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ABSTRACT A nonlinear chaos generator scheme derived from a mechanical triple pendulum physical
system is proposed here. The chaotic behavior of the proposed generator is validated against various
standardized tests, such as the Lyapunov exponents test, bifurcation diagrams, sensitivity to parametric and
to initial values, ergodicity, key space and sensitivity, histogram, correlation, NPCR and UACI, collision test,
etc. and compared with existing contemporary methods. The generated chaotic map is utilized to develop
various cryptography applications, such as PRNG and symmetric key encryption schemes, which are realized
on an FPGA and an ASIC. Chaos-based PRNG is validated successfully using NIST − SP800 benchmarks.
The proposed encryption scheme illustrates its usage in low power, high throughput applications, where
the power consumption, resource utilization, and throughput are 1.785×, 1.825×, and 2.396× better than
other known contemporary chaos-based encryption methods. The average power and area of its ASIC
implementation at 180-nm technology are 61.8836 mW and 0.20374 mm2 at 250 MHz.

INDEX TERMS Nonlinear system, triple pendulum, chaotic map, pseudo random number, symmetric
cryptosystem, differential state-space model, FPGA.

I. INTRODUCTION
CHAOTIC dynamic system-based nonlinear dynamic mod-
els are employed in various fields, such as synchronization
and control, communication, cryptography, neural network,
etc. [1], [2], [3]. Chaotic systems are distinguished by their
higher sensitivity to the initial conditions, statistical similar-
ity to random signals, and a continuous broadband power
spectrum. These properties garnered interest from cryptana-
lysts to propose various chaos-based cryptographic systems
[4], [5]. The relevance and usefulness of chaos have been
demonstrated through comparative studies employing char-
acteristics of a chaotic system, and the requirement of a
strong cipher [5], [6] or stronger random number generators
or initial key generation. Designing cryptographic schemes
based on chaotic dynamics can be divided into two steps.
In the first step, an encryption algorithm is modeled based
on analog chaotic dynamic systems. Thereafter, discretization
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with finite precision is introduced during hardware imple-
mentation. Discretization is the main trade-off between secu-
rity and resource utilization, and the synchronization method
of multiple chaotic systems has been applied in a few earliest
cryptography applications.

The piecewise linear chaotic map (PLCM) based 1−D
chaotic map is implemented in [7], whose security vulner-
abilities are improved by introducing logistic polynomial
map derived piecewise nonlinear chaotic maps [8]. Further,
a combination of the polynomial chaotic map and the piece-
wise nonlinear chaotic map [9] is employed to enhance
the speed and security of a cryptosystem. Recently, many
real-world chaotic phenomena are being modeled to generate
ideal chaotic characteristics [10], [11]. Thus, physical chaotic
dynamical systems have become an active research domain.
In [9], a combination of the polynomial chaotic map and
the piecewise nonlinear chaotic map is employed to enhance
the speed and security of a cryptosystem. It is mentioned
that various chaotic block cipher encryption schemes are
also developed. A chaotic tent map-based single iterative
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encryption scheme is proposed in [6], which is further gener-
alized in [12], and multiple iterative-based dynamical chaotic
system models are presented in [13]. A novel symmetric
block cipher algorithm based on invertible two-dimensional
chaotic maps on a torus is presented in [14], whereas schemes
formulated by employing iterative logistic equation and syn-
chronized chaotic systems are discussed in [15].

In another approach, different chaotic attractors for a
random chunk of binary plain-text data are presented [16]
in order to implement a chaotic-based encryption scheme.
As per our knowledge, only a few chaotic map-based images
and video encryption schemes have been developed in the
past. In [10], a hyperchaotic temperature fluctuation model
based on the circuit analysis is proposed for image encryp-
tion. Simple first order differential equations (ẋ = z; ẏ =
−z(ay + by2 + xz); ż = x2 + y2 − |x| − 1) based a new 3D
chaotic system employing a peanut-shaped symmetric equi-
librium curve is reported in [17]. A nonlinear continuous-time
dynamical chaotic system based on two circles of equilibrium
points and its multistability is discussed in [18]. As men-
tioned above, all these chaotic systems are utilized for image
and video encryption only, and no general-purpose chaotic
dynamic system-based cryptosystem exists.

Similarly, [19] showcased a new discrete chaotic sys-
tem merging multiple linear systems, whereas the Hénon
map and the multistable hyper-chaotic system are designed
in [20] and [21]. A new modified scheme using a skew tent
map to overcome drawbacks in conventional PRN sequences
with strong cryptographic properties is introduced in [22].
In [23] chaos-based encryption scheme for medical images is
developed utilizing SHA-256 hash function, block-based per-
mutation, pixel-based substitution, DNA encoding comple-
menting and decoding, and bit-level diffusion. Reference [24]
presented a PRN sequence generator algorithm based on a
combination of the three coordinates of the Chen chaotic
orbits. A fast RGB image encryption algorithm based on
total plain image characteristics and optimized pseudoran-
dom sequence from a 1D logistic map is present in [25].
The work presented in [26] is an image encryption algorithm
derived from a 2D chaotic system based on orthogonal Latin
squares. Lastly, [27] 2D-PPCS is constructed from nonlin-
ear polynomials, and a modular chaotification of the phase
plane yields 2D chaotic maps with robust chaos and desired
dynamic properties.

With the advent of smart systems incorporating Internet-
of-Things (IoT) enabled devices, data (or information) secu-
rity has become of utmost importance. Internet of Everything
(IoE) is the future and demands a system with very high
security, energy efficiency, and reliability. Therefore, it has
become imperative to design a general-purpose low-power
cryptosystem, which can be used in various applications rang-
ing from IoT-based smart systems to high throughput, low
latency systems. In order to address this issue, we endeavor
to design a robust and reliable cryptosystem. Since chaotic
dynamic systems can produce secure random sequences and
present good promise while designing a robust and secure

encryption algorithm, we aim to design a cryptosystem based
on chaos in the proposed work. Note that the proposed
algorithm should satisfy several criteria to establish itself as
cryptographically valid, which are given in [28] and [29].

The significant contribution of the research work is sum-
marized below. This work introduces a nonlinear dynamic
system derived from the chaotic behavior of a physical triple
pendulum configuration. The characteristics of the proposed
chaotic system are validated by performing bifurcation, Lya-
punov test, NIST benchmark tests, etc., which showcase the
applicability of the triple pendulum-based chaotic maps in
various cryptography applications, such as pseudorandom
number generation (PRNG) and Baptista-type symmetric
encryption-decryption scheme development, etc. The pro-
posed work also delineates the methodology to choose the
suitable range of initial values for random number seed or a
stronger key value for encryption. Further, a general-purpose
symmetric key encryption scheme is developed employing
the proposed chaotic map.

The organization of the rest of the manuscript is as follows.
Section II presents mathematical formulations of chaotic
double and triple pendulum dynamic systems. The Lyapunov
exponents, bifurcation diagrams, parametric and initial values
sensitivity, ergodicity, collision test, etc., are presented in
Section III to validate the proposed triple pendulum-based
dynamic system’s chaotic behavior. Section IV discusses the
application of generated chaotic maps as PRNG and its
validation employing the NIST test suite. Later, symmetric
key generation, encryption, and decryption algorithm are
depicted in Section V along with cryptanalysis. A detailed
hardware implementation and realization methodology on
FPGA and ASIC are discussed in section VI. Finally, the
conclusion is drawn in Section VII.

