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ABSTRACT About one-quarter of all car collisions in the United States are caused by distracted driving, and
this ratio is expected to rise. As vehicles are equipped with more elaborate and complex technology, human-
vehicle interaction via dashboard displays and controls will become more complex and distracting. Human-
vehicle interaction via voice-based technology offers a less distracting alternative. In this study we aim to
develop a voice-based car assistant, with a focus on Arabic language speech recognition. We prepare a new
4000-word domain-specific lexicon to comprehensively support driver-vehicle interactions, and we create
corresponding text and speech corpora. Then we extract acoustic feature vectors and use various acoustic
models to support speech recognition. The language model is created using an n-gram model. Then acoustic
and language models, and the lexicon are combined to generate a decoding graph. The text corpus consists of
6110 elements, including words, phrases, and sentences. The speech corpus has more than 60000 recordings
(almost 50 hours). For the decoding of noise-free audio, a Deep Neural Network + Hidden Markov Model
provided 94.832% accuracy, a Subspace Gaussian Mixture Model+HiddenMarkovModel provided 94.2%
accuracy, and the best Gaussian Mixture Model + Hidden Markov Model provided 94.13% accuracy.
For the decoding of noisy audio, a Deep Neural Network + Hidden Markov Model provided 93.316%
accuracy, a Subspace Gaussian Mixture Model + Hidden Markov Model provided 92.62% accuracy, and
the best Gaussian Mixture Model + Hidden Markov Model provided 91.82% accuracy. A usability study
was conducted on the system with 10 participants. Almost all of the results of that study showed usability
ratings of greater than 4.0 out of 5.0. These usability ratings indicate that the proposed system was seen by
the participants as important, and useful for reducing driver distraction.

INDEX TERMS Arabic language, car assistant, human-vehicle interaction, speech recognition.

I. INTRODUCTION
About one-quarter of all car collisions in the United States
are caused by inattentive or distracted driving. As wireless
networking and entertainment systems become more widely
employed in the auto industry, the number of distraction-
related accidents is expected to rise [1]. According to research
in [2], looking away from the road for more than two seconds
increases the chance of a collision by four to twenty-four
times.

Human-vehicle interaction using voice-based technology
allows drivers to keep their eyes on the road while keeping

The associate editor coordinating the review of this manuscript and
approving it for publication was Khursheed Aurangzeb.

their hands on the wheel, permitting drivers to more safely
perform necessary tasks while driving [3]. Fig. 1 shows the
sequence of events of a typical in-vehicle spoken dialog
interaction.

Speech Recognition converts a user’s voiced utterance into
a textual hypothesis. That hypothesis is then parsed, and a
semantic representation of the utterance is created, using Nat-
ural Language Understanding (NLU). Based on that semantic
representation, a dialog manager produces a textual response
(typically including prosodic markups) that will then be syn-
thesized by a speech synthesizer.

Natural Language Processing (NLP) is a field within
Artificial Intelligence in which linguistics is employed to
help machines better understand, interpret, and generate
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FIGURE 1. The sequence of events of a typical in-vehicle spoken dialog
interaction, [3].

FIGURE 2. The speech recognition process, [7].

natural language [4]. Bridging the gap in oral communication
between humans and computers is the main goal of Auto-
matic Speech Recognition (ASR) [6]. It does so by transform-
ing speech signals into computer readable texts, as shown in
Fig. 2 [5].

Natural languages develop and evolve from everyday
human use and repetition, without systematic building over
time [4]. Natural languages include both spoken and signed
languages [4]. According to some estimates, there are cur-
rently over 7000 human languages being used. [8].

Early research in ASR evolved from recognizing isolated
digits spoken by a single person, to medium-sized continuous
speech, and eventually progressed to large-vocabulary con-
tinuous speech recognition (LVSCR) [9]. ASR is currently
being used in many applications, such as in mobile phones,
automatic vehicles, industrial devices, military devices, and
inmany fields such as communication, education andmedical
and health care [10].

Arabic is one of the United Nations’ six official languages
[11]. It is the mother tongue of 206 million native speakers
[12] and is listed as fifth, after Mandarin, Spanish, English
and Hindi [4]. Modern Standard Arabic (MSA) is the official
language used in the media, and is taught in schools and
colleges within all Arab countries [13].

However, unlike ASR development for English, and for
Asian languages such as Chinese and Mandarin, ASR for
Arabic language has not yet been fully developed [14]. As a

result, ASR for MSA has recently become the primary focus
for a number of researchers.

Arabic ASR research is challenging, due to its lexical
diversity and the scarcity of useful data [17]. One of the major
problems facing Arabic ASR researchers is the shortage of
written and spoken training data [12]. The most popular Ara-
bic corpora are not available for free. They must be purchased
from the Linguistic Data Consortium (LDC) or the European
Language Resource Association (ELRA).

Arabic spoken corpora have been primarily gathered from
radio and television news broadcasts and phone calls [12].
Because of the limitations of the available spoken corpora,
Arabic ASR research and applications have been limited to
particular domains, such as Arabic digits [15], [16], broadcast
news [18], command and control [15], The Holy Qur’an
[15], [23], and Arabic proverbs [19]. Limited text and speech
Arabic corpora are also a major problem for Arabic ASR
researchers who are seeking to apply Arabic ASR to a
broader range of applications. This is of particular concern
to researchers who would like to develop a versatile voice-
based car assistant to facilitate human-vehicle interaction.
Distracted driving accidents are expected to rise due to the
increasing use of visually oriented human interfaces in cars.
A voice-based car assistant could be useful for decreasing car
accidents caused by distracted driving.

