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ABSTRACT To improve the previous versions of Rapidly-exploring Random Trees (RRT) algorithms,
a novel algorithm based on Circular Arc Fillet (CAF-RRT*) for path planning problems in two-dimension
workspaces is proposed. Firstly, it is implemented by combining Quick-RRT* with the bidirectional RRT
algorithm, which can obtain an initially planned path. Secondly, the cost of the initial planned path cost is
reduced by a proposed path optimization strategy based on the triangle rule. Finally, based on the circular arc
fillet method, a path smoothing strategy is proposed to process the middle nodes of the path, while further
reducing its path cost. The experimental results on the MATLAB simulation platform show that compared
with other RRT algorithms, the proposed algorithm can reduce the path length by about 2%, ensure the
smoothness and security of the path, while increasing the running speed of the algorithm by about 95%,
and the experimental results of the robot based on Robot Operating System (ROS) platform also prove the

advantages of the algorithm.

INDEX TERMS CAF-RRT*, mobile robot, path planning, path smoothing, RRT.

I. INTRODUCTION

Path planning of mobile robots is one of the basic problems of
the robotics research field [1]. It includes but is not limited to,
robot navigation, self-driving cars, unmanned aerial vehicles,
and so on [2]. This problem can be solved by a grid-based
search algorithm or a sampling-based algorithm [3]. Grid-
based search algorithms, such as A* [4], and sampling-based
algorithms, such as Rapid Search Random Tree (RRT) [5]
and Probabilistic Roadmap (PRM) [6], need to establish a set
of trajectories through repeated random sampling. Theoreti-
cally, if the solution is found through infinite iterations, the
probability can reach 100%.

To plan the path from the initial position to the target
position, RRT needs to randomly sample in the search space
and obtain its edge [7]. The disadvantage is that the path cost
is high. Kuffner et al. [8] proposed RRT-Connect, which can
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generate two spanning trees at starting position and target
position at the same time, and the two trees simultaneously
and alternately expand incrementally towards each other until
the two trees are connected. However, RRT-Connect lacks the
optimization process, and its path cost and convergence speed
are not optimal. Wu et al. [9] proposed Fast-RRT, which only
sampled in unexplored space of random tree through a fast
sampling strategy, which improved the search speed and the
stability of the algorithm, and proposed a random steering
strategy to solve the problem of poor performance of the algo-
rithm in narrow channels. By merging and adjusting paths,
Fast-RRT can find the near-optimal path faster. However,
Fast-RRT does not consider the real volume of the mobile
robot in practical application, nor does it add the related algo-
rithm of obstacle expansion, so the safety of the mobile robot
cannot be guaranteed and the path is not smooth enough.
Kang and Jung et al. [10] proposed Shorter-RRT, which can
overcome the optimization limitation of the sampling-based
algorithm. By deleting redundant intermediate nodes without
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conflict. The proposed post-triangle rewiring method creates
a path closer to the optimal one than RRT through the triangle
inequality principle. However, the optimization of Shorter-
RRT depends on the initial path obtained by RRT, so the
optimization effect is limited, the optimal or suboptimal path
cannot be guaranteed, and the security of the path in prac-
tical application is not considered. Mashayekhi et al. [11]
proposed Hybrid-RRT, which first found the initial solution
through bidirectional search, merged two trees into one tree,
and then restricted the sampling area to an ellipse to optimize
the current solution. The algorithm was simulated in the Open
Motion Planning Library (OMPL). However, the restricted
sampling area is easily affected by map factors, especially the
complex maze map may not perform well.

Karaman and Frazzoli proposed RRT* [12], which can
quickly calculate the initial path, and then optimize the path
with the increase of sampling points until the target point is
found or the set maximum number of iterations is reached.
RRT* improves the parent node selection method, first selects
the node with the lowest cost in the neighborhood of the node
as the parent node, then reconnects the nodes in the existing
tree after each iteration to ensure the computational complex-
ity and obtain the progressive optimal solution. These two
processes are shown in Fig. 1, in which the red node is the
new extended node, the white node is the adjacent node in
the custom range, that is, the alternative parent node, and the
black node is the other nodes in the tree outside the custom
range. The advantage of RRT* algorithm is that it reduces the
path cost. However, the process of searching for new parent
nodes and rewiring repeatedly makes the convergence speed
of the algorithm slow, and the path inflection points obtained
by the algorithm are too many and not smooth enough.
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FIGURE 1. Construction of RRT*.
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Islam et al. [13] proposed RRT*-Smart, which performs
path optimization after finding the initial path and deletes
redundant nodes from the found initial path. In addition,
it also identifies beacon nodes for path improvement. The
second innovation of RRT*-Smart is intelligent sampling,
which is biased towards the beacon nodes with optimized
paths. Once a shorter path is found, it will perform the path
optimization process again to generate new beacon nodes.
Therefore, the algorithm accelerates path convergence and
reduces path costs. In addition, it uses the bias threshold to
select uniform sampling or intelligent sampling. The disad-
vantage of RRT*-Smart is that the path is not smooth, which
leads to an increase in the energy consumption of mobile
robots in practical applications.