II. MATHEMATICAL MODELING OF TRIPLE
PENDULUM SYSTEM
The formulation of a nonlinear triple pendulum chaotic sys-
tem is similar to a double-pendulum system. For simplicity
and to limit the usage of the variables in mathematical formu-
lation, the construction of differential equations of a double
pendulum system is demonstrated below. Figure 1 exhibits a
basic double pendulum pictorially.

The basic position relations from the above figure are given
in equations 1 and 2.

x1 = L1sinθ1; x2 = L1sinθ1 + L2sinθ2; (1)

y1 = −L1cosθ1; y2 = −L1cosθ1 − L2cosθ2; (2)

The expressions of potential (P) and kinetic (K ) energies,
as mentioned in equations 3 and 4, are obtained by analyzing
position relations.

P = −m1gL1cosθ1 − m2g(L1cosθ1 + L2cosθ2) (3)

K =
m1θ̇1

2L21+m2(θ̇1
2L21+θ̇2

2L22+2θ̇1L1θ̇2L2cos(θ1−θ2))

2
(4)
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FIGURE 1. Basic double pendulum setup.

Later, Euler-Lagrange condition d
dt (

∂L
∂θ̇
) − ∂L

∂θ
= 0 is

applied, where L = K − P and can be represented in
equation 5.

L =
1
2
(m1 + m2)L21 θ̇1

2
+

1
2
m2L22 θ̇2

2

+m2L1L2θ̇1θ̇2cos(θ1 + θ2)

+ (m1 + m2)gL1cosθ1 + m2L2gcosθ2 (5)

Thereafter, substituting L into above mentioned Euler-
Lagrange equation and solving the resultant equation for
θ1 and θ2, two second-order differential equations are
obtained, which are expressed below.

θ̈1 = [−m2L1θ̇1
2sin(θ1 − θ2)cos(θ1 − θ2)+ gm2sinθ2cos(θ1

− θ2)− m2L2θ̇2
2sin(θ1 − θ2)− (m1

+m2)gsinθ1]/[L1(m1 + m2)− m2L1cos2(θ1 − θ2)]

θ̈2 = [m2L2θ̇2
2sin(θ1 − θ2)cos(θ1 − θ2)+ gsinθ1cos(θ1

− θ2)(m1 + m2)+ L1θ̇1
2sin(θ1 − θ2)(m1 + m2)

− g sinθ2(m1+m2)]/[L2(m1+m2)−m2L2cos2(θ1−θ2)]

A. FORMULATION OF COMPOUND TRIPLE PENDULUM
As stated above, the steps of the mathematical formulation of
a triple pendulum system are similar to the double pendulum
system. Here, an abstract representation of the mathematical
formulation of the triple pendulum system is presented. Since
in practical pendulum system bars have mass, they can be
modeled as a compound pendulum. Damping factors are also
included in the proposed model to introduce a higher degree
of chaos and nonlinearity in the system. We consideredmi, li,
Ii, and ki as the mass, length, moment of inertia, and damping
coefficient of the bar rotating about its upper joint, respec-
tively, where i denotes the ith-bar. The position and velocity
of the bars are defined by six system state variables, θ1, θ2, θ3,
θ̇1, θ̇2, θ̇3. The relevant governing equations to deduce these
variable are given below (stated in equations 6 to 13), where
vi, TKEi, RKEi, GPEi, L and D are the magnitude of the
velocity of each bar, translational kinetic energy, rotational

kinetic energy, gravitational potential energy, Lagrangian and
Rayleigh Dissipation Function. Its simplified diagram is pre-
sented in Figure 2.

y1 =
l1
2
cosθ1; y2 = l1cosθ1 +

l2
2
cosθ2 (6)

y3 = l1cosθ1 + l2cosθ2 +
l3
2
cosθ3 (7)

x1 =
l1
2
sinθ1; x2 = l1sinθ1 +

l2
2
sinθ2 (8)

x3 = l1sinθ1 + l2sinθ2 +
l3
2
sinθ3 (9)

vi =
√
ẋi2 + ẏi2; TKEi =

1
2
miv2i (10)

RKEi =
1
2
Iiθ̇i; GPEi = migyi (11)

L = T − V =
3∑
i=1

TKEi + RKEi − GPEi (12)

d
dt
(
dL
q̇i

) =
dL
dqi
−
dD
q̇i
; D =

1
2
(

3∑
i=1

kiθ̇i
2) (13)

FIGURE 2. Basic Compound Triple Pendulum Setup.

A compound triple-pendulum (Figure 2) is modeled with
the help of relations mentioned above and employs ordinary
differential equations, describing its chaotic motions. The
parameters and initial conditions are constant, which is the
part of an individual key. The numerical values corresponding
to the angular positions of the bars are obtained within a
certain duration as per the predefined precision parameter.
This process generates a chaotic map, which is utilized to
map plaintext to the ciphertext during encryption operation.
After analyzing above mentioned analytic equations, θ̈1, θ̈2
and θ̈3 are obtained, and are given in Appendix A, B and C,
respectively. The equations of θ̈1, θ̈2 and θ̈3 can be derived
using equation 14 by iterating t = 0 → N and are stored
after phase wrapped in the range of [−π, π] in a vector y,
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FIGURE 3. Circular auto-correlation and periodicity test for two trajectories of θ3.

where N = T
1t and expressed as the equation 15.

θ̈i
(t+1)

= fi(θ
(t)
1 , θ

(t)
2 , θ

(t)
3 , θ̇1

(t)
, θ̇2

(t)
, θ̇3

(t))

θ̇i
(t+1)
← θ̇i

(t)
+ θ̈i

(t+1)
1t

θ
(t+1)
i ← θ

(t)
i + θ̇i

(t+1)
1t (14)

ŷi = {θ̂ (0)i , θ̂
(1)
i , . . . , θ̂

(N−1)
i }; θ̂

(t)
i =θ

(t)
i −b

θ
(t)
i

2π
c×2π

(15)

It is to mention that state variables θ̈1, θ̈2 and θ̈3 are used to
generate one-to-one function F , such that,

ŷ = F(ŷ1, ŷ2, ŷ3).

The chaotic numeric map is obtained by iterating through
all possible parameters emphasizing nonperiodicity in the
selection; subsequently, a set of keys are generated.

TABLE 1. Key parameters and initial conditions.

III. VALIDATION OF CHAOTIC GENERATOR
The proposed triple pendulum system is implemented using
MATLAB to validate the mathematical model’s correctness
presented in the previous section. Employing random initial
conditions given in the Table 1, the phase wrapped angular
displacement profiles of θ̈1, θ̈2 and θ̈3 are generated. It can be
observed that the proposed system is chaotic because of the
aperiodicity of angular displacements.