This study aims to develop a voice-based car assistant, with
a particular focus on Arabic language speech recognition,
to help in reducing driver distraction. Developing a lexicon,
as well as speech and text corpora, is essential if we are to
meet this objective.

This paper makes the following contributions:

• Building a domain-specific lexicon in Arabic to com-
prehensively support human-vehicle interaction with a
dictionary of words in the domain, including a range of
linguistic variations.

• Building speech and text Arabic corpora.
• Developing a complete ASR system, as a part of a car
assistant system.

The remainder of this paper is structured as follows.
Section II reviews speech production and perception, ASR
methodologies and related work in the ASR area, and
data sets available for this domain. Section III outlines the
stages used in ASR including feature extraction, acoustic
and language modeling, and decoding. It also introduces
our evaluation metric and toolkit. Section IV illustrates the
methodology used and the experimental setup for our ASR
model, as well as our usability study. Section V presents and
discusses the results of our model and of our usability study.
Finally, Section VI provides the conclusion and discusses
future work.

II. BACKGROUND AND LITERATURE REVIEW
In this section, a brief overview of sound generation, speech
signal, and ASR approaches are given, a review for existing
ASRmodels is given, and the available data sets are reviewed.
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A. SPEECH PRODUCTION AND PERCEPTION
One of the essential communication channels between
humans is speech and, to some degree, it is unique to every
person.

Human speech is created from the vocal tract through the
movement of many articulators such as the lips, the tongue,
and the jaw. When people speak, air is expelled from the
lungs via the trachea. This flow of air leads the vocal cords
to vibrate, ultimately producing a variety of speech sounds.
The resulting speech stream is received and processed by the
human auditory system.

Speech communication can be divided into the following
steps [20]:

• The speaker formulates his thoughts into phrases.
• The speaker generates a voice stream using the vocal
cords and the speech system.

• That voice stream is conveyed acoustically through the
air to the listener’s ear.

• The resulting neural signals are transmitted via auditory
nerves to the listener’s brain.

• In the brain those neural signals are interpreted as
language.

• The brain extracts meaning from the language
interpretation.

Human speech has a frequency range of 85 Hz to 8 kHz,
whereas human hearing has a frequency range of 20 Hz to
20 kHz. [4].

B. ASR METHODOLOGIES
ASR methodologies are classified into three approaches [20]
as shown in Fig. 3: (1) the Acoustic Phonetic Approach
(APA), (2) the Pattern Recognition Approach (PRA), and
(3) the Artificial Intelligence Approach (AIA). All three of
these approaches have one thing in common. They all depend
heavily on feature extraction [21].

The Acoustic-Phonetic Approach treats a voice stream as a
string of distinct phonetic units called phonemes - each with
a distinctive set of acoustical features. This approach has not
been widely used [22].

The Pattern Recognition Approach involves two crucial
stages: pattern preparation and pattern comparison. The key
advantage of this method is that it employs a mathematically
defined training algorithm that can be trained with a series
of labeled training samples, to ultimately create a useful
representation of speech patterns [20]. This has become the
predominant approach over the last six decades [23].

The Artificial Intelligence Approach combines the
Acoustic-Phonetic Approach and Pattern Recognition
Approaches [20], using Acoustic-Phonetic and Pattern
Recognition theories and concepts. This approach has had
only partial success [22].

C. DEVELOPMENT IN ASR MODELS
One of the earliest algorithms used for ASR is dynamic time
warping (DTW), which is used to determine the optimal

FIGURE 3. ASR methodologies classification, [20].

alignment between two-time series [24]. DTW has some
drawbacks, including high complexity and the difficulty of
comparing the elements from two separate voice streams. It is
appropriate only for simple applications [24].

Due to limitations of DTW, ASR has moved to a statistical
base - specifically to HiddenMarkovModels (HMM)where a
GaussianMixture Model (GMM) is trained to provide unique
a probability density function for each HMM state.

Another mathematical approach to speech recognition,
called Subspace Gaussian Mixture Model (SGMM), was
proposed in [25], where all HMM states that employ the
same number of Gaussians share the same GMM structure.
This method was a modification on the GMM-HMM-based
method, which involves training a distinct GMM for each
HMM state.

SGMM has an advantage over GMM in that the number of
parameters needed for each HMM state is small. This allows
training with less data. It also allows the shared parameters to
be trained using data from outside the domain and vocabulary.
It was found that, when only a limited amount of training data
(1 hour) was available, the SGMM-based model performed
better than a conventional GMM-based model [26].

Research in [27] presented a Punjabi language speech
recognition system for children’s speech, which was devel-
oped using SGMM-HMM. It showed that using SGMM for
acoustic modeling of small vocabulary datasets resulted in
significant improvements for those small data sets. In par-
ticular, this research found that speech recognition based on
SGMM outperformed GMM models for Punjabi children’s
speech.
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Research has also shown that using Gaussianmixture mod-
els (GMMs) with HMM has a substantial drawback. They
are statistically inefficient for modeling data on or near a
nonlinear manifold in the data space [28].

A novel hybrid model architecture, called the Deep Neu-
ral Network-Hidden Markov Model (DNN-HMM), has been
proposed, and has commonly been used in speech recognition
in recent years. A deep neural network (DNN) is a form of
neural network that is useful for detecting nonlinear relation-
ships within data sets [28].

