealing
with distinct morphologies and physiologies, we utilize
a dataset of several heart physiologies and morphologies
that are not considered in prior works.

« We propose a deep robust two-stage network (Deep-
RTSNet) based on an encoder-decoder in the time-
frequency domain with more remarkable performance
than similar DL-based denoisers and conventional fil-
ters. The significant superiority of DeepRTSNet is that
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it cancels the noisy ECG signals with minimum possible
loss of valuable data. Moreover, the results illustrate that
for the cost of more computational complexity, Deep-
RTSNet achieves an outstanding denoising performance
compared to other benchmarks.

« To the best of our knowledge, there is no work to exploit
the fractional Stockwell transform (FrST) for transform-
ing ECG signals from time to the time-frequency domain
along with a convolutional encoder-decoder that has a
better resolution leading to that DeepRTSNet powerfully
removing noise from valuable data.

« Based on the authors’ knowledge, no paper exploits
perceptual loss functions or networks for DL in the field
of ECG denoising that causes more impressive results.
In this paper, the mse + HFENN (where HFENN stands
for High-Frequency Error Norm Normalized) function
as a loss analyzer for first-stage denoising parts.

D. PAPER ORGANIZATION

The rest of this paper is organized as follows: In Section II,
we explain the methodology. The methodology is divided into
four parts: The information about our ECG recorder can be
found in Subsection II-A, we present the used dataset and the
procedure of preparing it in Subsection II-B, the details about
FrST are illustrated in Subsection II-C, and our proposed
deep learning method is introduced in Subsection II-D. The
numerical results are described in Section III. In Section IV,
the discussion is provided. Eventually, the conclusion and
future works are expressed in Section V.

Il. METHODOLOGY

A. CIRCUITS AND HARDWARE

We designed an ECG event recorder called I-Heart, as is seen
in Fig. 1. It is based on the STM32L151C8T6 microcontroller
(MCU), an ultra-low-power Arm Cortex-M3 MCU with
64 Kbytes of flash memory, 10 KB SRAM memory, 37 digital
and analog pins, and a 32 MHz CPU. It can be connected to
the mobile operator with a free subscription for one year by
using SIM80OL GSM/GPRS IC, which supports quad-band
850 /950 / 1800 /1900 MHz frequencies (bandwidths). The
SIMS8OOL offers data rates between 1200 and 115200 bits
per second (bps). Moreover, AD8232 is used for recording
ECG with three dry electrodes. One is a common electrode,
and the others are for right and left thumbs, as observed
from Fig. 1. The battery used is a Lithium Polymer Battery
(LP422139) of 3.7 V and 300 mAh with dimensions of
4.2 x 21 x 39 millimeter (mm). Moreover, the capacity of
external micro SD is 4 GB.

On the other hand, to connect to the cloud, we need pub-
key, sub-key, and channel names to be obtained by registering
on our server. The low-powered, cellular-based IoT heart
monitoring system architecture is simple: the board collects
the ECG data recorded by the probes. It sends data directly
to the I-Heart via the UART protocol. The amount of data
is 6000 samples, i.e., 6000 bytes. Therefore, we store the
received data and transmit it via a cellular internet connection
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FIGURE 1. Cellular loMT-based ECG recorder. (a) I-Heart device.
(b) Schematic diagram of I-Heart device.

to the cloud. The cloud that we are using is an optimal server
along with Node-RED. As can be seen from Fig. 2, the
data are analyzed (denoised) and then sent to be visualized
by internet-connected devices (computers, tablets, or mobile
phones). Message Queuing Telemetry Transport (MQTT) is
used for data transmission between patient and cloud or cloud
and doctor. The doctor and patient (I-Heart) are considered
MQTT-client, and the MQTT broker manages the data trans-
mission. This architecture makes the system modular. The
data acquisition board works independently, so installing
many boards do not affect the system’s behavior. Another
advantage is the cellular connectivity of our architecture, as it
can simply connect to the internet by just powering on the
device. This type of architecture has four levels:

o Data collection level (DCL): This level contains the
probes that transform heartbeat signals into electrical
signals (digital signals). Then, these signals are sent to
the I-Heart.
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TABLE 1. Main Related Works Summary.

Refrences Robustness against vgrigus noises that are | Using time-flrequency Utilizing lvariogs heart ilzccog::;l:c[;%‘? Two stage Exploiting perlceptual Practical use cases
morphologically similar to the ECG. domain physiologies denoising loss function
or other models
[17] X X X X X X
[19] X X X X X
[20] X X X X
[28] X X X X X X
[29] X X X X X
[31] X X X X X X
[32] X X X X X X X
[33] X X X X x X X
[34] X X X X x X X
[35] X X X X X X X
[36] X X X
[37] X X X X X X
[39] X X X x X X
Our work

o Communication level (CL): The communication system
must be suitable for applying the information recorded
by the ECG probe. Our proposed system is oriented to
communicate distant elements using a cellular internet.
The SIMS8OOL GSM module is used to connect to the
internet.

o Cloud database and analysis level (CDAL). The ele-
ments of storage and the interpretation of data coincide
at this level. The cloud data storage allows remote access
to the collected data. In addition, the cloud can pro-
cess the data for different visualizations. This work uti-
lizes cloud-based processing for ECG signal denoising
obtained from cellular-based recorders.

o Visualization level (VL): As mentioned above, the infor-
mation is accessible for cardiologists via the registered
devices such as tablets or computers.