A. AUTO-CORRELATION & FISHER G-STATISTIC TEST
Figure 3 presents a circular auto-correlation, estimated
power of θ3 with respect to its periodicity for periodic
and nonperiodic trajectories. The periodic nature of circu-
lar auto-correlation signifies the general periodic nature of

the trajectories and vice-versa. It can be observed from
Figure 3(a) and Figure 3(b) that the power is concentrated
around a few frequencies for periodic signals, whereas power
is distributed in the whole domain for aperiodic signals,
as shown in Figure 3(c) and Figure 3(d), respectively.

Fisher’s G-statistic tests are also performed to visualize
further similar properties of periodic and non-periodic tra-
jectories, depicted in Figure 4. These tests, illustrated in
Figure 4, are periodograms, bob’s path traced, and the time
variation of angles. The periodogram is the power spectral
density at each frequency of a bob. Bob’s path traced during
chaotic oscillations presents a physical path traced in a 2D
plane. The time variation of angles exhibits variations in (θ1,
θ2, θ3) with respect to time. The numerical values obtained
from the periodicity test, circular auto-correlation, and other
analyses differentiate parameters and initial values, leading
to the periodic and aperiodic nature of the motion. Thus,
iterating through all possible parameters emphasizing nonpe-
riodicity in the desired chaotic map is generated. Lyapunov
exponents and bifurcation tests, sensitivity to parametric and
initial values, ergodicity, and collision tests are performed
to prove that generated chaotic maps are cryptographically
viable.

B. LYAPUNOV EXPONENTS TEST
Lyapunov exponents for all the initial parameters are pre-
sented in Figures 6 to verify the chaotic nature of our pro-
posed triple pendulum-based nonlinear chaotic map. The
chaotic nature of a dynamic system is estimated by the
presence of positive exponents in the Lyapunov test, which
implies exponential divergence of the system. It is men-
tioned that chaotic systems do not synchronize with any other
physical system in reality. However, their synchronization
conditions can be formulated mathematically if all the ini-
tial conditions and parameters resemble the actual physical
systems, which is only possible in an ideal scenario. Thus,
two similar chaotic systems produce significantly different
outputs when initial conditions and parameters aremarginally
different. For estimating Lyapunov exponents [30] of an
oscillating chaotic system, a 3D Lorenz equation 16 is for-
mulated and compared with different parameters of our

127076 VOLUME 10, 2022



B. Paul et al.: Triple Pendulum Based Nonlinear Chaos Generator and Its Applications in Cryptography

FIGURE 4. Fisher’s G-statistic test with a periodic trajectory (a,b,c) and with a nonperiodic trajectory (d,e,f).

FIGURE 5. Sensitivity to parameter value m1 and θ1 with
a

m = 10−6 and
a

θ1 = 10−6.

proposed dynamic system. It can be observed from Figure 6
that most of the Lyapunov exponents are greater than zero;
therefore, the proposed triple pendulum-based dynamic sys-
tem fulfills Lyapunov criteria and can be considered a
suitable chaotic system to be utilized in the design of
cryptosystems.

ẋ = σ (y− x)

ẏ = x(ρ − z)− y

ż = xy− βz (16)

C. ERGODICITY AND SENSITIVITY TESTS FOR CHAOS
As we know, these chaotic maps are used to generate keys for
encryption and decryption schemes. Therefore, the statistical
tests can ensure whether the keys generated in our proposed
scheme are ideally indistinguishable from any true random
sequence or not. Various standard statistical tests, which are
conducted to support our claims, are described below. These
tests include ergodicity, sensitivity to parametric values, and
sensitivity to initial conditions to be as unpredictable as pos-
sible. For completeness, these essential tests are described
below.
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TABLE 2. Comparison of the Proposed Scheme with Existing Works on NIST SP800− 22 Test Suite.

FIGURE 6. Dynamics of Lyapunov exponents upto 8 sec.

1) Sensitivity to Parametric values: A small perturba-
tion in one of the system parameters, for example, m1,
is enough to create two exponential diverging trajecto-
ries starting at the same initial point. This is reflected in
Figure 5(a) and Figure 5(b) for the parameters given in
Table 1.

2) Sensitivity to Initial Condition: Two trajectories start-
ing at two different but arbitrarily close initial points
denoted by θ1 diverge from each other at an exponential
rate. This is illustrated in Figure 5(a) and Figure 5(c) for
the initial conditions given in Table 1.

3) Ergodicity: Ergodicity is a chaotic system’s phase of
space exploration uniformly or randomly. Here, phase
space is defined as a relationship between angular veloc-
ity, ω, and the angle of the pendulum’s bob, φ. The triple
pendulum system exhibits ergodic nature because phase
space is sparse and is not cluttered in any specific region.
The phase space of the bottom bob of the proposed
triple pendulum system illustrated in Figure 7 under

FIGURE 7. Phase space plot for ergodicity test for θ3.

conditions given in Table 1 exhibits a trajectory that
satisfies ergodicity criteria. This leads to the conclusion
that a system under specific conditions can be consid-
ered ergodic.

The proposed triple pendulum based cryptosystem holds
above mentioned properties, which are clearly evident in
Figure 5 and Figure 7. It is to mention that the map generated
using the proposed compound triple pendulum model pos-
sesses essential chaotic properties to be employed in a general
cryptosystem.

D. BIFURCATION DIAGRAMS
The bifurcation tests for all the key parameters are pre-
sented in Figure 8, which validate the chaotic nature of
our proposed dynamic system. Bifurcation diagrams for the
proposed nonlinear chaotic map are generated for all the
independent parameters m1, m2, m3, l1, l2, l3, k1, k2 and
k3 for θ1, θ̇1, θ2, θ̇2, θ3 and θ̇3 each. It is to mention that
the generally chaotic nature of systems depends on a sin-
gle parameter, and its bifurcation diagram is produced by
changing the value of that particular parameter. Our proposed
chaotic dynamic system has 12 independent parameters con-
stituting a 12 dimensional chaotic map exhibiting highly
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FIGURE 8. Bifurcation diagrams of the independent key parameters for {θ1, θ̇1 in green}, {θ2, θ̇2 in red} and {θ3, θ̇3
in blue}.
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chaotic behavior. All the bifurcation diagrams illustrated in
Figure 8 are generated by solving θ̈ using initial conditions
of Table 1. It is to mention that in Figure 8, θ1 and θ̇1, θ2 and
θ̇2, and θ3 and θ̇3 are indicated with green, red and blue
colors.

The chaotic behavior of the proposed nonlinear com-
pound triple pendulum is validated from the above analytical
and statistical tests. Therefore, the proposed chaotic map
can be utilized to design various cryptography counterparts,
such as pseudo-random number generators, signature gen-
erators, lightweight symmetric cryptography schemes, etc.
The following sections present critical cryptography applica-
tions, a chaos-based pseudo-random number generator, and a
lightweight symmetric cryptosystem.

IV. CHAOS BASED PRNG
In order to test the randomness of a chaotic map gener-
ated in the proposed method, various statistical tests are
performed. These statistical tests are generally employed to
validate randomness in pseudo-random-number generators.
NIST suite [36] is employed to test the randomness properties
of a chaotic map. The information about tests performed
on the chaotic map generated during analysis and the cor-
responding results obtained are presented in Table 2. The
proposed chaotic map is tested with existing PRNGs employ-
ing standard NIST SP 800 − 22 suite [36] to evaluate and
compare its randomness quality, tabulated in Table 2. It is to
mention that a particular PRNG is said to be passed a test if
0.01 ≤ p-value < 1.