Gammell et al. [14] proposed Informed-RRT*, which
introduced an elliptic sampling strategy to reduce the path
cost. Before the initial path is found, the sampling method
of the algorithm is the same as that of RRT* algorithm.
After the initial path is found, the algorithm sets an ellipse
with the starting position and the target position as the focus,
and the subsequent sampling will be limited to the ellipse. The
smaller the ellipse area, the faster the convergence rate. This
algorithm is outstanding in narrow channels, mainly because
the probability of random sampling in narrow channels
increases. The disadvantage of this algorithm is that it doesn’t
perform well in complex maze environments. Because of
the restriction of the ellipse, the subsequent sampling can’t
find the path. Similar to this algorithm, Informed RRT*-
Connect proposed by Reza Mashayekhi and other scholars
seeks the initial path through bidirectional expansion, and the
subsequent sampling is limited to an elliptical range [15].
Compared with Informed-RRT*, Informed RRT*-Connect
has fewer iterations.

Noreen et al. [16] proposed RRT*-AB, which can quickly
locate the target area and improve the computational effi-
ciency and is suitable for large dense sampling space.
RRT*-AB proposed an offline planning algorithm based on
RRT* to solve the problems of slow convergence and large
sampling space. It can quickly locate the target area and
improve the calculation efficiency. Through three strategies,
connected domain, target-biased bounded sampling, and path
optimization, the goal of the algorithm is achieved. Bounded
target offset sampling is performed on the boundary of the
connected region to find the initial path. Once the path is
found, it is gradually optimized by node rejection and central-
ized bounded sampling. The algorithm adopts new schemes
such as connected domain, centralized sampling, and node
elimination. By intelligently searching the sampling space,
it can quickly converge to the optimal solution, and it also
involves a narrow and complex environment. The disadvan-
tage is that there is no smoothing treatment at the inflection
point of the path.

Li et al. [17] put forward a method called Fast-RRT*.
To reduce the blindness of sampling and improve the effi-
ciency of algorithm planning, a mixed sampling strategy com-
bining target deviation sampling with constrained sampling
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was proposed. In constrained sampling, when the constraint
conditions are met, the sampling is successful, otherwise,
the sampling will continue. Balance the proportion of tar-
get sampling and random sampling by appropriate deviation
probability. Then, based on the idea of backtracking, the
possible parent node set of new nodes is expanded to reduce
the path cost. In order to ensure the smoothness of the path,
a cubic B-spline curve is used to smooth the path. However,
this algorithm does not fully consider the safety of obstacle
corner areas.

Jeong et al. [18] put forward RRT*-Quick, which effec-
tively expands the candidate pool of parent nodes by
using ancestor nodes to improve the convergence speed.
By adding depth parameters and using triangle inequality.
Jeong et al. [19] put forward Quick-RRT*, which improves
the way of selecting parent nodes. When a new node is added
to the tree, the algorithm searches a group of neighboring
nodes based on predefined depth parameters to find the parent
node of the shortest path to the new node. If there is no
collision between paths, the path cost is reduced by triangle
inequality. The specific process is shown in Fig. 2. It can
be seen intuitively that the process of selecting parent nodes
and rewiring in this algorithm is different from RRT*. This
algorithm not only straightens the path to the new node but
also straightens the path to nearby nodes. This algorithm
not only optimizes the selection of parent nodes but also
makes the path closer to the edge of obstacles, which is not
conducive to the safety of mobile robots and does not consider
the smoothness of the path.
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Xnear
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FIGURE 2. Construction of Quick-RRT*(depth =2).

Orozco-Rosas et al. [20] put forward a hybrid path
planning algorithm based on membrane pseudo-bacterial
potential field (MemPBPF) is proposed. Membrane-inspired
algorithms can reach an evolutionary behavior based on
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biochemical processes to find the best parameters for gen-
erating a feasible and safe path. This hybridization between
membrane computing, the pseudo-bacterial genetic algo-
rithm, and the artificial potential field method provides
an outperforming path planning algorithm for autonomous
mobile robots. MemPBPF algorithm reaches an evolutionary
behavior for finding an efficient path planning in terms of
path length and time execution under a parallel computing
implementation.

Reference [21] put forward a membrane evolutionary arti-
ficial potential field (memEAPF) approach for solving the
mobile robot path planning problem is proposed, which
combines membrane computing with a genetic algorithm
(membrane-inspired evolutionary algorithm with one-level
membrane structure) and the artificial potential field method
to find the parameters to generate a feasible and safe path.
The memEAPF proposal consists of delimited compart-
ments where multisets of parameters evolve according to
rules of biochemical inspiration to minimize the path length.
The results show that the proposed algorithm is effective
and practical. The simulation results show that the smooth-
ness of the path planned by the algorithm needs to be
improved.

Orozco-Rosas et al. [22] put forward a method to calculate
the feasible path of mobile robots in known and unknown
environments by using QAPF learning algorithm. To solve
the problem of the slow convergence speed of Q-learning, the
concept of partially guided Q-learning is employed wherein,
the artificial potential field (APF) method is utilized to
improve the classical Q-learning approach. Therefore, the
proposed QAPF learning algorithm for path planning can
enhance learning speed and improve final performance using
the combination of Q-learning and the APF method. Cri-
teria used to measure planning effectiveness include path
length, path smoothness, and learning time. The experimental
results show that compared with the classical method, QAPF
learning algorithm reduces the path cost, improves the path
smoothness, and reduces the training time.

In this paper, CAF-RRT* is proposed, which combines
the advantages of Quick-RRT* and bidirectional RRT to
quickly obtain the initial path, takes it as the optimiza-
tion object, and optimizes the initial path through the
subsequent path optimization strategy and path smoothing
strategy.