B. DATESET

In this paper, the MIT-BIH Apnea-ECG database (APNEA-
ECQG) is used due to the diversity of its database in terms
of the number of records. Indeed, the primary problem of
other ECG databases, such as Arrhythmia and Long-term,
is the number of fewer physiologies and records than apnea.
Moreover, utilizing this database with long-term and diverse
records can help our networks become familiar with many
heart physiologies and denoise different noisy signals. The
signal source is accessible at [40]. What is more, approxi-
mately 70 records in the length of slightly less than 7 hours
to nearly 10 hours. Each recording includes a continuous
digitized ECG signal. Using up-sampling, we changed the
sampling frequency from 100 Hz to 200 Hz to make it similar
to our device’s sampling frequency (if it is not similar, our
denoising DL-based method cannot work in dealing with
practical signals obtained from I-Heart). Additionally, as can
be observed from Fig. 3(a), the APNEA-ECG signal is clean
(it is noteworthy that APNEA-ECG signals are not clean, and
before adding our simulated noises, we cancel the negligible
noises), and to simulate noisy signals, we need to add noise.
Consequently, we utilize noises from the MIT-BIH Noise
Stress Test Database (NSTDB), containing 12 half-hour ECG
recordings and three half-hour noise recordings [39], [40].
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In this study, we employ BW, EM, and MA noises of the
NSTDB along with random noises as follows:

Noise =n x BW+u x EM+y x MA

4+ p x random noise,

€]

where 1, u, ¥, and p are coefficients and determine the effect
of corresponding noise in the simulated signal. Moreover,
we add this noise to the clean APNEA-ECG signals that an
instance of a simulated noisy signal is presented in Fig. 3(b)
where it is so obvious that the simulated signal is so close to
the real noisy signal obtained from our device that is shown
in Fig. 3(c). Our noise generation aims to simulate the noisy
signal with maximum cross-correlation with the practical
obtained signal from our recorder. In fact, we generate the
desired noise by changing the coefficient and frequency of
each noise component. In the final step, we split each record
into short signals of 256 samples after adding noise to each
record. In addition to the signals with 256 samples, we tested
signals with 128 and 512 samples, but the denoising result
was unsatisfactory. Eventually, we split the whole dataset into
train, test, and validation with 80, 10, and 10 percent ratios,
respectively.

C. FRACTIONAL STOCKWELL TRANSFORM

A time-frequency analysis method, fractional Stockwell
transform (FrST), can be developed from the mixture of
Stockwell transform (ST) and fractional Fourier transform
(FrFT). The FrST follows ST but in the fractional domain.
Firstly, for a signal x(¢), the ST transform is calculated as
follows [41]:

[f| 7(r—1)2./2
e 2
V2

where ¢, f, and t are represented time, frequency, and the
window function’s position control parameter on the ¢ axis,
respectively. Also, |.| defines the absolute value. Without
loss of generality, the ath order FrFT of signal x(¢), X, (1),
is calculated using the following formula [42], [43], [44]:

e 2 gy

s(r,f):/ x(1) (2

—00

[e.e]

Xa(u)=F“(X(t))=/ x(DK(t, ug)dt, (€)
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FIGURE 2. Our proposed system architecture.

where uy is the fractional Fourier frequency and K,(z, ug)
denotes the kernel function of the FrFT that can be formulated
as follows:

Apexplx]l, ¢ #nm
Ka(t, up) = {6(t — ugp), ¢ = 2nm @)
8t +up), ¢=QCnxhr
where Ay = 4/l—jcotp, ¢ = an/2, x =

jm (ué cot¢ — 2ugpt csc o + t? cot ¢> , and j represents the

complex unit. According to [45], for a signal x(¢), the ath
order FrST is defined as:

FrSTY (r, u¢) = /

—00

+00
x(t)g (1: —t, u¢) K, (t, u¢) dt, (5)

where on time t and fractional Fourier frequency ug,
g (t — 1, ug) is a adaptable Gaussian window function that
is described as follows:

14 2 2p
:—|“‘i;;j| exp <—t (u§;;C¢) ) ©)

here p and g are two parameters that, along with fractional
order a, are utilized for the window shape control. More-
over, csc represents the cosecant function. Together, these
parameters improve the time-frequency resolution by map-
ping the signal’s energy in the transformed domain [29].
FrST parameters (a, p, g) are determined in this study with
a=0.7,p =0.5,and g = 0.5, which are derived from [29]
where it is found that FrST with this values has a better
resolution.

g (1. up)
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D. DEEP LEARNING

1) DENOISING AUTOENCODER

As part of deep learning, denoising autoencoders (DAE)
attempt to separate the noise from the signal by recreating the
input vector precisely by minimizing the loss function [46].
A simple representation of an encoder and decoder can be
formulated as follows,

a = ¢ (Ax(t) +b)
ﬂ=¢<ﬁa+2), %)

where x(¢) represents the noisy input data that is determinis-
tically transformed to the hidden form, «, by using the non-
linear activation function ¢. A and b denote the encoder’s
weight matrix and bias vector. Next, « is converted back to
the reconstituted vector B. Likewise, @, A, and b are nonlinear
activation function, weight matrix, and bias vector of decoder,
respectively. Optimizing the model’s parameters can be cal-
culated with the minimization of the following perceptual
loss,

1 s
Loss = arg min— Z I (t) — Bmll5 + A x HFENN, (8)
AbAD ™ o1

where the number of noisy data instances is M and the data
index is m. A is the weight of high-frequency error norm
normalized (HFENN) is the particular type of loss function
that can be found in [47]. In addition, ||.|| indicates the 1.2
norm function. Our motivation for using the perceptual loss is
to compare the time-frequency image with each other instead
of the output time-domain signal. For this purpose, mse +
HFENN has a better performance in this application [47].