Several of these hybrid models have been presented,
including shallow-NN-HMMs, and Multi-layer Perceptron
HMMs (MLP-HMMs). Research in [28] presents compar-
ative experiments for emotion recognition from speech.
DNN-HMMs were compared with GMM-HMMs, shallow-
NN-HMMs, and MLP-HMMs. The results showed that
(when the hidden layers and hidden unit numbers were appro-
priately configured) DNN-HMM provides better labeling
than GMM-HMM. Overall, the DNN-HMMmodel produced
the best performance of all these models.

In the 1990s, machine learning was incorporated into ASR,
resulting in increased accuracy [4]. Researchers in [29] intro-
duced a concept of an end-to-end ASR system, using only
recurrent neural networks (RNN) - which is a class of deep
neural network (DNN) - instead of combining GMM with
HMM, or DNN with HMM. However, a significant volume
of training data is needed to train RNNs. To provide adequate
training data, an extensive data set (consisting of 5000 hours
of reading speech in English) was collected. The trained RNN
model provided a 9.2% Word Error Rate (WER) for the raw
data, and a 9.0% WER for the same 5000 hours plus noise.

The Time Delay Neural Network (TDNN) has been shown
to be an effective network system for ASR, due to its ability
to model context. Furthermore, TDNN is faster to train than
RNN because it is a feed-forward neural architecture [30].
In [31], researchers compared TDNN, a Convolutional Neu-
ral Network (CNN), DNN, and HMM-GMM on Myanmar
language. The experiment was done using the Kaldi toolkit
on 76 hours and 53 minutes of training data. The WER for
TDNN was 15.03%. That significantly outperformed CNN
(18.44% WER), DNN (20.20% WER) and HMM-GMM
(26.11% WER).

D. ARABIC ASR
As mentioned before, a number of researchers have been
focusing on developing ASR for the Arabic language.
Researchers in [32] used aDTW-based system for recognition
of Arabic digits, resulting in a recognition accuracy of 77%.

Research in [15] developed 3 corpora; namely the Holy
Qur’an Corpus (HQC-1) around 18.5 hours, the command-
and-control corpus (CAC-1) around 1.5 hours, which is
labeled as a small vocabulary set (around 30 words in the
lexicon), and the Arabic digits corpus (ADC) less than one
hour of speech. They used Mel Frequency Cepstral Coef-
ficient (MFCC) to perform feature extraction, a Gaussian
Mixture Model (GMM) for generating probability density

functions, and CarnegieMellon University’s CMUSphinx-IV
engine, which is based on Hidden Markov Models (HMMs).
This produced a word recognition rate of 99.21% for the
digits corpus, 98.1% for the command-and-control corpus,
and 70.8% for the Holy Qur’an corpus.

Research in [16] developed a corpus for Arabic digits, and
used CMUSphinx-IV for voice recognition based on HMM,
with a recognition rate of 85.56% for male speakers and
83.34% for female speakers.

In [17] the authors used Qatar’s lexicon which has
526K distinct words, with 2M different pronunciations to
build three Arabic broadcast news speech recognition sys-
tems. The DNN-HMM WER was 29.81%. This outper-
formed SGMM-HMM (32.94% WER) and GMM-HMM
(36.74% WER).

Research in [33] presented an end-to-end multi-dialectal
Arabic language speech recognition system, where a huge
multi-dialectal Arabic speech corpus (consisting of approx-
imately 1,400 hours of speech) was developed and used to
train a Convolutional Neural Network + Recurrent Neu-
ral Network (CNN-RNN) model, resulting in an overall
14% WER.

E. AUTOMOBILE DATA SET
Vehicles fitted with both person and automobile sensors have
been deployed during the last two decades to gather realistic
data on drivers, vehicles, and driving conditions. Speech
corpora have been obtained from in-vehicle usage to improve
in-vehicle Automatic Speech Recognition (ASR) and spoken
dialog systems [3].

SPEECHDAT-CAR was the first international program to
provide a multilingual speech corpus for automobile applica-
tions, with ten languages (American English, British English,
Danish, Finnish, French, Flemish/Dutch, German, Greek,
Italian and Spanish) [34].

Research in [35] formulated and analyzed a new acoustic
speech corpus for creating in-vehicle interactive navigation
and route planning systems. Data was gathered from over
1000 speakers from all over the United States.

F. ARABIC DATA SETS
Several Arabic lexicons have been created for various pur-
poses. Qatar’s lexicon is very large (2,022,708 words). How-
ever, it has certain linguistic issues that are not systematic.
Other available lexicons, such as the CALLHOME and the
Madar lexicons are in particular Arabic dialects. Some avail-
able lexicons, such as the Buckwalter Arabic Morphological
Analyzer Version 1.0 do not contain Arabic diacritics. None
of the available lexicons are domain specific, covering narrow
topics such as numbers, or broad topics such as Qur’an, news,
or a variety of other non-specific topics.