In the NIST test, our proposed chaotic generator is com-
pared with five recently published methods described in [31],
[32], [33], [34], and [35]. In [31], a sine chaotification model
is employed to generate a 1-D chaotic map, whereas [32]
presents physically unclonable functions (PUF) based chaotic
maps. The [31] and [32] are incorporated in the evaluation so
that our proposedmethod is compared fairly with widely used
chaotic schemes. On the other hand, the proposed chaotic
map-based PRNG is compared with Linear Congruential
Generators [33], and also with two newly developed vari-
ants [34], [35]. From Table 2, it can be observed that our
proposed chaotic map generator passes all the tests success-
fully. This is largely due to the nonlinear dynamics of the
chaotic map having 12 independent parameters and random
initial conditions. The outcome of these tests indicates that the
proposed chaotic map is indistinguishable with respect to any
other random sequence generators. Thus, the proposed triple
pendulum-based chaos generator can be utilized in a wide
range of security applications due to its cryptographically
secure random number generation capability. The following
sections present a detailed description of a new encryption
scheme, which is an important application of a nonlinear
triple pendulum-based chaotic map.

V. CHAOS BASED SYMMETRIC ENCRYPTION SCHEME
This chapter focuses on implementing a chaos-based
encryption-decryption technique on Field Programmable

FIGURE 9. Design steps of the proposed method.

Gate Array (FPGA) and as an Application Specific
Integrated Circuit (ASIC). We aim to design a sys-
tem that should be less resource-intense, computation-
ally efficient, and provide as strong security as possible.
The necessary steps to be performed, along with design
and implementation, are given below for achieving this
goal.

A. STEP-WISE DESIGN METHODOLOGY
Figure 9 depicts design and implementation steps of the
proposed cryptosystem. The motivation behind employing
the proposed algorithms for encryption and decryption is
based on Baptista-type encryption-decryption scheme. It is
described using an interval-partitioning of chaotic orbits of
a 1D logistic map, which enables the construction of swift
and secure encryption-decryption schemes because of its
less complex structure. The main objective of our scheme
is first to map text characters to numerical values, then
algorithms are applied to encrypt the message. Decryption
is performed by iterating a chaotic map, then correspond-
ing symbols for numerical values are obtained by inverting
the process. Since the input to the system is a plain mes-
sage, the system parameter(s) and the initial conditions of
a dynamical system are assumed to be part of the secret
key. After analyzing a triple-pendulum system, a valid set
of keys for encryption and decryption is generated. The
entire mechanical model is implemented on an FPGA along
with a custom ALU and a control unit adhering to the
specifications of our proposed system. After successfully
validating the design on an FPGA, it is realized using
Semi-Conductor Laboratory (SCL) 180-nm Bulk CMOS
technology.
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B. THE PROPOSED ENCRYPTION SCHEME
A detailed description of the proposed methodology, which
includes key generation, encryption, and decryption algo-
rithm with a suitable example, is presented here.

1) KEY GENERATION
The key,K , of the proposed symmetric cryptosystem includes
parameters, such as initial conditions, time duration, time
step, the minimum value of ŷ, and ε. The ε is a mapping
interval and can be expressed as ε = (ŷmax−ŷmin)

Nc
. There are

total 21 variables constituting basic key structure shown in
equation 17.

K = {θ (0)1 , θ
(0)
2 , θ

(0)
3 , θ̇

(0)
1 , θ̇

(0)
2 , θ̇

(0)
3 ,m1,m2,m3, l1, l2, l3,

I1, I2, I3, k1, k2, k3, g, ŷmin, ŷmin/ε} (17)

TABLE 3. Key size for various encryption algorithms [37].

Table 3 compares key size andmemory for various security
algorithms. It can be observed that the key size generated by
our proposed method is the least among other algorithms.
For specific parameters or initial conditions, the motion of
the bobs of a triple-pendulum exhibits periodic nature after
a certain time period. Hence, it becomes imperative to elim-
inate those parameters or initial conditions for which motion
is periodic to preserve the chaotic behavior of the system.
Therefore, Fisher’s g-statistic test [38] is employed to extract
the prominent period of the chaotic motion (or signal) using
statistical analysis of its spectrum. This test exploits peri-
odic components of the signal derived from its periodogram,
which is used to identify a time series’s hidden periods (or
frequencies). This helps identify dominant periodic behavior
in a series. The periodogram indicates the relative occurrence
of possible frequencies repeatedly oscillating between inter-
vals. It estimates Power Spectral Density of the signal xL(n)
of length L, which is defined below. Here, Fs is the sampling
frequency.

Pxx(f ) =
1
LFs
|

L−1∑
n=0

xL(n)e−j2π fn/Fs |2 (18)

The computation of Pxx(f ) can be performed only at a
finite number of discrete frequency points given by the

FIGURE 10. Encryption-Decryption Strategy.

following relation.

fk =
kFs
N
, k = 0, 1, . . . , (N − 1) (19)

Fisher’s g−statistic is defined as the ratio of the maximum
magnitude of the periodogram (Pxx(fk ) or I (ωk )) to the sum
of all the magnitudes of a periodogram as shown below.

g =
maxk I (ωk )∑[N/2]
k=1 I (ωk )

(20)

Here, I (ωk ) is the magnitude of a periodogram, and using
g, dominant periods of a signal can be estimated. Thus,
after removing the range of the parameters in which a signal
exhibits possible periodic behavior, the remaining parame-
ters can be utilized to span key space. Further, based on
the bifurcation diagrams, the strongest key may be chosen
for encryption and decryption steps. Since bifurcation is a
resource-intensive process, there is a tradeoff between power
and choosing a stronger key for an application. In the fol-
lowing subsection, encryption and decryption methods are
explained in detail.

2) ENCRYPTION - DECRYPTION
The approach discussed here is to convert plaintext ofM char-
acters into an ASCII format and map it to the intervals formu-
lated using state variables of the proposed triple-pendulum
system as shown in Figure 10. The initial conditions and
control parameters of the differential equations constitute
a part of the private key K. The differential equations are
numerically integrated to get state variables (θ1, θ2 and
θ3) followed by phase wrapping in the range of [0, 2π ] or
[−π, π]. Later, employing Baptista-type method, an entire
range ([ŷmin, ŷmax]) of chaotic trajectory ŷ is partitioned into
a number of intervals equal to the number of characters
(Nc). Each character in the plaintext P is first mapped to
a specific interval (k) and is stamped with a time point (i)
randomly selected from this interval. A permutation map
π (k) is employed to determine interval identifiers for each
character’s ASCII value. This process transforms plaintext
into an intermediate value, masked using fk . Here, fk is
produced by applying variable modular operation (depends
on the iteration index) to the private key and converting it
to a half-precision floating-point expression. Simultaneously,
an intermediate encrypted binary numberD(π(p̂), j) is rotated
left by m bits stored as t , where m is an input plaintext.
Finally, the ciphertext C is obtained by XORing t and fk .
The proposed encryption scheme is depicted in Algorithm 1.
Here, η is a constant and C is a ciphertext.
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Algorithm 1 Proposed Encryption Algorithm