128237



IEEE Access

P. Aghaomidi et al.: DeepRTSNet:

Deep Robust Two-Stage Networks for ECG Denoising in Practical Use Case

40

Amplitude
o 8

ISy
8

I
—Clean ECG signal

0 200 400 600 800 1000
Time (sec)

()

60

1200 1400 1600 1800 2000

1 1 1 T
‘— Recorded noisy ECG signal from our board

40~

20—

Amplitude

0 200 400 600 800 1000
Time (sec)

(®)

1200 1400 1600 1800 2000

Amplitude

— Simulated noisy ECG signal

0 200 400 600 800 1000
Time (sec)

(©)

1200 1400 1600 1800 2000

FIGURE 3. Noise generating for labeling dataset. (a) Clean ECG signal. (b) Recorded noisy ECG signal from

our board. (c) Simulated noisy ECG signal.

2) OUR PROPOSED APPROACH

Firstly, anoisy ECG signal is converted to the time-frequency
domain by applying FrST [29], which gives a higher res-
olution in comparison with ST transform. The noisy time-
frequency ECG signal can be formulated as follows:

X(t.f) =Xc(t, f) + Xu(t, ), €))

where X.(¢, f) is useful part of signal and X, (¢, f) represents
the noise of ECG signal. The denoising goal is to estimate a
clean signal X.(z, f) from its noisy input signal X.(z, f) in the
time-domain regarding the minimization of perceptual error
in Eq. (8).

As well as the advantage of nonlinear mapping, artifi-
cial neural networks can learn time-frequency data sparsity.
Learning data sparsity allows them to recognize useful sig-
nals from noise accurately. Auto-encoders are a promising
technique for denoising applications with outstanding perfor-
mance in learning data sparsity among various deep learning
methods. As shown in Fig. 4, we propose a deep robust
two-stage network (DeepRTSNet) architecture in the time-
frequency domain. Due to perceptual loss and RGB images
being employed, it is necessary to duplicate the obtained
denoised time-frequency into three redcopies, as it is shown
in Fig. 4. In addition, skip connections between two parts
are exploited so training convergence can occur more rapidly
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and a better local optimum can be found more easily [48].
Apart from that, for signals that are highly corrupted by noise,
we suggest another deep network that is entirely similar to the
first one, as can be seen in Fig. 4. The specifications of our
two-step deep encoder-decoder networks are as follows:

« Encoder: As discussed above, first, the input ECG
signal with 256 samples is transformed into a time-
frequency domain by using FrST, and then we consider
the magnitude of this signal as an input of encoder that
can be calculated by,

Xag(1.1) = I Xeea 0. )P + Ximg 0. )P, (10)

where Xieal(?, f), Ximg(#, f) are represents the real and
imaginary parts of X r). The encoder aims to obtain
« by mapping input to multidimensional feature space
with nonlinear function ¢ as mentioned in Eq. (7).
¢ is implemented by a series of 2D convolutional lay-
ers, where the first one is a resizing layer with the
256 x 512 x 1 dimension. Next, three layers are starting
from 3 x 3 convolutional layer with exponential linear
units (elu) as an activation function, continuing with
batch normalization (BN) layer, and the input is entered
to 3 x 3 convolutional with elu, stridel, stride2, and
BN where stridel is exploited to filter the feature space.
However, stride 2 is utilized to decrease the feature
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FIGURE 4. Architecture of DeepRTSNet.

1x1 conv layer + sigmoid

space size. It is worth noting that the filter size is
3 x 3 and remained unchanged throughout the whole
network. Moreover, this procedure is followed convo-
lutional with specifications like a last layer for the
next three layers. Furthermore, convolutional with elu
is implemented in the last layer of the encoder. Con-
sequently, each successive layer accurately learns the
sparse representation of time-frequency data and sepa-
rates noise from the signal.

o Decoder: Although the primary purpose of the decoding
module is to regain time-frequency data from high-
dimensional feature space generated in the encoder mod-
ule, it is ultimately an inverse version of the encoder part
that leads to exploring 8 in Eq. (7). Notably, it starts
with convolutional transpose along with elu, stride 2,
stride 1, and BN for three sequential layers. Further-
more, a joined layer consists of 3 parts that start one’s
structure entirely similar to the last layer, and the second
one is a convolutional layer with elu, and this block is
finished with a BN layer. After that, the data flow is
perpetuated to convolutional with elu, and the encoder
module is completed with the resizing layer to tune the
size of the denoised magnitude.