G. RESEARCH GAP
Across the speech recognition work to date, comparatively
little research has been done in Arabic speech recognition,
and the existing work has been limited to particular research
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topics, such as Qur’an, digits, and news. In particular, there
has been no work aimed at supporting an Arabic car assistant.
Because they do not include the words or sentences that are
needed for such an application, we could not use any of the
existing lexicons or corpora to support our development of a
car assistant because they are not domain specific and have
many certain linguistic issues that are not systematic, many
are for dialects not for standard Arabic, some do not contain
Arabic diacritics. With this in mind, we propose our initial
research question:
Research Question 1: How could we develop an automatic

speech recognition system for an Arabic car assistant?
The literature shows that the limitation of Arabic ASR

comes from the lack of adequate lexicons, as well as training
and testing data. While several Arabic lexicons have been
produced for a variety of purposes, none of them were specif-
ically designed for human-vehicle interaction. This brings us
to our second research question:
Research Question 2: How can we develop a lexicon,

as well as text and speech corpora in Arabic specifically for
the car assistant domain?

III. CONCEPTUAL FRAMEWORK
This section provides a detailed description of the architecture
of a typical speech recognition system, including feature
extraction and decoding methods.

A. ARCHITECTURE OF AN ASR SYSTEM
ASR involves the study of speech signals, and the methods to
interpret these signals into words. To generate speech signals,
people use their vocal cords. The resulting sound is captured
using a high-quality microphone and streamed through a
speech recognition device that interprets and converts the
signal stream into a sequence of words (text).

Fig. 4 shows the consecutive steps involved in the speech
recognition process [5]: Pre-processing, Feature Extrac-
tion, Decoding (the actual speech recognition) and Post-
Processing to produce a text string.

Various methods and algorithms are used for each of these
steps to build an ASR system. The ones that we used for each
step are detailed later.

The 4-step ASR process detailed in Fig. 4 can be reduced
to two basic stages [36]:

A- The Acoustic Front-End stage converts the audio
speech stream into a stream of feature vectors in digital
machine format.

B- The Decoding and Post-Processing stage is trained to
identify likely matches between the incoming string of
feature vectors and words, thus producing a list of plau-
sible word sequences (i.e. N-best hypotheses) and Post-
Processing then selects from among these hypotheses.

A typical speech recognition system is designed with major
components that involve the acoustic front-end, acoustic
model, lexicon, language model and decoder, as seen in Fig. 5
[5], [23].

The Acoustic Front-End translates the continuous speech
signal into a string of discrete feature vectors. During Pre-
Processing, the speech signal is enhanced, by applying pre-
emphasis filters plus noise removal or reduction [7]. Feature
Extraction then converts the resulting audio signal into a
string of fixed-size acoustic feature vectors [7]. TheDecoding
process then applies acoustic and language models to identify
the most likely matches (i.e. the most likely hypotheses)
between the incoming string of feature vectors and all of
its internally stored sequences of words [7]. Post-Processing
then selects the most likely hypothesis from among the n-best
hypotheses [7], [23].

1) MATHEMATICAL REPRESENTATION OF ASR
Statistical ASR determines the most likely word sequence,
given a speech signal, which might come from a real-time
audio input stream, or from an audio recording [4]. The aim is
to identify themost likely word sequencew∗ given a sequence
of acoustic feature vectors X [4].

w∗ = argw max {P (w|X)}

using Bayes’ Rule, the expression is transformed to

w∗ = argw max
{
P (X |w) .P (w)

P (X)

}
Since P (X) is independent of the sequence of words, it is
typically deleted from the expression

w∗ = argw max {P (X |w) .P (w)}

where P (X |w) is the Decoded likelihood of a sequence of
feature vectors conditioned by some sequence of words w,
as determined by the Acoustic and Language Model, and
P (w) is what will be determined by the Post Processing
language model.

2) PRE-PROCESSING
In ASR systems, Pre-Processing is the first step of speech
recognition; it adjusts or modifies the speech signal so that it
will be more suited for the Feature Extraction process [37].
The main factor to consider in speech signal pre-processing,
is whether the signal is corrupted by some background or
ambient noise.

During this Pre-Processing stage, several enhancement
techniques and operations can also be performed. One of the
first enhancement techniques that could be applied is pre-
emphasis filtering. Its purpose is to compensate for lip radia-
tion and the high-frequency attenuation that occurs during the
sampling process. High-frequency components are empha-
sized, and low-frequency components are deemphasized [38].

Other techniques that might be used are speech enhance-
ment techniques, which are aimed at channel and noise com-
pensation in adverse environments [38].

3) FEATURE EXTRACTION
Effective feature extraction is vital in ASR systems [39].
It recognizes and distinguishes one speech feature from
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FIGURE 4. ASR process steps.

FIGURE 5. Architecture of typical speech recognition system, [5].

another [40]. The aim of this stage is to extract themost useful
feature vectors for recognition [7].

Various methods are used for feature vector extraction,
such as Linear Prediction Coding (LPC), Mel Frequency
Cepstral Coefficient (MFCC), Linear Discriminant Analysis
(LDA), Perceptual Linear Prediction (PLP), Principal Com-
ponent Analysis (PCA), CepstralMean andVarianceNormal-
ization (CMVN) and more [39].

The best known and most widely used feature extrac-
tion technique for speech recognition is MFCC [40]. It is
described in detail here, as it is used in this work.

The Mel Frequency Cepstral Coefficient (MFCC) algo-
rithm, (when applied to a short segment of audio extracted
from a voice stream) produces a set of coefficients that rep-
resent the frequency response of the speaker’s vocal tract to
glottal pulses during that segment. It is a very fast, reliable
and easy computational technique [41]. Several steps are used
to compute the MFCC feature vectors. Fig. 6 shows these
steps.