The main contributions of this paper are as follows,

(1) When determining the best parent node of a new node,
based on the backtracking idea, the earlier parent node
is considered to reduce the path cost. And combined
with the two-way greedy search strategy, the efficiency
of the algorithm is improved.

(2) A path optimization strategy is proposed to reduce the
path cost by using the triangle rule under the premise
of ensuring safety.

(3) A path smoothing strategy that based on Circular Arc
Fillet is proposed to realize the path smoothing and
improve the path quality.
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Il. PROPOSED METHOD

This section first defines the variables, symbols, and
functions related to the algorithm, then introduces the
overall framework of the proposed algorithm, and gives the
pseudo-code of the algorithm. Finally, with subsections C
and D, it introduces the two main innovations of this paper in
detail, the path optimization strategy, and the path smoothing
strategy based on the triangle rule.

A. PROBLEM DEFINITION

Let X = (0, 1)¢ be the configuration space, X,ps be the
obstacle region. x,,, represents the new node obtained by
extension. X),,ps is the probability collision region, which
closing to the edge of an obstacle and likely to cause a colli-
sion. Xjye. be the closure of X\ Xops. (Xfree, Xinir s Xgoar) defines
a path planning problem, where x;,i; € X, is the initial state
and Xgoa1 C Xpree is the goal area. Tjy;; is the set of initial
path tree obtained by the algorithm. T, is the set of optimize
path tree obtained by path optimize policy. Tfinq is the set of
final path tree obtained by path smoothing policy. A path o
is collision-free if Vz € [0, 1], 6(7) € Xfe.The definition of
the optimal path is given by the following formula,

o* = arg, .y min (o) ()
subject to, 0(0) = Xinir
o (1) € Xgoal

0(t) € Xfree: VT €[0,1] (2

Definition 1: Safety distance is defined as that for any point
x on the path o(7), Vxpps € Xops, min || x — Xpps 12> Ag
should be satisfied.

Definition 2: The probability collision region is for Vx,,,,
if || Xpew — Xobs ll2< Agq, Xnew 1s considered to have entered
the probability collision region, namely X € Xp—ops-

Make the following statement for the functions in the
pseudo-code of this paper. N represents the number of nodes
in Tipjs or Top. V represents a set of points in Tiyjr or Topy,
function Angle can calculate the angle of two points relative
to the coordinate axis according to arctan function. Function
Insert means to insert the queue between two points.

B. THE MAIN FRAMEWORK

The overall framework of the algorithm is as follows, firstly,
the obstacles are inflated by the inflation strategy to ensure the
safety of the planned path. Then, by using the idea of the bidi-
rectional extension of bidirectional RRT and heuristic search,
the initial path can be quickly planned, but the generated path
has a large number of intermediate nodes. The solution in this
paper is combined with the idea of selecting parent nodes by
depth parameters mentioned in Quick-RRT*. By detecting
the parent node before the parent node, the generation of
intermediate nodes can be effectively reduced, the path to
the new node and the nearby nodes can be pulled, and the
times of collision detection in the subsequent optimization
process of the algorithm are also reduced, thus reducing the
running time of the algorithm. Then, after the initial path is
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obtained, the path optimization strategy is implemented, and
the initial path is optimized in two ways, equal proportion
and equal distance, by using the triangle rule to reduce the
path cost, the specific details of the path optimization strategy
are described in subsection C. Finally, through the proposed
path smoothing strategy based on circular arc fillet method,
the path cost at the middle node of the path can be reduced,
a smooth path can be obtained, and the energy consumption
of the mobile robot can be reduced. The specific details
of the smoothing strategy are described in subsection D.
Algorithm 1 is the pseudo-code of the overall flow of the
proposed algorithm, among which Ancestry, ChooseParent*,
and Rewire™* functions are described in detail in [19].

Algorithm 1 CAF-RRT*

T Ty < Vo, E0), Ty < (Vip, Ep);

2 map < Inflation(map);

3 fori=0toN do
Xrand < Sample (i);
Xnearest < Nearest (Ty, Xrand);
Xnew < Steer (Xpearest » Xrand )
if CollisionFree (Xpey, Xnearesr) then

Xnear < Near (Xuew, Ta);
9 Xparent < Ancestry (Ta, Xnear);

IS e RV RN

10 Xparent <— ChooseParent™ (X;¢qr U Xparent s Xnew)s

11 T, < Rewire* (T, Xnew, Xnear);

12 Xnearest—b <— Nearest (T, Xnew);

13 if CollisionFree (X,ey, Xnearest—b) &
| Xnews Xnearesty 112< o then

14 return T;,;;;