While the first stage of our proposed deep learning approach
can successfully cancel the noise from the signal, the level
of noise cancellation is not acceptable for the ECG signals
with high-level noise corruption. On the other hand, the first
stage network can profoundly deal with noisy signals and

VOLUME 10, 2022

o

32 64 128 128 128
2 64 128 256 256 256
32 16 8 2 2,

3x3 conv + elu + stride 1+ BN + 3x3 conv + elu + stride 2 + BN

3x3 conv layer | resizing layer batch normalization

remove them from them, while it can not operate for very
noisy signals. To cope with this problem, we suggest the
second stage denoising network, which is the same as the first
stage’s network without resizing layers at the start and end of
the encoder and the decoder, respectively. Furthermore, the
dimension of layers are changed in the second stage, which
can be seen in Fig. 4. In order to detect which signal should
enter the second network, SNR improvement of the output
of the first stage denoising that in the magnitude format
must be evaluated. Remark that the input of the first stage
is the magnitude of real and imaginary parts of the time-
frequency version of input data that is obtained by applying
FrST. It is noticeable that we only use the magnitude of data
and do not consider the phase due to the less complexity
of one input’s network. Further, Keeping the noisy phase
till the end of the first stage can help us conserve the mor-
phology of the signal. Suppose the SNR improvement of
the signal is suitable. In that case, the denoised magnitude
and noisy phase directly reform the complex form by using
Xc(t,f) = Xmag(t,f) x expi X Xphase(?,f), and then apply
the inverse FrST to rebuild the denoised ECG signal that is
shown in Fig. 5(a). If it is not valid, the real and imaginary
parts of the denoised signal in the first stage, by applying
again, the FrST obtained and enter the second network and
are denoised. After this stage, the inverse FrST on denoised
real and imaginary can reconstruct the denoised signal that
can be observed in Fig. 5(B). In addition, it can impose
extra run-time on the procedure of real-time cloud base ECG
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FIGURE 5. Procedure of the signals denoising for the ones that needed
one or two step denoising. (a) One step denoising. (b) Two step denoising.

noise cancellation. To tackle this issue, we use the SNR
estimation using a periodogram, kaiser window with the beta
parameter equal to 38 [49], [50], [51].

The training dataset contains many noisy signals fed into
a data generator that produces the noisy signals and the
labels associated with them (clean form). Afterward, they
are converted into the time-frequency representation, and
required pre-processing is completed, such as normalization.
This time-frequency representation is used in the first stage
network, whereas in the second stage, we split the real and
imaginary parts of FrST. In order to avoid memory-filling
problems, the data generator feeds the network one by one
once the input and mask are ready. Following the first batch of
inputs, the network begins training, and the encoder attempts
to create a feature map for the remaining parts. We employ
a network of encoders that extract features in noisy signals
from their time-frequency representations and decoders that
reconstruct denoised signals from their time-frequency pre-
sentations. Using this architecture, we used a skip connection
to minimize the loss function of the decoder part in the recon-
struction process. We train two-stage networks separately in
our approach. The first step is to design and train a first-stage
network to denoise the magnitude part of FrST. Exploiting
this trained network, we denoise our dataset and created a
dataset with higher SNRs, which we used to train our second
network that removed noise from real and imaginary parts
of FrST. As a result, our second-stage network focuses on
the noises left over. Remarkably, the primary concern of
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DeepRTSNet is to deal with noisy ECG signals in practical
use cases. For this reason, the various noise resources and
physiologies are regarded. In addition, DeepRTSNet can deal
with any ECG signals with its standard input format in terms
of sampling frequency and sample number.

In order to clarify why we use this architecture and layers
in Fig. 4, the following justifications are added. Our first
step was to double the input size of our network by resizing
layers since this allowed us to go deeper into the network and
made the result more practical. Afterward, new convolution
layers, ELU, and batch normalization are applied to the
reshaped inputs. Various activation functions are tested, but
ELU produces the best results. As ELU becomes smooth,
it tends to create more accurate results faster and converge
to zero cost more quickly. We use two convolutional layers
of each size (sometimes three), the first one comes with
stride 1, which focuses on the convolutional filtering oper-
ation and producing the feature space, and the second comes
with stride 2 to make the feature space smaller and also
improves the computational efficiency. As a result of a larger
kernel, the convolution calculation obtains more features
from neighboring signals. Nevertheless, the large convolution
kernel increases computational time, limiting the depth of the
neural network. Thus, all convolution/deconvolution layers
have three kernels [52]. The batch normalization method is
used for training deep neural networks by normalizing the
contributions made by each mini-batch. As a result, it settles
the learning process and drastically decreases the number of
training epochs needed to train deep neural networks. In order
to prepare the input distribution of the next layer, we used
a batch normalization layer after every convolutional layer.
Encoding and decoding process feature maps are concate-
nated with skip connections, which improve the convergence
of training and reconstruction information. Encoding and
decoding process feature maps are concatenated with skip
connections, which improve the convergence of training and
reconstruction information [53]. Masks are produced in the
penultimate layer of the denoising network using sigmoid
activation functions. Further, transposed convolutional layers
are needed to extend the feature map in order to produce
an accurate mask. Alternatively, we could use up-sampling
layers instead of transposed convolutional ones, but
up-sampling layers have no trainable parameters and increase
the size.

lIl. EXPERIMENTS

A. EVALUATION CRITERIA

The performance of our denoising method (DeepRTSNet) is
assessed quantitatively using three criteria, namely, signal-
to-noise ratio (SNR), root mean square error (RMSE), and
percent root mean square difference (PRD) that can be for-
mulated as follows [20], [37]:

M ()P
M [xe(t) — 5(0))2
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where M represents the ECG length. x.(¢), x.(t) denote the
clean and the denoised ECG signal, consecutively. Our ability
to measure noise corruption can be determined by analyzing
SNR. Higher noise levels cause lower SNR, and higher SNR
means the signal has a lower noise level. Measurement of
the difference between expected and actual results is possible
through RMSE, which higher RMSE signifies that the accept-
able result is not achieved. Moreover, PRD can be affirmative
in determining how the noisy signal is reconstructed accu-
rately, which higher PRD means this reconstructed signal is
not appropriate.