1) Frame Blocking: The frequency response of the human
vocal tract to glottal pulses can change rapidly dur-
ing speech [42] This is the reason feature vectors are
extracted from short segments of the speech signal. The
speech signal is chopped into short ‘‘frames’’ (usually
between 5 and 100 milliseconds long) with a 10 ms
overlap with the previous and subsequent frame. This
results in a resolution of 10 ms for frames [4]. The
purpose of this overlapping scheme is to smooth the
transition from frame to frame [43].

2) Windowing: This modulates the amplitude of the sam-
ples across each frame with a scaling function. The aim
of this process is to remove discontinuities at the edges

of frames [42]. Hann window and Hamming window
are the most commonly used in ASR [4].

3) Fast Fourier Transform (FFT): This computes the Dis-
crete Fourier Transform (DFT) across each frame.
It provides a spectral profile of the frequency response
of the vocal tract within that frame. [7].

4) Mel Filter Bank: A Mel filter bank applies a set of
triangular bandpass filters to the FFT power spectrum
to extract a coefficient for each frequency band. These
filters mimic the non-linear perception of frequencies
by the human ear, which is linear up to 1 kHz, and then
logarithmic above that [42]. The filters within the Mel
filter bank are logarithmic at higher frequencies and
linear at lower frequencies [4]

5) Cepstrum: This maps the amplitude coefficients pro-
duced by the Mel Filter Bank (which collectively rep-
resent the spectral frequency response of the vocal tract
during the frame) back into the time domain, using the
Discrete Cosine Transform (DCT). (The DCT func-
tion is used instead of the inverse Fourier Transform
because it is more efficient and produces real-number
coefficients instead of complex numbers.) These real-
number cepstral coefficients are then used to create a
feature vector for that frame [4], [42].

The temporal first and second derivatives of cepstral coef-
ficients from frame to frame provide additional information
about the temporal changes in the vocal tract. The first-order
derivatives (called delta coefficients 1) indicate the rate at
which the vocal tract is changing, which is an indicator of
the rate speech, while the second-order derivatives (called
delta-delta coefficients 11) represent changes in the rate of
speech.
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FIGURE 6. MFCC features extraction steps.

4) DECODING
As mentioned earlier, the decoding stage (i.e. the Acous-
tic Model and the Language model) tries to find candidate
sequences of words (w∗) that are most likely to match the
sequence of incoming feature vectors (X ), where the prob-
ability value for each word P (X |w) is determined by the
Acoustic Model and the value of the P (w) is determined by
the Language Model.∗ ∗ ∗

5) ACOUSTIC MODELING
Acoustic modeling computes a likelihood that a series of
feature vectors extracted from the voice stream matches each
word in the lexicon. In other words it estimates the likelihood
P (X |w). The likelihood for individual words is computed by
concatenating the likelihood of simple sub-word components
(called phones) based on a pronunciation lexicon [6]. Note:
A speech recognizer can match spoken words that did not
exist in its training set to words in its internally stored lexicon
by recognizing sub-word units (i.e. phones) that were learned
from the words that were in its training set.

A word is composed of a sequence of phones.
In large vocabulary speech recognition systems (more than
5000 words), training might be based on monophones (i.e.
single phones), on diphones, (two sequential phones), or tri-
phones (three sequential phones).

The acoustic model might be built using a variety of
approaches, including a Hidden Markov Model + Gaussian
Mixture Model (HMM-GMM), a Hidden Markov Model +
Subspace Gaussian Mixture Model (HMM-SGMM), a Hid-
den Markov Model + Deep Neural Network (HMM-DNN),
conditional random fields, segmental models, and maximum
entropy models. The Hidden Markov Model is used exten-
sively in speech recognition, and is considered one of the best
statistical models.

6) LANGUAGE MODELING
The Language Model P (w) receives strings of phones from
the Acoustic model and determines which strings of phones
are valid words in the language, and inwhat order thosewords
can appear [23]. In doing so, it computes a probability for
a given series of words. To put it another way, if there is
a sequence of words, w = (w1,w2, . . . ,wk), the language
model computes the probability P (w1,w2, . . . ,wk) of that
particular sequence occurring in the language.

There are many types of Language Modelling techniques
used in ASR. However, the n-gram model is the most com-
mon. The n-gram model uses prior words to estimate the

FIGURE 7. HMM-based phone model, [47].

likelihood of a subsequent word, as described below [23]:

P (w) =
k∏

k=1

P (wk |wk−1,wk−2,wk−3, . . . ,w1)

This process is based on the premise that the probability
of each word depends on the previous words. The bigram
and trigram are forms of n-gram language modelling that are
commonly applied in ASR. The bigram form is when n of the
n-gram equals 2 (i.e. one prior word) and the trigram when n
equals 3 (i.e. two prior words).

7) POST-PROCESSING
Most Decoders generate a list of plausible word strings (i.e.
hypotheses) sorted by their statistical likelihood. Since this is
a list of the best n hypotheses, it is known as the n-best list.
The LanguageModel in the Decoder scores each of the n-best
hypotheses based on their plausibility. Post-processing then
chooses from among this list of word sequence candidates.
The hypotheses that it assigns the highest score is then used
for recognition [5].

Additional Post-Processing algorithms might recover
punctuation, add capitalization, and use abbreviations.
In addition, numbers and other forms of special data can be
translated from words to regular form. This is all done to
increase readability.