15 else

16 SWAP (T,, Tp);

17 end if

18  endif

19 end for

20 Tops < Path optimization (Tjyr, Ae, Ag, p);
21 Tfipa < Path smoothing (Tp;, W);
22 return Tjpq;

C. PATH OPTIMIZATION POLICY

After the initial path is obtained by combining Quick-RRT*
with bidirectional RRT, the path optimization strategy of
equal distance and equal proportion is carried out alternately
for the initial path, which can reduce the path cost without
affecting the path safety. The main steps are to select all the
intermediate nodes and two adjacent edges of the path in
turn and construct triangles for optimization. For example,
for any intermediate node V;, take the front and back nodes to
build triangles named as AV;_1V;V;1. In the equal-distance
method, define alength Ae, from V; to V;_, take point Vi/_ pat
interval Ae, then, from V; to Vi, take point Vi/+1 at interval
Ae, to build a new triangle named as AV, V,‘Vi’+1 In the
equal-proportion method, define the ratio p(p € (0, 1)), from
Vi to V;_1, take point V" | atinterval | V;, Vi_1 |l2 #p, from
V; to Vip1, take point Vi/—/i-l at interval | Vi, Vixr |2 *p,
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to build a new triangle named as AV V;V/ . Collision
detection for edge V,.’_IVI/Jr | or Vi’_lVl.’jr |» take points on the
edge V/_ |V or V" | V]  to detect the node security policy.
According to the triangle rule, multiple cycles are carried
out to reduce the path cost. Because points are taken on the
straight line segment many times, redundant nodes may be
generated in the sub-path after this process, which needs to be
eliminated, otherwise, it will affect the smoothing process of
the fillet method. The specific steps in this section are shown
in the pseudo-code of Algorithm 2, and the comparison of the
effects is shown in Fig. 3.

Initial path
* Path point

Vi

Via
(a) Not optimized
v - ——Initial path
/" 2 Optimized path
* New path point
Vi1 o “a Vi1
Via

(b) Equal distance

———Initial path
Optimized path
® New path point

Vi

V"1

(c) Equal proportion

FIGURE 3. Optimized path.

D. PATH SMOOTHING POLICY

After the path optimization strategy, the path cost of the
obtained path is effectively reduced, but the obtained path is
not smooth enough, especially at the corner, so it is necessary
to smooth the path to further improve the path quality. In this
paper, a path smoothing strategy based on the circular arc
fillet method is proposed and applied to global path plan-
ning [23]. The circular arc fillet method has good geometric
properties and is widely used in engineering and architectural
engineering. Its remarkable advantage is that it can be applied
to straight lines with any intersection angle. Therefore, the
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Algorithm 2 Path Optimization ()
Input: T;,;, Ae, Ag, p
Output: 7,

1 forj=1to2do

2 fori=2toNyy;—1do

3 h=IVi,Vict ll2s =1l Vi, Viga 2

4 o] = Angle(V;, Vi_1); o = Angle(V;, Vig1);

5 V(/i—l)x = Vi + Ae x cos(ay); V(/l-_l)y = Vy +
Ae x sin(ay);

6 V(’i+1)x = Vi + Ae x cos(an); V(’l.+1)y = Vy +

Ae x sin(a?);
7 if CollisionFree (V/_,, V,.’H) then

8 delete V;;

9 Vi1, Viq1) < Insert(ViLl, Vi/+1);
10 end if
11 end for

12 return Ty ;

13 fori=2toNyy —1do

14 h =l Vi, Vi1 ll2; b = Vi, Vigr ll2;

15 a1 = Angle(V;, Vi—1); oo = Angle(V;, Viy1);

16 V(’l.’_l)x = Vi + 11 X p x cos(ay); V(/l.’_l)y =Viy+
l1 x p x sin(ay);

17 (/l.’+1)x = Vix + 1 x p x cos(az); V(/i/+l)y =Viy+
I x p x sin(ay);

18 if CollisionFree (V;” |, V[ |) then

19 delete V;;

20 (Vie1, Vig1) < Insert(V]” |, V[ ));
21 end if

22  end for

23 return Tj,;

24 end for

25 fork =2to N,y — 1 do
26 if CollisionFree (Vi_1, Vi+1) then

27 delete Vi;
28 Update Tp;;
29 end if

30 end for

31 return Ty ;

fillet method is a good curve fitting tool, which smoothed line
segments by converting them into arcs. The specific process
is as follows.

1) FIND THE BEST SEGMENTATION POINT

After the given stator path smoothed its corners, there should
not be any sharp edges left. This depends not only on the
radius of the circle but also on the selection of the cutting
point. In Fig. 4(a), there are two circles placed on the given
edge of the sub-path. Although they have the same radius,
the cutting point will affect the smoothness of the new path
formed. After cutting sub-paths according to circle C and
circle D respectively, a new sub-path is formed, as shown
in Fig. 4(b) and Fig. 4(c). In Fig. 4(c), points E and F are
not smooth enough, while in Fig. 4(b), the arc can smoothly

VOLUME 10, 2022



B. Wang et al.: CAF-RRT*: A 2D Path Planning Algorithm Based on Circular Arc Fillet Method

IEEE Access

\__;_/E

(a) Not optimized
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(b) Equal distance

/ ¥
E
(c) Equal proportion

FIGURE 4. Circle C and circle D cut the edges formed by sub-paths from
different points.

connect the two sides, A and B are the best cutting points
when the length of the line segment is 1. When r remains
unchanged, modifying the length of the line segment will
change the positions of points A and B, the specific algorithm
for finding the best cutting point is shown in the pseudo-
code of algorithm 3. Therefore, the arc of the optimal circle
is consistent with the smoothness of the edge after cutting,
and it must touch the edge with a tangent, but not intersect
the edge, to avoid additional corners.