B. EXPERIMENTAL RESULTS

As we mentioned, the processes involved in our system are
divided into two parts. Firstly, the signal recording’s com-
putation is done by I-Heart, where hardware specifications
were mentioned in Section II part II-A. Secondly, the denois-
ing process is thoroughly performed on the server. Indeed,
training, validation, and testing are computed on our server.
The hardware specifications of the server are listed in the
following. It has 64 gigabytes (GB) of random-access mem-
ory (RAM), Intel XEON E5 2680 V2 central processing unit
(CPU) with 10 cores (20 threads), two terabytes (TB) hard
disk drive (HDD), two 500 GB solid state drives, and 2 GB
graphic Nvidia Quadro K2000. Additionally, the capacity
of its network port is around one gig of bits per second
(Gbps), and the operating is Windows Server 2019 Version
1809 Build 17763.2114 Retail. Apart from that, both two-
stage networks are implemented in Python 3.7, Tensorflow
2.6 library, and Keras 1.7 library.

1) EXPERIMENTAL RESULTS BASED ON MIT-BIH

TEST DATASET

In this section, the performance of DeepRTSNet is compared
with two other deep learning-based methods closest to our
approach and the non-learning techniques such as wavelet,
FIR, and IIR filters to prove our superiority. Furthermore,
DeepRTSNet’s source code can be found in [54]. As can be
observed in Fig. 6(a) and Fig. 6(b), the losses of training and
validation datasets of the first and second proposed networks
are quickly lessened and converged to a small amount. After
a particular number of epochs, the gap between training and
validation losses is reduced and reaches negligible quantities.
It means that our models are not overfitted along with the
substantial learning potential of the proposed networks. Fully
convolutional network (FCN)-based DAE [19] and deep
convolutional encoder-decoder network (DeepCEDNet) [20]
are more closest methods to our work. It encourages us to
implement them and apply them to our dataset to compare
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the results. FCN-based DAE consists of 13 convolutional and
deconvolution layers. Additionally, DeepCEDNet is designed
with 24 convolutional and deconvolution consecutive layers.
Three different physiologies from APNEA-ECG are consid-
ered to examine the DeepRTSNet, DeepCEDNet, and FCN
and give a good insight into our proposed noise cancellation
effectiveness.
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FIGURE 6. Training and validation process losses for one and two step
denoising. (a) One step denoising loss. (b) Two step denoising loss.

TABLE 2. Main Learning parameters of DeepRTSNet.

First Stage Second Stage

Batch Size 64 16
Epoches 100 100

Optimizer RMSprop Adam
Loss Perceptual Loss (mse+HFENN) mse

Network Input Format Magnitude Real & Tmaginary
Learning Rate 103 5x10~%
Total Number of Parameters 346034 346034

Further, the learning parameters of DeepRTSNet can be
found in Table. 2. Fig. 7, 8, 9 illustrate the result of denoising
on three different physiologies of our test dataset where (a) is
a clean and noisy ECG signal, (b) is the denoised ECG signal
by FCN-DAE along with the clean signal, (c) shows the
denoised ECG signal by CEDN along with the clean signal,
and (d) depicts the denoised ECG signal by our approach
along with the clean signal. As can be seen in Fig. 7(a), the
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FIGURE 7. First denoised signal. (a) Original ECG signal and noisy version
of it. (b) Original ECG signal and denoised version of it by FCN-based DAE.
(c) Original ECG signal and denoised version of it by CEDN. (d) Original
ECG signal and denoised version of it by our approach.

E

noise has severely deformed the P, T, and QRS waves in
the way that the significant ECG features are masked. The
denoised result of FCN-DAE can be observed in Fig. 7(b)
that can not smoothly remove noise from the signal with
input SNR 0 dB. Although the CEDN has a better perfor-
mance than FCN-based DAE, our denoising result with just
one stage denoising more effectively and smoothly removes
the noise than two other networks shown in Fig. 7(c), 7(d).
It is worth noting that the more promising outcome of our
methodology could be that the first stage network is one input
(only magnitude), and our training datasets contain various
high and low-frequency noises due to the practical condition.
The second noisy signal can be found in Fig. 8(a) with input
SNR -1 dB and a higher frequency overlap (means the various
high and low-frequency noises like ECG waves) between
noise and signal than Fig. 7. The FCN-based and CEDN in
Fig. 8(b), 8(c) can not effectively follow the valuable signal
and cancel the noise because of the misunderstanding caused
by huge noise sparsity and overlap between ECG waves and
noise. Alternatively, our approach can successfully remove
noise and keep the morphology with a negligible amount of
suppressing with two-stage denoising that can be viewed in
Fig. 8(d). The first stage keeps the signal morphology and
smoothes the high-frequency noises that may be achieved by
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FIGURE 8. Second denoised signal. (a) Original ECG signal and noisy
version of it. (b) Original ECG signal and denoised version of it by
FCN-based DAE. (c) Original ECG signal and denoised version of it by
CEDN. (d) Original ECG signal and denoised version of it by our approach.

denoising the only magnitude and keeping the noisy phase
version of the time-frequency version of the signal. Next,
in the second stage, the denoiser tries to remove the remaining
noises using the smooth real and imaginary version of the
denoised signal in the first stage.