B. HIDDEN MARKOV MODEL (HMM)
The Hidden Markov Model (HMM) is one of the most pop-
ular statistical modeling techniques. It was presented and
researched during the 1960s and 1970s. The HMM is an
augmentation of the Markov chain [44], [45], [46].

The implementation of an Acoustic Model as a Hidden
Markov Model is shown in Fig. 7 [47].

It was mentioned earlier that the incoming speech stream
is chopped into a string of short frames. Because of the
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shortness of those frames, a single phone might span several
frames.

Fig. 7 shows one possible sequence of state changes within
an Acoustic Model’s Hidden Markov Model. The extraction
of a sequence of feature vectors from the voice stream is
represented by y1, y2, y3, y4 and y5. States s2, s3, and s4
are states that represent phone A, phone B and phone C,
respectively.

There are three transition possibilities for each of states s2,
s3 and s4. For example, a12, a22 and a23 represent the three
state transitions for s2, When in State s1, the probability of
a transition a12 into a state s2 (which represents phone A) is
greater if a feature vector resembling phone A is extracted
from the voice stream. If subsequent feature vectors also
resemble phone A, the ‘‘looping’’ transition a22 is likely.
However, if a feature vector resembling phone B is extracted,
a transition out of state s2 to state s3 (which represents phone
B) is likely. Thus, a transition into a state, followed by a
transition out of that same state indicates the passing of a
single phone in the voice stream, from start to finish [48].

As the ongoing voice stream is processed, if the sequence
of extracted feature vectors (y1, y2, y3, y4, y5) creates a high
probability of transitions s1 s2 s3 s4 s5, then it is highly
probable that the sequence of phones represented by states
s2, s3, and s4. (i.e. phone A, phone B, phone C) was present
in the voice stream.

If there is ambiguity in some of the extracted feature
vectors, there might be significant probabilities for state tran-
sitions into several different states. When this happens, the
Hidden Markov Model might produce significant probabili-
ties for more than one sequence of phones.

The degree of similarity between each feature vector and
all the possible phones is determined by a classifier, which
assigns a similarity value between each feature vector and
each of the possible phones. Such a classifier might be imple-
mented with a Gaussian Mixture model (GMM), a Subspace
Gaussian Mixture Model (SGMM), or a Deep Neural Net-
work (DNN).

C. GAUSSIAN MIXTURE MODEL (GMM)
A Gaussian Mixture Model (GMM) is a classification algo-
rithm that employs weighted sums of Gaussian densities
to collectively represent irregular regions within a vector
space [49].

In the case of Acoustic Modeling, each of these regions
would represent a particular class of feature vectors (i.e.
a particular phone). In some cases, the regions representing
different phones might overlap. In that case a feature vector
in the overlap region would be assigned probabilities for
membership in both of the overlapping classes. This is called
statistical classification. GMM classifiers are widely recog-
nized for their ability to statistically classify vectors within
vector spaces where classes are represented by irregularly
shaped and overlapped regions, and they have been found to
be useful for a wide range of applications [56].

FIGURE 8. DNN-HMM hybrid system architecture, [51].

D. SUBSPACE GAUSSIAN MIXTURE MODEL
In the Subspace Gaussian Mixture Model (SGMM) all clas-
sification regions in the vector space are defined by the same
Gaussian Mixture Model structure, with the same number
of Gaussians used to define each region [25]. The model is
defined by state vectors and a global mapping from vector
space to GMM parameter space [25]. Compared to a standard
GMMmodel, this model appears to produce better classifica-
tion results [25].

E. DEEP NEURAL NETWORK
An alternative to classification using Gaussians to define
regions within a Feature Vector space is to use a Deep Neural
Network (DNN) [50]. A DNN is a feed-forward artificial
neural network with more than one hidden layer between
its input and output layers. DNNs with multiple hidden lay-
ers outperform GMM classification on a number of speech
recognition criteria - sometimes by a significant margin [50].
Through the use of multiple hidden layers, a deep neural
network can provide classification of feature vectors for very
complex data sets.

For a DNN-HMM hybrid system, the HMM represents the
speech signal’s sequential characteristic, whereas the DNN
provides the statistical classification of the feature vectors
that drive the HMM. Fig. 8 shows the architecture of the
DNN-HMM hybrid system [51].

F. TRIPHONE STATE TYING
The beads-on-a-string model, which represents all spo-
ken utterances by concatenating a sequence of context-
independent phones (aka monophones) has a key flaw in
that it fails to reflect the high degree of context-dependent
variation in phones during real speech [52]. To overcome this
problem, we can use a Triphones model, where a different
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phone model is selected for each possible combination of its
neighbors [52].

However, using a different phone model for each possible
combination of two neighbors greatly increases the number
of models that must be created during training. For example,
if there are N phones, there will be N 3 triphones. Fortunately,
it is not necessary to model all possible triphones, because
not all phones vary significantly in different contexts. State
tying is used to employ the same phone model in multiple
triphone models, thus simplifying the modeling process [47],
[52], [61].

G. DISCRIMINATIVE TRAINING
Discriminative training establishes an objective function for
differentiating between possible hypotheses [54]. Different
forms of objective functions are used in speech recognition
systems. Those used in this study are described below:

1) MaximumMutual Information (MMI): The goal of this
function is to maximize the posterior probability of the
correct word sequence. This model is given by [55]:

FMMI (λ) =

R∑
r=1

log
Pλ
(
Xr
Msr

)k
P (sr )∑

s
Pλ
(
Xr
Ms

)k
P (s)

λ represents the parameters of the acoustic model,
Xr denotes to the training words, Ms represents the
HMM sequence corresponding to a sentence s, and
sr is the correct transcription for the r ′th utterance, k
is the acoustic scale as used in decoding and P (s) is
the language model.