Input: ŷ, P, K, Nc, η
Output: C
Initialize D = {}, k = size(K)
Find ŷmax = max1≤i≤N (ŷi), ŷmin = min1≤i≤N (ŷi)
Calculate ε = (ŷmax−ŷmin)

Nc
For each ŷi in ŷ
Calculate d = b ŷi−ŷmin

ε
c

D(π(d))← D(π (d)) ∪ {i}
For m = 1 toM
Initialize j = 0, p = P(m)
Calculate p̂ = ASCII (p), l = size(D(π(p̂)))
Generate random number r, 0 ≤ r ≤ 1
While r ≤ η, do j← (j+ 1)%l
Calculate fk = half (K (m%k)), where half (n) converts n
to Half-Precision Floating Point format
t = ROL(D(π (p̂), j),m), where ROL(n, b) rotates n left
by b-bits
c = t ⊕ fk
C(m) = c
Return C

Algorithm 2 Proposed Decryption Algorithm
Input: ŷ, C, K
Output: P̃
Initialize k = size(K )
Find ŷmax = max1≤i≤N (ŷi); ŷmin = min1≤i≤N (ŷi)
Calculate ε = (ŷmax−ŷmin)

Nc
For m = 1 toM
Initialize c = C(m)
Calculate fk = half (K (m%k)), where half (n) converts n
to Half-Precision Floating Point format
t = c⊕ fk
Ĉ = ROR(t,m), where ROR(n, b) rotates n right by
b-bits
Calculate k̂ = b ŷc−ŷmin

ε
c

Compute k = π−1(k̂)
P̃(m)← CHAR(k)
Return P̃

In the decryption module, the interval in which the charac-
ter of the ciphertext lies is computed using the same symmet-
ric key. Here C is first unmasked by performing the reverse
rotation and XORing with fk after generating it following the
similar steps discussed above during encryption. Thereafter,
by applying an inverse permutation map (π−1(k)), corre-
sponding indices are converted back to plaintext (P̃). The
message can be decoded by converting P̃ into characters. The
proposed decryption scheme is presented in Algorithm 2 for
the ready reference.

Besides the plaintext encryption, the proposed method can
also be applied to images with RGB values ranging from 0 to
255. The parameter Nc in Algorithm 1 can be set to 256 and a

FIGURE 11. Text data encryption example for 100KB plaintext based on
the key value listed in Table 1.

serialized image is fed as an input for the image encryption.
This algorithm can also be extended for video encryption by
treating each frame as an independent image. For example,
the proposed method is applied for image encryption, and the
outcome of this process is stated below. Since the proposed
method is fast and secure (refer to Section VI), it is suitable
to keep live video feeds secure from any adversary attacks.

The proposed encryption and decryption algorithms are
demonstrated on three sets of images. The original and
encrypted images are illustrated with their corresponding
histograms presented in Figure 12. Parameters of the key used
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for encryption and decryption in both types of applications,
text and image, are m1 = 0.2944, m2 = 0.8756, m3 =

0.0947, l1 = 0.508, l2 = 0.254, l3 = 0.127, k1 = 0.005,
k2 = 0, k3 = 0.0008, I1 = 9.526×10−3, I2 = 1.625×10−3,
I3 = 1.848 × 10−4, respectively, with g = 9.81. Selection
of these parameters for a key is accomplished using the bifur-
cation diagram shown in Figure 8. The following subsection
discusses analytical aspects of the security of our proposed
chaos-based cryptosystem for completeness.

C. CRYPTANALYSIS OF THE PROPOSED SCHEME
An encryption scheme is needed to withstand various basic
cryptanalytic tests, which are discussed below.

1) SECURITY ANALYSIS
The proposed chaos-based encryption scheme is a vari-
ant of a Baptista-type chaotic cryptosystem, and general
Baptista-type algorithms have the following issues.

• The distribution of ciphertext is non-uniform, with a
gradually decaying occurrence probability.

• The ciphertext size is larger than the plaintext size.
• Baptista-type chaotic cryptosystems can be made
immune to chosen plaintext attack (CPA), but there is
no known mathematical security proofs against chosen
ciphertext attack (CCA). This is because of some char-
acteristics of generated chaotic map being obtained from
ciphertext Ci.

In our implementation, we attempted to mitigate some of
these issues. An intermediate cipher is XORed with the mod-
ified expanded key to ensure uniform distribution. Moreover,
hardware-level threats were omitted since we developed the
entire algorithm on FPGA or ASIC. The security analysis
is essential for a chaos-based encryption scheme elaborated
below.

a: KEY SPACE
In the case of the proposed chaotic map, there is a total
of 21 variables, in which 12 are independent variables, and
the rest of the variables can be treated as initial condi-
tions. Compared to other generic linear and logistic chaotic
map-based encryption algorithms, our proposed dynamic sys-
tem has more degree of freedom, and key space is enhanced
many folds. Strong keys are selected among the entire key
space based on bifurcation diagrams and Fisher g-statistical
test. Each above-mentioned independent variable is originally
spanned 264-bit space considering the precision. Therefore,
the cumulative, chaotic space is 264×12 = 2768 ≈ 10231

which is greater than 2100 criteria to qualify for a cryptograph-
ically valid chaos generator.

b: SENSITIVITY
The proposed scheme presents high sensitivity to the key,
as already evident from the sensitivity of the chaotic trajec-
tory to initial conditions and the control parameters shown
in section III-C. Various tests are performed to showcase

TABLE 4. Correlation Coefficient (Horizontally).

chaotic properties of the proposed chaos generator, such as
ergodicity, sensitivity to parametric values, and sensitivity
to the initial condition, which exhibits unpredictability in
chaotic attractors.

c: HISTOGRAM
In the last section Figure 12 showcases original and
encrypted image and their corresponding histograms. There-
after, Figure 11 showcases encryption of the text data, where
Figure 11(a) illustrates ASCII distribution of first 6000 char-
acters (plaintext) and Figure 11(b) is the generated cipher-
text after applying our proposed encryption algorithm. From
Figure 11(a), it can be seen that the distribution of plaintexts
is confined to a specific determined domain, whereas, after
performing the encryption operation, ciphertexts are trans-
formed in different domains and are randomly distributed
over the entire range, which is presented in Figure 11(b).
It can be inferred that this distribution resembles the noise
distribution. Therefore, it makes ciphertexts more secure and
less vulnerable to statistical attacks.