Sometimes due to cardiovascular diseases and genetic
backgrounds, the heart physiology is dissimilar to the regular
ones. For exploiting a denoising solution in practical use
cases, the denoiser must be able to deal with any physiologies
because various clients are involved in the practice. As a
result, the less common physiology with input SNR —3 dB
in Fig. 9(a) is used to evaluate the considered denoiser to deal
with different conditions. FCN-based DAE and CEDN almost
failed to remove noise adequately even though CEDN has
more acceptable performance, as observed in Fig. 9(b), 9(c).
Meanwhile, our approach achieves satisfactory results in
Fig. 9(d) while the cross-correlation between noise and signal
in frequency resemblances is 72.2 percent. The reason for our
more acceptable results may be that several noises in various
frequencies and a massive number of physiologies (like the
ECG waves) are involved in our training dataset. Recall that
our motivation for designing this dataset is to develop a cellu-
lar IoMT-based ECG event recorder and an online denoising
solution that should be able to deal with any physiologies.
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FIGURE 9. Third denoised signal. (a) Original ECG signal and noisy
version of it. (b) Original ECG signal and denoised version of it by
FCN-based DAE. (c) Original ECG signal and denoised version of it by
CEDN. (d) Original ECG signal and denoised version of it by our approach.

To provide more justification for our above claims, apart from
the signals in Fig. 7, 8, 9, the six physiologies with three
input SNR -1,-2, and -3 dB are visualized in Fig. 10. Our
approach removes the noises accurately with a small level of
suppressing the physiological signs (P, T, and QRS waves)
and other ECG features. This enhancement is because we
make an effort to generate noises similar to ECG waves due
to our practical application.

In order to reveal more justifications for the superiority
of our approach and prove the better performance quantita-
tively, we calculate the average output SNR, RMSE, and PRD
regarding the nine different input SNR levels that can be seen
in Fig. 11. Our test dataset consists of signals with different
Input SNR from —12 dB to 18 dB, and we categorized these
signals into nine levels of —4, —3, -2, —1,0, 1,2,4, and 8 dB.
In addition to CEDN and FCN-based DAE, the Kalman bank
filter [35], a finite impulse response (FIR) filter [32], and an
infinite impulse response (IIR) filter are implemented to com-
pare non-learning and learning ECG denoising approaches
with each other. Undoubtedly, DeepRTSNet achieves a higher
output SNR than the other approaches, which is increased as
the input SNR is raised, which can be found in Fig. 11(a).
In other words, the greater the output SNR means the more
suitable noise cancellation. As shown in Fig. 11(a), the
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DeepRTSNet SNR improvements (especially the second
stage) are dramatically superior to others. Considering our
noise generation method, which causes misunderstandings
between noise and the inherent wave of the signal, non-deep
learning methods such as the Kalman bank filter, unbiased
FIR filter, and IIR filter are unable to improve SNR sig-
nificantly even though they suppress significant waves and
damage the vital information of ECG. Apart from that, two
major factors are influential. Firstly, exploiting FrST lead
to a higher resolution which sets the stages for denoising
networks to better separate noise and signal [29]. Secondly,
in the second denoising stage, the real and imaginary of the
denoised signal are used. It leads to more SNR improve-
ment due to the impact of utilizing these parts instead of the
magnitude and impression of the first stage denoising. Due to
the high correlation between noise and signal, it is necessary
to reduce noise efficiently by combining time and frequency
information. In comparison with other deep learning-based
methods that include the frequency domain, the FCN-based
DAE only considers the time domain. This reason can justify
the lower SNR improvement of FCN-based DAE compared
to other learning methods. Furthermore, DeepRTSNet gains
a lower RMSE and PRD than other conventional methods,
which can be interpreted as using our approach leads to
a better signal reconstruction. Moreover, the denoised sig-
nal with one or two stages is closer to the original signal.
In contrast, other methods exploiting our dataset cannot per-
form well, especially in the very noisy signals, as shown
in Fig. 11(b), 11(c).

2) EXPERIMENTAL RESULTS BASED ON COLLECTED

DATA FROM I-HEART DEVICE

All the results in the last part, II[-B1, are based on the test
dataset made up of clean ECG signals from the APNEA-
ECG dataset that are additive simulated noises from NSTDB.
As seen in III-B1, DeepRTSNet successfully canceled the
signals from the test dataset. Nevertheless, in order to make
sense of the capability of DeepRTSNet to deal with signals
obtained from the I-Heart device, we recorded empirical data
from four separate subjects. Next, we evaluate the denoising
performance with these signals. Moreover, the first subject is
denoised utilizing DeepRTSNet, which can be seen in Fig. 12.
The noisy version is depicted in Fig. 12(a), and the denoised
ones by FCN-based DAE, DeepCEDNet, and DeepRTSNet
can be observed in Fig. 12(b), 12(c), and 12(d), respectively.
Undoubtedly, DeepRTSNet achieved a better performance
than other benchmarks. Furthermore, the results of denoising
other subjects are illustrated in Fig. 13, 14, 15. Obviously,
DeepRTSNet successfully cancels these four noisy subjects’
signals. In short, our approach has a good denoising perfor-
mance in dealing with practical and simulated noisy signals
with one training process. Although the results in III-B1
were evaluated with SNR improvement, RMSE, and PRD,
it cannot be achievable for the recorded signals by the I-Heart
device because clean versions of them (reference signal) are
not accessible. Thus, calculating these evaluation measures
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in equations (11), (12), and (13) cannot be possible without a
reference signal.