2) Minimum Phone Error (MPE): This seeks to decrease
phone error rates in order to improve phone level accu-
racy. MPE is defined as follows [55]:

FMPE (λ) =

R∑
r=1

∑
s
Pλ
(
Xr
Msr

)k
P (s)A (s, sr )∑

s
Pλ
(
Xr
Ms

)k
P (s)

where A (s, sr ) denotes to the raw phone accuracy of s
when compared to the reference sr , which equals the
number of accurate phones minus the number of inser-
tions, k denotes to the acoustic model scaling factor.

H. ADAPTATION TECHNIQUES
In most statistical modeling the model’s training and input
circumstances aren’t always the same. Speaker variances,
background noise, and channel differences can lead to poor
recognition performance [56]. Acoustic model adaptation
changes the parameters of an acoustic model used for speech
recognition to better match the actual acoustic features [56].

Speaker adaptation is the process of employing a mapping
function f from the space of parameters of the initial models
to the space of the goal model [56].

θ̂ = f (θ1 . . . θn)

where θ̂ represents the target model that must be obtained, f
represents the adaptation model, and n is the number of initial
models provided.

Maximum-Likelihood Linear Regression (MLLR) is an
adaptation technique that is widely used in the ASR field.
This method adapts to a given speaker by improving the
probability between the real model and the adaptation model,
which is achieved by linear modification of the Gaussian
model parameters [57].

There are several variations on MLLR, such as mean only-
MLLR, standard MLLR, and feature space MLLR (fMLLR),
also known as constrained MLLR. fMLLR is calculated by
performing linear transformations on the observation charac-
teristics rather than on the model parameters [57].

I. EVALUATION
Word Error Rate (WER) is the most widely used measure
of speech recognition performance. Using the Levenshtein
distance measure, WER calculates the edit distance between
the prediction and the target, based on the required number
of insertions, deletions, and substitutions [4]. WER is defined
as:

WER =
Insertion (I )+ Substitution (S)+ Deletion (D)

Total Number of Reference Words (N )

J. KALDI TOOLKIT
Kaldi is an open-source speech recognition toolkit written
in C++ and distributed under the Apache License v2.0.
Kaldi’s goal is to provide a code that is modern, flexible, easy
to understand, modify and extend [58]. Other toolkits such
as HTK, CMUSphinx and the RWTH toolkit are available.
However, Kaldi was chosen due to its features: its code is
integratedwith Finite State Transducer (FST), it has extensive
linear algebra support, it has an extensible design where
algorithms are provided in the most generic form, it has a
free license, it provides complete recipes for creating ASR
systems, and its code has been tested extensively to ensure
that it returns high accuracy results [58].

1) FINITE STATE TRANSDUCER
The Finite State Transducer (FST) is a finite state automa-
ton that labels its states with input and output symbols
and converts between input and output sequences. If the
FST is labeled with inputs, outputs and weights, then it
is called Weighted Finite State Transducer (WFST), where
these weights can be used to indicate a duration, a probability,
or a cost [59].

In general, Kaldi employs WFST in almost all training
and decoding algorithms to merge acoustic and the language
model information. For speech recognition the four main
models are word-level grammar G, the pronunciation lexicon
L, the context-dependency transducerC , and the HMM trans-
ducer H [60].

In Kaldi, the decoding graph may be constructed by cre-
ating the HCLG graph, which is described below using the
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associative operation:

H o C o L o G

2) WORD LATTICE
The creation of word lattices is an effective solution for deal-
ing with speech decoding’s big dimensional search challenge.
A word lattice represents the various word-sequences that are
‘‘sufficiently probable’’ for a given speech stream [47].

The task of generating the transcription for a sequence of
feature vectors by computing the Mel Frequency Cepstral
Coefficients (MFCCs) from the audio input is equivalent to
finding the most likely path through theWeighted Finite State
Transducer (WFST), i.e. the path that has the lowest final
cost.

For an utterance with T frames the search graph is defined
as:

S = U o H C L G

where U is the Weighted Finite State Acceptor (WFSA).
An acceptor is a Weighted Finite State Transducer with

identical input and output symbols, corresponding to the
utterance. It has T + 1 states, with an arc for each combina-
tion of (time, context-dependent HMM state). The associated
acoustic probability is the cost of each arc. Finding the best
path across S is the decoding problem’s equivalent [61].
Viterbi decoding with beam-pruning is a common search

technique used in this stage. It can be summarized as follow
[62]:
• All parallel arcs are directly compared for each time
frame. Paths with probability massively lower than the
most likely path are eliminated. Assume that α is the
beam parameter. If the most probable path has the score
pMAX , paths with individual scores pi that meet the
criteria |pi − pMAX | > α will be trimmed.

A word lattice is then constructed from the paths that have
survived, and that meet some additional requirements.

Finding the most likely path across the word lattice is a
search problem that can be solved with any rapid dynamic
search technique. The Viterbi Algorithm is a common choice,
and the one used by Kaldi.