As shown in Figure 12, the histograms of input images are
vastly different, but the histograms of encrypted images are
similar. This makes image encryption harder to be cracked
because of generating similarly encrypted histograms utiliz-
ing different keys.

d: CORRELATION
It is known that adjacent pixels in a plain-image are highly
correlated since the difference in the pixel values between
adjacent pixels (horizontal, vertical, or diagonal) is very
small in most cases. Hence if the adjacent pixel values in an
encrypted image are highly correlated, then an attacker can
run statistical attacks to gain helpful information about the
secret key and might successfully recover the plain image.
Thus, for strong security, an encrypted image must have
no correlation between the adjacent pixels. The first row in
Figure 13 shows the RGB correlation for 5000 randomly
sampled pixels from the Lena plain image with their adjacent
horizontal pixels. They show a high correlation due to similar
values. In contrast, the next row shows the RGB correlation
for 5000 randomly sampled pixels from the encrypted image
where the adjacent pixel values are vastly different, thus
having low correlation. Table 4 shows the corresponding
correlation coefficients calculated for the above cases. The
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FIGURE 12. Encryption of image with histogram for a particular key value (Table 1).

calculated coefficients correctly quantify the close correlation
in plain-images where rxy is close to 1 (high correlation),
whereas, for encrypted images, it shows significantly less
correlation where rxy close to 0 (low correlation).

e: INFORMATION ENTROPY
Information entropy captures the unpredictability of a
message sequence by capturing the randomness of the
sequence. This can be mathematically defined as H (m) =∑2N−1

i=0 p(mi) log2(1/p(mi)) where N is the number of bits in
the message m, 2N refers to all possible bit combinations,
p(mi) represents the probability of mi. Thus, for a highly
random sequence of N bits, the information entropy will be
closer to its maximum value, i.e., N. 8-bits can represent
each component of an RGB image. Therefore the maximum
entropy possible for a component of an RGB image is 8.
An entropy value closer to 8 implies that the RGB image
is highly random and disordered. Table 5 shows that the
entropy values calculated for the encrypted image output
obtained using the proposed scheme. Notably, the entropy
values are much closer to eight than the plain-images, mak-
ing it harder for any attacker to get adequate information
about the secret key involved in the encryption or decryption
process.

TABLE 5. Information Entropy.

f: CHOSEN PLAINTEXT ATTACK (CPA)
We introduce the masking of a temporary variable t by
employing p. In this step, p is first left rotated by b-bits, and
the outcome is XORed with f to produce the ciphertext c.
It is to mention that b depends on p and is explained in
Algorithm 1. It can be observed that b and f are chosen
randomly utilizing the proposed chaotic map. Therefore, even
if an adversary attacks with the prior knowledge of c and p
using the chosen plaintext, it cannot determine b and f with
significant accuracy. Thus, the determination of f employing
chosen plaintext attack would take at least eight steps if each
outcome is stored in eight bits. For rotating plaintext of length
n by b bits, the minimum number of steps required is 8n. If we
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FIGURE 13. Correlation (Horizontal) of Plain vs Encrypted Lena Image.

mask multiple times, the total steps required to operate as

mentioned above is 8n
n...

n

, exhibiting P-SPACE complexity.

g: DIFFERENTIAL ATTACK
A good cryptosystem should be highly sensitive to the input
plain message to resist differential attack, also known as
Chosen Plaintext Attack(CPA). For example, in the case of
images, a small difference in a few of the pixel values in an
input image should ideally produce large differences in the
pixel values of the encrypted output image. Currently, there
are two widely used metrics to measure the sensitivity of the
cryptosystem with respect to the input images: NPCR(Net
Pixel Change Rate) and UACI(Unified Average Changing
Intensity). NPCR measures the percentage of the pixels that
differ between two encrypted images, whereas UACI mea-
sures howmuch the two images differ in intensity on average.
Mathematically, for each RGB component of two encrypted
images E1 and E2 of size M × N , will have the following
relations.

NPCR =

∑i=M
i=1

∑j=N
j=1 W (i, j)

M × N
× 100 (21)

where

W (i, j) =

{
0, if E1(i, j) = E2(i, j)
1, otherwise

(22)

and

UACI =

∑i=M
i=1

∑j=N
j=1 |E1(i, j)− E2(i, j)|

M × N × 255
× 100 (23)

TABLE 6. Values of NPCR and UACI.

For our analysis, both these metrics were calculated using
two encrypted images: the first image is the encrypted image
E1 of the Lena plain image, and the second is an encrypted
image E2 of a slighted modified Lena plain image obtained
by incrementing the value of a random pixel by 1 (a single bit
difference).

Table 6 shows the NPCR and UACI results. The NPCR
values are close to 100%, i.e. both E1 and E2 are very dif-
ferent, and UACI values are around 33%, i.e., both E1 and
E2 are 33% different in magnitude. Therefore, the proposed
algorithm is susceptible to the input images and is robust
against differential attacks.

h: COLLISION ATTACK
Collision resistance is the property of cryptography algo-
rithms, which makes it difficult to find two inputs that give
the same encrypted output. It is well-known that finding
collisions is computationally very hard. As discussed earlier,
an entire range of ŷ are partitioned according to the number
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TABLE 7. Comparison of the Proposed Scheme with Literature, where X means ‘‘Achieved’’ and × means ‘‘Not Achieved’’ and - means ‘‘Data Not
Available.’’

of characters. For example, Nc = 256, i.e., [ŷmin+ kε, ŷmin+
(k+1)ε] for k = 0, 1, . . . , 255, which aremapped to different
intervals. In the proposedmethod, two different inputs having
different characters are mapped to different intervals always.
Thus, the proposed scheme can be considered to be collision
resistant. Further, the complexity of the implementation of the
proposed algorithm is presented below.

i: SIDE CHANNEL ATTACK
Since hardware is designed indigenously, as described in
the next section, there is no chance of corrupting it with
any hardware trojan. Therefore, the security threat regard-
ing side-channel attacks and other hardware design-related
attacks is impossible.

Table 7 summarized all the analyses performed for the
proposed chaos-based scheme and compared it with existing
contemporary algorithms. Our proposed scheme passed all
the essential criteria to qualify for a chaos-based cryptosys-
tem mentioned in [28] and [29].

D. COMPLEXITY ANALYSIS
The computational complexity of the proposed scheme is
described below.

• The computation of state variables (θ) for a duration t
and time step 1T requires N iterations, where N = T

1t .
In each iteration, only six equations are analyzed to find
six state variables (θ1, θ2, θ3, θ̇1, θ̇2, θ̇3) in O(1) time.
Thus, the time required for generating an asymptotical
map is O(N ).

• The space complexity for storing state variables isO(N ).
• Baptista type partitioning takes constant time, if range
of the variables is already computed in the previous step.
For assigning variables to corresponding intervals,O(N )
time is required for each variable. TheKc = 21 variables
constituting symmetric key in our proposed method,
KcO(N ) ≈ O(N ) time is required.

• The encryption of a plaintext having M characters uti-
lizesM iterations. In each iteration, an encrypted value
is selected randomly in an interval in a constant time.
Therefore, time complexities for setting up of an encryp-
tion module and processing each plaintext through are
O(N ) and O(M ), respectively.

• Space complexity of an encryption module is O(N ).
• The time complexities of setting up decryption module
and its execution are O(N ) and O(M ), respectively. The
information rate of the proposed cryptosystem is defined
as the ratio of the size of plain-text, SZpt , to the size of
cipher-text, SZct , which is defined below.