2) CALCULATE THE OPTIMAL RADIUS

In Fig. 5, triangles CBA and CBA’ are congruent, CA and CA’
are the radius of a circle, and the angles of CBA and CBA’ are
the same because triangles are congruent. Therefore, 2/ =
La. The length of AB and A’B is half of the shorter side
(can be modified to other proportions). To find the radius of a
smooth circle, you need to find the angle between the edges,

o = ArctanM — Arctanw 3)
Xi — Xit1 Xi+2 — Xi+1
If the angle is negative, then,
Qinew = 2Ia; “
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Algorithm 3 Path Smoothing ()
Input: 7, ,w
Output: T

1 fori=2toN,, —1do
2 h=lVi,Vier 2, 2 =1 Vi, Viga ll2s

3 B1 = Angle (V;, Vi1), B2 = Angle (Vi, Vit1);

4 | =min(lq, [ )/w;

5 Ay =Vip+Ixcos(Br), Ay =Viy+1xsin(B);

6 A, =Vi+Ix cos(ﬁz),A; = Viy + [ x sin(B2)

7 r=|l xtan((B1 — B2)/2)|

8  Cy =Ai+rxcos(B1+m/2); Cy = Ay+r xsin(B; +
7/2);

9 C.=Ac+rxcos(B1—n/2); C; =A,+rxsin(f —
7 /2);

X

10 CY = A, +r xcos(f +7/2);C)) = Ay +r
sin(B2 + 7 /2);

11 CV = A, +r xcos(Br — 7/2); Cy’” = A/y +r x
sin(By — 7/2);

12 if(C, = C && C, = C))|| (C, = C} && C} =

C)/,”) then
13 Cc=<C;
14  else
15 C=0C;
16  endif
17 delete V;;
18 (Vi_1, Viy1) < Insert (A, AA’, A");
19 end for

20 return Typq;

FIGURE 5. Find the radius of the circle.

To calculate the radius of a circle, you need to calculate the
angle between the vector from the center of the circle to the
node and the edge. At the i, node, this angle is,

Bi = a;/2 3)

With the help of trigonometric function, the radius of the
smooth circle between edges can be found as,

ri = tan(f;)"*|AB| (6)

Then, the center coordinates can be calculated by cutting
points A and A’, radius r and angle §. There are four center
coordinates in total, which are located on both sides of A
and A’ respectively, as shown in Fig. 6, where the center
coordinates of circle C and circle C” are the same, which is
the desired cutting circle. The specific algorithm is shown in
the pseudo-code of algorithm 3.
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FIGURE 6. Calculate center coordinates.

3) PATH COST FUNCTION EQUATION

This section discusses the change of path cost before and after
the path smoothing strategy. The path cost measure before
the path smoothing strategy is Euclidean distance. Let any
two points V;(x;, y;) and Viy1(xit1, yi+1) in the set of path
points V be set, then the path cost between V; and V4| can
be calculated by (7), while the initial path cost and the path
cost after the path optimization strategy are accumulated by
the Euclidean distance in the set.

Vi Vierll = @i = xi00? + 0 = yie > ()

Path smoothing strategy is to optimize every point in set
T,y except the starting node and target node. Therefore,
we only discuss one optimization and calculate this process
many times, and then we can get the reduction of path cost
through path smoothing strategy. In Fig. 5, let the node to be
optimized be B, the path lengths of the two terminals of the
node are g1 and Ip,, respectively, and the length /p; is less
than Ip,. We select half of the I, that is, the midpoint of
the shorter sub-path, as the best cutting point, so as to ensure
that the front and rear nodes can find suitable cutting points.
The radius of the cutting circle can be calculated by (6) as
follows:

1
rp = 5 an(f) * I, ®)

The length of the smooth arc is:

AA = (r —ajmrg )
180

It can be calculated that the path cost reduction after single
smoothing is:

(m —a)mrp
A= - 1
Ip1 180 (10)

By analogy, the total reduction of the path cost after the
path smoothing strategy can be calculated.

1ll. SIMULATION RESULTS
In this section, MATLAB simulation is carried out to
prove the effectiveness of the proposed algorithm. In the
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first experiment, the overall performance of the proposed
algorithm under different iterations of the same map is
verified. In the second experiment, RRT*, Quick-RRT*,
Fast-RRT*, Informed RRT*-Connect and CAF-RRT* algo-
rithms are compared in maze and clutter maps to high-
light their advantages. Finally, CAF-RRT* is tested several
times in a complex maze map to verify the adaptability
of the proposed algorithm [24]. The simulation was car-
ried out on a computer with Intel (R) Core (TM) i5-10600
KCPU @ 4.10 GHz and 32GB memory. The operating sys-
tem was 64-bit Windows S10, and the MATLAB version
was R2021b.

A. RELATED PARAMETER SETTINGS

This section will discuss the settings of related parameters
of the proposed algorithm, and analyze the impact of chang-
ing them on the path planning results. Relevant parameters
include depth, distance, and proportion of path optimization
strategy, cutting point position of path smoothing strategy,
iteration times, and expansion radius.

The depth is discussed in detail in [19]. Although the larger
depth improves the quality of the solution, it also increases the
number of calls to the Collisionfree procedure which strongly
affects the running time. Therefore, the depth parameter in
this paper is set to 2 as in [19].

Changing the distance and proportion of the path optimiza-
tion strategy have similar effects. The bigger the setting, the
greedier the algorithm will be, and the fewer times Colli-
sionfree procedure will be called, but too high will affect
the path optimization strategy’s effect of reducing the path
cost. The smaller the setting, the more times the Collisionfree
procedure is called, but the better the effect of reducing
the path cost. We tested the effects of these two param-
eters on the running time and path cost of the algorithm
on several maps, the test results of one of the maps are
shown in Table 1. After comprehensive consideration, set
the distance parameter to 10 units and the scale parameter
to 3%.