3) COMPUTATIONAL COMPLEXITY AND LATENCY ANALYSIS

Computational complexity (CC) is one of the performance
metrics to evaluate to what extent one DL-based method is
complicated. Moreover, it measures how many computational
resources are needed to run this approach [55]. In this regard,
we assess the complexity with three criteria: mathematical
modeling, number of parameters, and run time. Regarding our
approach being based on 2D CNN, the simple way of thinking
of this is that we have a C x V (grayscale) image and an ¢ x v
filter. Therefore, O(c - v) computations are needed for each
pixel. Hence, the 2D convolution would have an approximate
complexity of O(C-V -c-v) [56]. For calculating the complex-
ity, it is important that images are padded or not. However,
assuming that ¢ and v are small compared to C and V. Thus,
the differences should be negligible. On the other hand, one-
dimensional (1D) CNN is the sum of the row-wise dot prod-
ucts of a filter W e R¥*? with a region matrix Q € R¥*4,
where k is the length of the filter and d is the depth dimension.
If we have H layer 1D CNN, the CC of 1D CNN can be cal-
culated by O (H kM - d2) [56], where M is the length of
the input. More details can be found in Table 3. According to
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Table 3, each stage of our approach has 346034 parameters,
whereas DeepCEDNet has 2854914 parameters. Remarkably,
DeepCEDNet is more complex than DeepRTSNet, with two
stages in terms of the number of parameters. Following that,
FCN-based DAE is less complex than the two others because
it is based on 1D CNN, which evidently can be implemented
with less complexity than 2D CNN. Regarding run times, the
first stage of DeepRTSNet, 278.25 milliseconds (ms), is less
complex than FCN-based DAE. However, for the ECG sig-
nals with high noise corruption that needed two-stage denois-
ing, DeepRTSNet is more complex. It is noteworthy that this
complexity is justifiable because one more stage of denoising
is the only way to cancel highly noisy signals. Mathemati-
cal modeling indicates that calculating CC for DeepRTSNet
and DeepCEDNet is based on the same formula. The only
difference between them is the number of layers in each.
Indeed, for comparing the 2D CNN-based approaches, more
layers mean more complexity. Although 1D CNN has a less
CC, its denoising performance is not comparable with 2D
CNN-based methods, especially DeeRTSNet, as shown in
Fig. 7, 8, 9, 10, 11, 12, 13, 14, and 15. Generally, more
costs in terms of CC (more computational resources) are
required for better and more accurate ECG denoising. The
trade-off here is needed between the complexity and accuracy
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FIGURE 11. Quantitative comparison of denoising performance of
DeepRTSNet, CEDN, FCN-based DAE, Kalman bank filter, unbiased FIR
filter, and IIR filter in terms of average output SNR, RMSE, and PRD
regarding nine different input SNR of -4, -3, -2,-1,0, 1, 2, 4, and 8 dB.
(a) Average output SNR. (b) Average output RMSE. (c) Average
output PRD.

of the denoiser, which is well considered in implementing
DeepRTSNet.

Calculating the latency of our process from recording to
denoising (from I-Heart to server) can be affirmative. Firstly,
it takes 30 seconds to record the data by I-Heart. As we
mentioned, SIM800I is used as a communication module.
Accordingly, SIM800I has a bit rate of 1200 bps - 115200 bps.
From I-Heart to server, we have an average data rate of
58200 bps. I-Heart records 6000 samples, and their total
data size is approximately 96000 bits, including additive
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FIGURE 12. Qualitative denoising performance of DeepRTSNet for first
subject signal obtained from I-Heart. (a) Noisy signal of first subject.
(b) Denoised version of first subject by FCN-based DAE. (c) Denoised
version of first subject by DeepCEDNet. (d) Denoised version of first
subject by DeepRTSNet.

headers and control bits. At the average rate of 58200 bits
per second, 96000 bits of data are transferred from I-Heart
to a server in approximately 1.64 seconds. We begin our
denoising process by splitting the 6000 sample signal into
46 shorter signals with 256 samples, which takes 0.99 ms. Itis
noteworthy that the signals overlap by 128. Pre-processing
involves transferring each short signal to a time-frequency
presentation with the FrST formula, calculating the magni-
tude of FrST, and normalizing the magnitude. The server
needs to process all of these parts in 0.99 ms. As soon as our
magnitude denoiser receives the input, it begins producing the
denoised magnitude part of FrST within 278.25 ms. The SNR
improvement can be evaluated using the time domain form of
the time-frequency presentation. It takes 7.97 ms to compute
the inverse transform. To determine whether the signal needs
further denoising, we calculate SNR improvement, which
takes 52.64 ms. As a worst-case scenario, we would need
to repeat the pre-processing part for the second network,
but rather than calculating the magnitude, we would split
the complex form of FrST into real and imaginary portions,
which would take our server 1.99 ms. After that, the second
network denoises the real and imaginary parts, and then the
inverse transform will be used to calculate the clean signal
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FIGURE 13. Qualitative denoising performance of DeepRTSNet for second
subject signal obtained from I-Heart. (a) Noisy signal of second subject.
(b) Denoised version of second subject by FCN-based DAE. (c) Denoised
version of second subject by DeepCEDNet. (d) Denoised version of second
subject by DeepRTSNet.

from the complex form of FrST, which takes 286.23 ms and
5.98 ms. Finally, transferring denoised ECG to a doctor’s
application takes 15 ms on average. Taking into account just
one denoising stage, I-Heart recording to server denoising
would take 31.98084 seconds. From recording to denoising,
it would take 32.27504 seconds if they required two-stage
noise cancellation. There is no significant difference between
these two scenarios. It is deserved to be mentioned that we do
not have any diseases or irregularities diagnoses. The main
focus of DeepRTSNet is signal denoising, and we assume
that disease diagnosing is done by the doctor. Finally, if the
diseases are diagnosed, the doctor can take appropriate action
to inform the patient to visit or refer to clinics.