R =
SZpt
SZct
=

8 ∗M
dlog2 Ne ∗M

=
8

dlog2 Ne
(24)

The overall time complexity of the complete encryption
and decryption methods is the sum of individual complexities
mentioned above, which add up to O(N ). Due to this, it can
be utilized in many applications efficiently to make them
secure without sacrificing performance significantly. Since
both the time and space complexities of the proposed method
are linear, it offers excellent scope for its parallelization to
boost hardware performance. Due to its immunity against
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various attacks, scalability, and computational simplicity, our
proposed method becomes a prominent candidate to pro-
vide much-needed security to various applications, such as
IoT-based smart systems, low latency systems, etc.

VI. HARDWARE IMPLEMENTATION AND RESULTS
The proposed cryptosystem is implemented using System
Verilog on Digilent Zed-Board having Xilinx Zynq-7 FPGA,
and a synthesized netlist is generated by Synopsis Design
Compiler (DC) employing SCL 180nm Bulk CMOS technol-
ogy PDKs. For hardware realization of the proposed scheme,
a permutation map (π (k)) is fixed as an identity map, and
a maximum of three state variables are stored in a partic-
ular interval during an encryption phase. As a result, it is
required to search over a total number of characters, Nc,
for an interval during the decryption cycle. For evaluating
equation 14, its RHS expression is converted into a postfix
format, and the resultant postfix expression is stored in a
ROM on an FPGA board. Later, this expression is evaluated
using a stack-based postfix evaluation technique. The angle
combinations of sinusoidal terms present in the expressions
are cached in a LUT and are appropriately decoded while
evaluating these expressions. The overall block diagram of
this scheme is presented in Figure 14 and its finite state
machine is illustrated in Figure 15.

FIGURE 14. Overall block diagram of proposed scheme.

FIGURE 15. Overview of FPGA Implementation.

A. DETAILED DESCRIPTION OF HARDWARE MODULE
The hardware design can be divided into three main parts: a
LUT-Memory, an ALU, and a Control Unit. A brief descrip-
tion of these units is elaborated below.

1) LOOK UP TABLE (LUT) AND MEMORY
During FPGA implementation, five LUTs and a stack mem-
ory are utilized for solving differential equations by evaluat-
ing postfix expressions, which depend on angle combinations
presented in Table 8. These five LUTs are used to store
Parameters, Angle Combinations, State Variables, Numeric
Constants and Postfix Evaluations. Parameters represented
in Table 1 are employed for the above-mentioned purpose.

TABLE 8. LUT Details.

As mentioned earlier, in implementing postfix evaluations,
RHS expressions in equation 14 are converted into postfix
format. The resultant postfix expression constitutes numeric
constants, state variables or parameters, operations, and sinu-
soidal terms. Each of these terms is encoded to an 8-bit
code. Then an entire postfix expression is stored in a LUT
in the coded format. During postfix evaluation, these codes
are decoded, and an appropriate data value is fetched from
a corresponding address. The 8-bit encoding format can be
expressed as shown below.

The mathematical analytical model of triple pendulum
system presented in appendix A, B and C are parsed and
evaluated by applying the information presented in Table 9.
After that, stack memory is configured to execute encryption
and decryption modules.

Stack: A stack consisting of two immediate registers and
memory is implemented to evaluate postfix expressions. The
immediate registers store the top two variables on the stack.
An operation is performed in an expression employing these
two immediate registers, and its result is stored in the first reg-
ister. Another register is again filled with a variable popped
from the top of the stack for the next operation. It continues
until all the operations related to a mathematical expression
are completed.

When a complex operation requires more resources than
two immediate registers, the above operation is performed
in two or more steps. In this case, the variable stored in
the second immediate register is pushed onto the stack, and
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TABLE 9. Encoding for Mathematical Operations by 8-bit Postfix Format.

the corresponding memory location and program counter are
updated. This process repeats until a complex operation is
executed, producing the correct output. This method helps in
reducing resource utilization while performing this operation.
Another advantage of using stack-based push-pop architec-
ture is using it for solving any differential equation expressed
in the form of a state-space equation. Only angle combina-
tions and mnemonics in the stack need to be changed for this
operation, keeping hardware architecture identical for all the
operations.

2) ARITHMETIC AND LOGIC UNIT (ALU)
Arithmetic and logical unit (ALU) consisting of two addition,
one multiplication, one exponentiation, and one division
modules are presented in this section. All these modules
perform floating point operations in the standard IEEE-
754 format. The datapath in the addition module is split into
four stages. The clock frequency of this operation is kept
at 100 MHz to meet the timing constraints of the FPGA
employed to realize the proposed design. As mentioned ear-
lier, the datapath in the multiplication module is divided into
five stages to achieve the clock frequency.

Moreover, if required, the multiplication module can be
configured to function in a pipelined mode. The exponen-
tiation module evaluates a floating point input raised to an
integer as an exponent. It instantiates the multiplication mod-
ule internally for the evaluation of an exponent. Similarly, the
datapath of the division module is sliced into multiple stages
to meet the target clock frequency of 100 MHz. However, the
division operation requires significant clock cycles compared
to other operations. Therefore, the design of the proposed
algorithms is optimized to keep the number of division oper-
ations as less as possible.

3) CONTROL UNIT
The control unit of the proposed design is essentially a finite
state machine (FSM), which performs required tasks in a
well-defined sequence. In order to implement it efficiently,
the complete FSM is factored into smaller state machines
hierarchically. The top-level FSM serves as a controller for
all the smaller FSMs. Detailed descriptions for these state
machines are given below.

FIGURE 16. Top-Level FSM.

(i) Top Level State Machine: Figure 16 exhibits a simpli-
fied FSM of the top module. Description of each state is
given below.
• DEFAULT: It is an initial state of FSM after reset.
• RECEIVE_KEY: It receives encryption or decryption
keys through USB or Ethernet interfaces.

• EVALUATE_EXPRESSION: It evaluates state-space
expression using given initial conditions for a chaotic
dynamic system.

• MODIFY_STATE_VARIABLES: In this state, state
variables are updated based on the previous state.
It involves multiply and addition modules to perform
updated operations.

• OBTAIN_CHAOTIC_MAP: It evaluates a chaotic
map through a linear combination of all state variables
and calculates a linear combination of θ , θ̇ and θ̈ .
It is to mention that θ corresponds to the chaotic map.
Further, it calculates intervals, in which θ lies and
adds it to corresponding address in LUT.

• GENERATE_CIPHERTEXT: It generates a cipher-
text for a particular plaintext string using a generated
chaotic map and utilizes an LUT to convert plaintext
into ciphertext.

(ii) Evaluate State-Space Expression: Figure 17 exhibits
an FSM of a state space solver module and its detailed
description is presented below.
• DEFAULT: This is an initial state of FSM after reset.
• FETCH_INITIAL_CONDITIONS: It fetches
required initial conditions, θ and θ̇ , from Block-RAM
(BRAM).

• ANGLE_COMBINATION_CALC: This state gener-
ates linear combinations of state variables.

• ANGLE_NORMALIZATION: In this state, trigono-
metric inputs are normalized in the range of [−π, π].

• POSTFIX_TERM_ACCUMULATE: It evaluates a
state-space expression stored in the postfix form.

• STORE_OUTPUT_DATA: This state stores state-
space expression obtained in the previous state in the
memory.
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FIGURE 17. FSM for State-Space solver.