TABLE 1. Comparison of different distance and proportion parameters.

distance proportion r::]mnzzg)g Path cost
10 1% 0.68 1850.46
10 3% 0.47 1851.07
20 1% 0.46 1852.51
20 3% 0.44 1855.25

The cutting point position of the path smoothing strategy is
set to 1/2 of the short side, that is, the midpoint position. If this
value is too large, it will fail to smooth the path continuously
by the circular arc fillet method, while if it is too small, it will
lead to no obvious smoothing effect.

The maximum number of iterations is 3,500, and the
expansion radius of obstacles is 5 units.
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TABLE 2. Comparison of different iteration times.

Iterations Number of samples Run time(s) Initial path cost Optimize path cost Smooth path cost
1500 626.97 0.64 2025.68 1854.21 1840.85
2000 620.63 0.62 2007.20 1854.45 1841.13
2500 625.40 0.65 2024.67 1854.50 1841.31
3000 619.45 0.63 2016.39 1854.49 1841.04

Initial path
— Optimized path
— Smooth path

(a) Planning effect

(b) Path details

FIGURE 7. Path display in different stages.

B. THE OVERALL PERFORMANCE OF PROPOSED
METHOD

The proposed algorithm is run 100 times with different iter-
ations in the maze map, and the iterations of 1,500, 2,000,
2,500, and 3,000 are selected to study the influence of differ-
ent iterations on the running parameters. The effect of certain
planning is shown in Fig. 7(a), and Fig. 7(b) shows the path
details. It can be seen that the final path (red path) is the best
path. The comparison results are shown in Table 2. It can be
seen that although the number of iterations is different, the
number of iterations required to get the initial path is less than
630, which indicates that the proposed algorithm needs fewer
iterations to find the initial path. Under different iterations,
although the initial path cost obtained by the algorithm is
high, the path cost is reduced by 8.47%, 7.61%, 8.41%, and
8.03% after the optimization strategy is implemented. And
after implementing the path smoothing strategy, the path cost
is reduced again. The cost of the initial path and the final path
is reduced by 9.12%, 8.27%, 9.06%, and 8.70% respectively.
We have also conducted experiments on other maps, and the
experimental results are consistent [24].

C. COMPARED WITH RELATED WORKS

In this section, two representative map environments are
selected, RRT*, Quick-RRT*, Fast-RRT*, Informed RRT*-
Connect and CAF-RRT* algorithms are respectively run
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100 times in two maps, which proves the advantages of the
proposed algorithm in running time and route cost, and the
quality of the planned route is high.

Fig. 8 and Fig. 9 show the simulation results of RRT*,
Quick-RRT*, Fast-RRT*, Informed RRT*-Connect, and
CAF-RRT* algorithms in two environments. It can be seen
intuitively from the figure that, compared with RRT*, Quick-
RRT*, and Informed RRT*-Connect algorithms, the path
planned by the proposed algorithm is far away from obsta-
cles, thus ensuring the safety of mobile robots, smoothing
the inflection point of the path and improving the quality
of the path. Although Fast-RRT* also considers the safety
and smoothness of the path, its mixed sampling strategy will
cause random points to move to the target point, resulting
in some map planning failures under the same number of
iterations, and may even fall into local minima. Because of
the consideration of path safety, the path cost of Fast-RRT*
in the maze map is high. In addition, in maze map, because
the optimal path length between the start position and the
target area is larger than the map, the ellipse sampling area
drawn by Informed RRT*-Connect is larger, and the sampling
strategy of Informed RRT*-Connect is invalid. Therefore,
in maze map, Informed RRT*-Connect is equivalent to RRT*-
Connect algorithm, and the path cost is similar to RRT*.

Table 3 is the numerical comparison of the path cost of the
above algorithms in 100 simulations in both maps. In maze
map, the path cost of the proposed algorithm is reduced by
2.18% compared with RRT*, 1.28% compared with Quick-
RRT*, 1.72% compared with Fast-RRT* and 1.97% com-
pared with Informed RRT*-Connect. In clutter map, the path
cost of the proposed algorithm is reduced by 0.33%, 0.01%,
1.38%, and 0.11% respectively compared with RRT*, Quick-
RRT*, Fast-RRT*, and Informed RRT*-Connect. In clutter
map, the path cost of CAF-RRT* is similar to that of other
algorithms because other algorithms do not consider the
safety of robots. When the algorithm is applied in practice,

TABLE 3. Length of planned path.

algorithm maze clutter
RRT* 1882.08 1215.74
Quick-RRT* 1862.11 1211.76
Fast-RRT* 1873.29 1228.67
Informed RRT*-Connect 1878.06 1213.04
CAF-RRT* 1841.10 1211.70

127175



IEEE Access

B. Wang et al.: CAF-RRT*: A 2D Path Planning Algorithm Based on Circular Arc Fillet Method

® Xinit ® Xinit
® Xgoal " ® Xgoal
| —Path

/ —

/ ® Xgoal
—Path

(a) RRT*

(b) Quick-RRT*

(c) Fast-RRT*

® Xinit

® Xgoal

—Path
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FIGURE 8. Simulation results (maze).

(e) CAF-RRT*

® Xinit ® Xinit
B ® Xgoal B ® Xgoal
—Path —Path

(a) RRT*

(c) Fast-RRT*

® Xinit
® Xgoal

—Path

(d) Informed RRT*-Connect

FIGURE 9. Simulation results (clutter).

it is necessary to add an inflation layer, and the path cost
of the proposed algorithm will be lower than that of other
algorithms. Therefore, CAF-RRT* can reduce the path cost,
and the path planned by CAF-RRT* is safer and smoother,
thus improving the path quality.