IV. DISCUSSION

Interpreting the ECG signal is always a primary indicator
of diagnosing cardiovascular diseases. Early diagnosing is
compulsory for most diseases that can be so affirmative to
prevent transforming into high-risk conditions and attempt
to fast recovery. Early diagnosing needs continuous patient
heart monitoring in the outer clinic. With emerging cellu-
lar IoMT technologies, this persistent observation is pos-
sible. By exploiting these portable gadgets, the patient’s
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FIGURE 14. Qualitative denoising performance of DeepRTSNet for third
subject signal obtained from I-Heart. (a) Noisy signal of third subject.
(b) Denoised version of third subject by FCN-based DAE. (c) Denoised
version of third subject by DeepCEDNet. (d) Denoised version of third
subject by DeepRTSNet.

ECG signal can be monitored everywhere and at any time.
Apart from the portability of these devices, the recorded
signal carry several different noises due to their small size
and low quality compared to clinical ones. Cloud-based
denoising allows us to present a powerful denoising solution.
In this paper, deep robust two-stage network, DeepRTSNet,
is proposed based on a convolutional encoder-decoder in the
time-frequency domain that can strongly realize data spar-
sity. Although existing learning-based models such as CEDN
and FCN-based DAE have a good performance in dealing
with clinical recorded signals consisting of standard noises,
their efficiency and functionality are remarkably decreased
in practical IoMT use cases. The superiority of our system
can be addressed in four factors: (1) the FrST provides a
higher resolution means that discrepancies between noise
and valuable signal are apparent; (2) DeepRTSNet takes
advantage of a two-stage convolutional encoder-decoder and
perceptual approaches loss calculation; (3) the noise gen-
eration technique involving noises that are severely sup-
pressed and changed the signal’s morphology that it is gained
more robustness in DeepRTSNet; (4) utilizing wide-range
physiologies in our dataset that enables promising adaptive-
ness in DeepRTSNet. Generally, these elements made our
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TABLE 3. Computational complexity comparison between DeepRTSNet, DeepCEDNet, and FCN-based DAE in terms of mathematical modeling, run times,

and number of parameters.

The first Stage of DeepRTSNet | The second Stage of DeepRTSNet DeepCEDNet FCN-based DAE
Number of Parameters 346034 346034 2854914 80223
Run Time 278.25 ms 286.23 ms 335.10 ms 321.14 ms
Mathematical Modeling OH-C-V-c-v) OH-C-V-c-v) OH-C-V-cv) | O(H k-M-d?)
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FIGURE 15. Qualitative denoising performance of DeepRTSNet for fourth
subject signal obtained from I-Heart. (a) Noisy signal of fourth subject.
(b) Denoised version of fourth subject by FCN-based DAE. (c) Denoised
version of fourth subject by DeepCEDNet. (d) Denoised version of fourth
subject by DeepRTSNet.

approach superior, with more SNR improvement and lower
RMSE and PRD compared to learning and non-learning-
based approaches.

Although DeepRTSNet adaptively and robustly cancels the
wide-range noises in various physiologies, our approach still
has some disadvantages. These weaknesses can be expressed
as: (1) despite the fact that noise cancellation in two-stage is
needed regarding very corrupted signal, it may lead to extra
denoising time in real-time practical use cases; (2) perfor-
mance in very noisy signal need more enhancement and lower
suppressing that can be caused by insufficient resolution in
the time-frequency domain, and other transformers should be
analyzed; (3) mixing denoising and feature extraction can be
more affirmative even though combining disease diagnosis;
(4) change the DeepRTSNet architecture in order to introduce
a new one suitable for edge computing instead of cloud
computing in terms of computational complexity regarding
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our practical use cases. Considering these mentioned draw-
backs will be helpful to enhance the DeepRTSNet and lead to
exploiting it in different practical applications.

V. CONCLUSION AND FUTURE WORKS

The DeepRTSNet architecture presented in this paper uses
deep learning to denoise ECG signals. It can identify the
signal from the noise by learning a sparse distribution of
data in the time-frequency domain. Empirical results reveal
that DeepRTSNet was outstandingly robust against various
noises similar to ECG waves (P, QRS, and T) and adap-
tively dealt with different heart physiologies. Furthermore,
evaluation proved that the DeepRTSNet achieved a higher
output SNR and gained lower RMSE and PRD compared
to DeepCEDNet, FCN-based DAE, Kalman filter bank, FIR,
and IIR filters. For Future works, a more efficient DL-based
approach in terms of computational complexity and network
input data format, a higher-resolution time-frequency trans-
form for better noise separation, new DL models such as self-
supervised learning, and one-stage iterative denoising archi-
tecture instead of two-stage will be taken into account in order
to enhance the DeepRTSNet performance and efficiency.
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