FIGURE 18. FSM for Postfix Evaluator.

(iii) Postfix Expression Evaluation: Figure 18 presents an
FSM of postfix expression evaluation, which outputs
encrypted/decrypted values. A description of each state
is described below.
• DEFAULT: This is an initial state of FSM after reset.
• READ_POSTFIX_CODE: In this state, mnemonic of
the next term of a postfix expression is fetched from
the stack.

• DATA OR OPERATOR: This state checks whether a
fetched code corresponds to data or an operator.

• OPERATE_ON_TOP_TWO_STACK_VALUES: It
performs an operation based on top two data values
stored in a stack.

• PUSH_DATA_TO_STACK: It pushes data in a post-
fix expression or result of an ALU operation onto the
stack.

It is to mention that the differentiating factor between
encryption and decryption operations in Postfix Expression
Evaluation FSM depends on the postfix expressions, which
are stored in postfix evaluation LUTs. Employing the afore-
mentioned FSMs, encryption and decryption algorithms pro-
posed in this chapter are implemented and validated against
various benchmarks. In the next section, implementation
details of these methods on FPGA and ASIC are
presented.

FIGURE 19. Chip layout at 180nm Bulk CMOS technology node.

B. FPGA AND ASIC IMPLEMENTATION DETAILS
Adetailed analysis of the proposed encryption and decryption
algorithms is presented in previous sections to validate their
correctness and efficacy. These methods are implemented on
hardware using System Verilog and are synthesized using
Xilinx Vivado [39].

Table 10 exhibits a detailed comparison and resource uti-
lization of our hardware implementation with other con-
temporary research, such as Adrián et al. [40], Pérez-Resa
et al. [41] and two variants of Richard et al. [42] etc.,
reported in the literature. It can be observed that the proposed
design consumes 1.825×, 3.446×, 2.275×, and 1.115× less
resource and produces 2.396×, 2.396×, 58.3×, and 21.863×
greater throughput than [40] and [41] and the two vari-
ants presented in [42], respectively. Further, the proposed
scheme is 1.785× and 4.167× power efficient, and exhibits
120.6× and 5.025× less delay while compared with [40]
and [41], respectively. It is to mention that our proposed
method exploits maximum hardware resources, memory, and
LUTs, in storing state variables only. Although it enables
the proposed design to be memory-optimized, most of the
static power is consumed in the memory operations. Since
FPGA is the target device, a few DSP slices (DSP48) are
employed during the synthesis of the proposed design, which
enables efficient implementation of trigonometric functions.
This makes the proposed scheme a resource and delay effi-
cient and presents better throughput than other state-of-the-
art methods.

It can be observed further that the power consumption of
FPGA implementation of our proposed design is 186 mW,
and its throughput is 2396.164 MBps at 100 MHz. It has
the least power-delay product compared with other designs,
which indicates that our proposed design is energy efficient.
Further, the proposed design is realized employing 180 nm
Bulk CMOS technology available with Semi-Conductor Lab
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TABLE 10. Hardware Realization of the Proposed Chaos Based Cryptosystem With Existing Ones.

TABLE 11. Actual Resource Utilization on SCL’s 180nm technology node
at 250MHz.

(SCL), India. Table 11 presents the actual physical area,
power, and resource utilization estimated using above men-
tioned technology node at 250 MHz. The fully synthesized
HDL from Vivado is exported to the Design Compiler (DC)
tool of Synopsys design suite and a custom Synopsys design
constraint (SDC) file is generated, containing all the timing
specifications of input-output ports and clocking information.
In DC, the SCL’s process design kit (PDK) libraries are
linked, and based on the PDKs, SDC, synthesizable HDL
is converted to a netlist file. The generated netlist file is
fed to the IC Compiler (ICC) tool of Synopsys design suite,
which physically places all the standard cells in a predefined
silicon die area. Subsequently, the routing of all the standard
cells is completed along with the power rails (VDD, VSS),
and the clock tree is synthesized after the routing operation
is completed. After successfully completing all these steps,
accurate power and area estimation can be obtained. The chip
layout of the proposed design illustrated in Figure 19 and
all the design parameters exhibited in Table 11 are extracted
through IC Compiler.

In order to validate the use of our proposed design in
various applications, its power profile is analyzed by varying
operating frequency from 1 KHz to 500 MHz, which is pre-
sented in Figure 20. The total power measured at a particular
frequency is the sum of static, dynamic, and leakage power.
It can also be observed in Figure 20 that the static power
contributes significantly to the total power. Below 100 KHz,
leakage power becomes comparable to the dynamic power,

FIGURE 20. Power profile of the proposed design at various operating
frequencies (1KHz to 500MHz).

which is not recommended for reliable circuit performance
at 180 nm technology. Above 100 KHz, leakage power is
insignificant compared to static and dynamic power. Further,
the leakage power does not rise substantially at 500 MHz.
This implies that our proposed design can be used reliably at
more than 100 KHz to high operating frequencies at a 180-nm
technology node. The operating range is anticipated to be
different with the smaller technology nodes. Therefore, the
chaotic map generated utilizing a nonlinear triple pendulum
is cryptographically secure and can be used in designing
PRNG and symmetric key encryption schemes. Based on the
experimental and analytical results, it can be emphasized that
the proposed scheme is better than any other contemporary
chaos-based encryption algorithm. Because of its smaller key
size, optimal area, high throughput, and low power consump-
tion, it can also be used efficiently to enhance the security of
IoT devices and any low latency, high-performance, secure
application.

VII. CONCLUSION
A triple pendulum nonlinear dynamic system based nonlinear
chaotic generator is proposed in this work. Mathematical
analysis of this chaos generator using bifurcation diagrams,
Lyapunov exponent test, etc., is performed to verify its
chaotic property. The efficacy of the chaotic map generated
through our proposed methodology is ratified by employing
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it in developing a cryptographically secure pseudo-random
number generator (PRNG). The randomness of this PRNG
is successfully validated through various standard bench-
mark tests, viz., sensitivity to parametric and initial values,
ergodicity, collision test, NIST randomness test, etc. The
proposed chaotic generator is also utilized to develop a sym-
metric key encryption scheme. It is realized on the FPGA
platform exhibiting 0.186 W power consumption, 1.592 ns
delay, and 2396.164 MBps throughput. The power consump-
tion, resource utilization, and throughput of the encryption
scheme are 1.785×, 1.825×, and 2.396× better than the
other known contemporary methods, respectively. The pro-
posed cryptosystem is further implemented using 180nm
Bulk CMOS technology occupying 0.20374 mm2 die area
and consuming 61.88 mW power at 250MHz. It is illustrated
that this system can operate from low (at least 100KHz) to
high operating frequencies efficiently without showing any
performance deterioration. The efficient area utilization of
the proposed chaos-based cryptosystemwith high throughput
at a low power enables us to utilize it in the IoT-based systems
and in high-performance applications to provide them desired
strength against malicious attacks.

APPENDIX A
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APPENDIX B
DIFFERENTIAL EQUATION OF θ2
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APPENDIX C
DIFFERENTIAL EQUATION OF θ3
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