The box diagram of the path cost of the above algorithms
in two environments is shown in Fig. 10. It can be seen that
the difference between the maximum and minimum path cost
of CAF-RRT* in the two graphs is smaller than that of other
algorithms, which indicates that the path cost fluctuation
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(e) CAF-RRT*

of this algorithm for multiple planning is smaller, and the
difference between the upper and lower quartiles is smaller
than that of other algorithms, which indicates that the path
cost of this algorithm is more stable.

To compare the running time, RRT*, Quick-RRT*, Fast-
RRT*, Informed RRT*-Connect, and CAF-RRT* algorithm
is run 100 times on two maps respectively. In maze map, the
comparison of the running time values of the above algo-
rithms is shown in Table 4. The average convergence time
of CAF-RRT* is reduced by 97.25% compared with RRT*,
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FIGURE 10. Stability comparison.

TABLE 4. Stability of running time in maze.

algorithm Mean(s) g;i?i?;i Max(s) Min(s)
RRT* 23.31 2.06 28.62 18.41
Quick-RRT* 17.18 1.94 23.01 12.98
Fast-RRT* 16.49 6.12 38.20 4.68
Informed RRT*-Connect 40.62 5.51 50.84 26.64
CAF-RRT* 0.64 0.19 1.66 0.36

96.25% compared with Quick-RRT*, 96.12% compared with
Fast-RRT* and 98.42% compared with Informed RRT*-
Connect. Therefore, CAF-RRT* can effectively reduce the
running time of RRT* correlation algorithm, and the standard
deviation of the running time of CAF-RRT* is the smallest
among all algorithms, which indicates that the algorithm is
more stable and the data distribution is more concentrated in
multiple runs.

Fig. 11 is a box diagram of the running time of CAF-RRT*
in the maze map. It can be seen from the diagram that the
average running time of CAF-RRT* is smaller than that of
other algorithms, and the difference between the upper and
lower quartiles is small, so the running time of CAF-RRT* is
more stable.

Table 5 shows the numerical comparison of the running
time of the above algorithms in clutter map. As can be seen
from the table, the average running time of CAF-RRT* is
reduced by 99.32% compared with RRT*, 98.38% compared
with Quick-RRT*, 99.54% compared with Fast-RRT* and
97.67% compared with Informed RRT*-Connect. In this map,
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FIGURE 11. Running time comparison(maze).

TABLE 5. Stability of running time in clutter.

Standard

algorithm Mean(s) deviation Max(s)  Min(s)
RRT* 23.65 0.56 25.29 22.59
Quick-RRT* 9.87 0.68 10.90 7.96
Fast-RRT* 34.71 8.58 61.38 20.23
Informed RRT*-Connect 6.86 1.47 11.30 4.65
CAF-RRT* 0.16 0.02 0.20 0.10

CAF-RRT* still has obvious advantages in running time, and
the standard deviation is smaller.

The running time box diagram of the above algorithm
in the clutter map is shown in Fig. 12. It can be seen that
the difference between the average and the upper and lower
quartiles of CAF-RRT* is smaller than other algorithms, and
the number of outliers is small. so, the running time of CAF-
RRT* in this map is shorter and the algorithm is more stable.

60 g
H
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30 ——1
—_—i
20
10 — ;
0 e

B RRT* M Quick-RRT* [l Fast-RRT* [l Informed-RRT* Connect [l CAF-RRT*

FIGURE 12. Running time comparison(clutter).

D. ADAPTABILITY EXPERIMENT

Adaptability is an important criterion to measure the path
planning algorithm. In this section, we simulate RRT*,
Quick-RRT*, Fast-RRT*, Informed RRT*-Connect, and
CAF-RRT* algorithms in a maze-tough map to compare
their adaptability. Compared with maze map and clutter map,
maze-tough map has more obstacles, higher map complexity,
and better adaptability of the algorithm. In this experiment,
the number of iterations is set to 50,000, and other parame-
ters remain unchanged. The listed algorithms are simulated
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TABLE 6. Adaptive experimental results.

aloorithm Average Average Number
g running time(s)  path cost of nodes
RRT* 539.40 2528.28 58
Quick-RRT* 497.31 2475.50 50
CAF-RRT* 57.65 2472.85 47

several times. Table 6 shows the statistics of simulation
results, and Figure 13 shows the simulation results. Because
the planning success rate of Informed RRT*-Connect and
Fast-RRT* are low under the current iteration number,
no comparison is made. The red line or green line is the
extension result of two RRT trees, and the blue line is the
final path. From the simulation results, it can be seen that the
running time of the proposed algorithm is shorter, the planned
final path can keep a certain safe distance from obstacles, and
the inflection point of the path is relatively smooth. There-
fore, compared with similar algorithms, CAF-RRT* has good
adaptability.

IV. EXPERIMENT VERIFICATION BASED ON ROS
PLATFORM

The virtual machine is configured as Ubuntul6.04LTS, the
processor is AMD Ryzen 7 5800H, and the running memory
is 8G. The experiment was carried out under the open-source
robot operating platform ROS, and SLAM technology was
used in Rviz to locate the robot independently and build the
map. The third-generation TurtleBot3 dual-wheel differential
drive robot was selected as the experimental object. Fig. 14(a)
is the actual TurtleBot3 robot, the main functional speci-
fications of the TurtleBot3 are the maximum translational
velocity: 0.22 m/s, and the maximum rotational velocity:
162.7 deg/s. Fig. 14(b) is the TurtleBot3 robot model estab-
lished in Gazebo for the ROS simulation experiment. Because
the effectiveness of the path security strategy in the algorithm
proposed in this paper is not clear, in order to avoid potential
security risks, we should first conduct a mapping test in the
virtual environment, and then conduct experiments in the real
environment.

A. SIMULATION IN GAZEBO

Set up an environment map in Gazebo, and the simulation
environment is set up with reference to the frame map.
Fig. 15 shows the navigation process of Turtlebot3 in the
Gazebo. It can be seen from Fig. 15(b) that the path planned
by the proposed algorithm can keep a safe distance from
obstacles, thus ensuring the safety of the path and making the
path smoother. The path planned in Gazebo is similar to the
simulation result in Matlab.

B. SIMULATION IN REAL ENVIRONMENT
In this section, several real scenes are constructed, and the
performance of the algorithm is verified by comparative
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FIGURE 13. Adaptability experiment of algorithm in maze-tough.

experiments. RRT*, Quick-RRT*, Fast-RRT*, Informed
RRT*-Connect, and CAF-RRT* algorithms are used as global
path planning algorithms respectively, with the inflation
radius of 0.2m, the Turtlebot3 line speed of 0.1m/s and the
angular velocity of 40deg/s.

The starting position of the first map is shown in Fig. 16(a),
the target position is shown in Fig. 16(d), and the obstacles
are constructed as a small maze. Turtlebot3 moves around
the map by computer control, and different planning algo-
rithms are deployed as global path planning plug-ins by
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(a) Real Turtlebot3

FIGURE 14. Turtlebot3 mobile robot.

(b) Model of Turtlebot3

(a) Map in Gazebo

(b) Navigation process

FIGURE 15. Virtual environment navigation process.

TABLE 7. Simulation results of map 1.

Path . . Path
. . Simulation

algorithm planning time(s) length

time(s) (m)

RRT* 11.79 70.38 5.72

Quick-RRT* 7.98 64.67 5.57

Fast-RRT* 7.71 63.79 5.62

Informed RRT*-Connect 17.23 74.53 5.67

CAF-RRT* 0.32 54.21 5.33

SLAM positioning and map building. The simulation results
of each algorithm on this map are shown in Table 7, and
the simulation process of the proposed algorithm is shown

in Fig. 16.
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(c) CAF-RRT* in map 1

(d) CAF-RRT* in map 1

FIGURE 16. Simulation process of map 1.

The starting position of the second map is shown in
Fig. 17(a), the target position is shown in Fig. 17(b), and
the obstacle is set as a cluttered warehouse. Once again,
Turtlebot3 is mapped and navigated, and different planning
algorithms are deployed as global path planning plug-ins. The
simulation results of each algorithm on the map are shown in
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(a) CAF-RRT* in

map 2
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A

(c) CAF-RRT* in map 2

(d) CAF-RRT* in map 2

FIGURE 17. Simulation process of map 2.

Table 8, and the simulation process of the proposed algorithm
is shown in Fig. 17.

Unlike the Matlab simulation environment, it can be seen
from the above simulation results of the real environment that
the CAF-RRT* algorithm has shorter path planning time and
less cost for the planned paths in different maps compared
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TABLE 8. Simulation results of map 2.

Path . . Path
. . Simulation

algorithm planning time(s) length

time(s) (m)

RRT* 9.39 62.39 5.32

Quick-RRT* 4.11 56.33 5.17

Fast-RRT* 11.27 63.53 5.21

Informed RRT*-Connect 391 60.26 5.19

CAF-RRT* 0.16 49.61 4.72

to other RRT* algorithms under the premise of ensuring the
safety of the mobile robot, which makes the paths planned
by Turtlebot3 in the real experimental environment more
satisfactory.

V. CONCLUSION

In order to obtain the planning path with progressive opti-
mal length, this paper proposes multiple optimization strate-
gies based on Quick-RRT* algorithm and bidirectional
RRT algorithm, aiming at the problem that the traditional
RRT algorithm does not consider the path safety and smooth-
ness. The proposed path smoothing strategy based on the
circular arc fillet method can effectively reduce the energy
consumption of mobile robots and enhance the practicability
of the algorithm.

We employed different test scenarios to evaluate CAF-
RRT* algorithm, and the results show that the proposed algo-
rithm achieves the three requirements of path planning: path
cost, security, and smoothness, so the proposed algorithm
has strong adaptability and practicality. The limitation of the
proposed algorithm is the need to test the two parameters,
distance and scale, of the path optimization strategy to deter-
mine the better choice of parameters. Therefore, a future
improvement would be to combine these two parameters with
information from the planning map and perform adaptive
calculations to determine the parameter values.

In addition, there are several possible directions to improve
this work in the future. Firstly, only one mobile robot is
considered in this paper, so it may be interesting to pay
attention to the cooperative path planning of multi-robots in
a dynamic uncertain environment. Secondly, by combining
reinforcement learning and neural network, it may be possible
to solve a wider range of path planning problems. Lastly, the
algorithm in this paper can be extended to work in 3D space,
which is useful for many applications such as information
collection (i.e., drones), disaster relief, and exploration.
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