IV. METHODOLOGY
A. OVERVIEW
First, we prepared the data set (lexicon, text corpus, and
speech corpus with its transcriptions). Then pre-emphasis
filtering was used as a pre-processing step. Then we used
the MFCC algorithm to extract features with 25 ms frames,
shifted by 10 ms each time, with a Hamming windowing
function. GMM, SGMM and DNNwere then used to classify
the feature vectors and estimate the transition probabilities
within the HMM model.

The language model was created using an n-gram model
and represented using WFST. Then, a decoding graph was
created to combine the HMM structure with the lexicon and
language model, in the form of WFST. For test data, after

the pre-processing step and extraction of the MFCC features
and decode using the decoding graph, a lattice of probable
sequences of words was generated and used for scoring.
Fig. 9 shows the overall methodology used in our study.

B. DATA SET
It was necessary to create a new domain-specific lexicon,
as well as text and speech corpora. This domain specific
lexicon was built to cover the requirements of a car assistant,
with a comprehensive dictionary of words in that domain, and
with their possible linguistic variations using the International
Phonetic Alphabet (IPA) for Arabic language.

1) EXPERIMENT 1: PREPARING THE LEXICON
The lexicon should include all words, in Modern Standard
Arabic (MSA), relevant to the human-vehicle interaction
domain (as well as their various linguistic variants) tran-
scribed using the International Phonetic Alphabet (IPA). The
IPA is a collection of symbols used to represent the speech
sounds of many languages throughout the world [63]. The
lexicon was built in Experiment 1, which was conducted
using the following steps:

1) Ten car drivers providedwords to build the lexicon. The
drivers were then asked about the ways in which they
might interact with a car using this lexicon.

2) We consulted with an expert linguist to list all the words
related to the ways in which drivers might interact with
a car.

3) The expert linguist provided a comprehensive list of
possible variations for the words in the lexicon.

4) The expert linguist transcribed each of the words in the
lexicon, using IPA.

2) EXPERIMENT 2: GENERATING THE CORPUS
We needed to create text and speech corpora. A text corpus is
a collection of texts (or portions of texts) that can be subjected
to generic linguistic analysis [64]. A speech corpus is a
collection of audio recordings, with spoken words/sentences
and text transcriptions [65].

With the assistance of the expert linguist we prepared the
text corpus - a set of relevant phrases and sentences that
employed the words in the lexicon.

To prepare the speech corpus, we conducted Experiment 2,
using the following steps:

1) We divided the speech corpus up into small sections.
2) 46 car driver (19 males, 27 females) with ages rang-

ing from 18 to 75 were asked to record phrases and
sentences from the speech corpus, with the technical
specifications shown in Table 1.

3) Copies of the audio recordings were blendedwith back-
ground traffic noise.

4) Python scripts were developed to transcribe the record-
ings of the uttered sentences, phrases or words.

C. LANGUAGE MODEL
Weused the SRILM toolkit to build a bigram languagemodel.
SRILM is a set of C++ libraries, executable programs, and
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FIGURE 9. Overall methodology.

TABLE 1. Speech corpus technical specification.

auxiliary scripts that make it possible to create and test sta-
tistical language models for speech recognition and other
applications [66].

D. TRAINING ACOUSTIC MODELS AND DECODING
We conducted two experiments to train the acoustic mod-
els from noise-free recordings and from noisy recordings,
to decode the test data and to evaluate the ASRmodel. A vari-
ety of training strategies were used in these experiments to get
more accurate findings and better-quality models. We trained
the acoustic model with different models of GMM, SGMM
and DNN.

1) EXPERIMENT 3: DECODING NOISE-FREE DATA
Experiment 3 was conducted to train acoustic models, and to
subsequently decode noise-free data. The following are the
steps of the experiment:

1) We divided the noise-free speech data into 5 folds
and trained the models 5 times - each with an 80:20
Training: Testing ratio.

2) Pre-emphasis filtering was used as a pre-processing
step.

3) MFCC Feature Extraction was used to extract 39 fea-
tures. The waveform’s amplitude was represented by
12 of the features, energy was represented by the 13th
feature, the 1-values among frames were represented
by another 13 features, and the 1 − 1 values were
represented by the last 13 features.

4) Cepstral Mean & Variance Normalization was applied
to the feature vectors. In doing so, the feature values
were normalized by the mean, and divided by the
variance.

5) The acoustic model was trained with different GMM,
SGMM and DNN models.

6) After each training phase a Decoding Graph was gen-
erated.

7) The Acoustic Model was then used to decode the
GMM, SGMM and DNN outputs.

8) After each training phase, the audio and text were
aligned. This allowed the advanced training algorithms
to use the values from each training phase to improve
the parameters of the model.
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TABLE 2. GMM-HMM models parameters.

For the GMM models we built a monophone model where
information regarding each phone’s prior and subsequent
phones were neglected. The monophonemodel was then used
as the foundation for triphone models. On top of it we built
Delta and Delta Delta triphone models, which were trained
using first and second order MFCC delta.

Then we built an LDA-MLLT triphone model, which was
a highly refined model, where Linear Discriminant Analysis
used feature vectors and created HMM states, but with a
smaller feature space for all input, and the Maximum Likeli-
hood Linear Transform used the LDA’s reduced feature space
to create a unique transformation for each speaker.

Next, we trained discriminative training algorithms. MMI
and MPE was implemented on top of LDA+MLLT. SAT
was implemented on top of LDA+MLLT to normalize noise
and speakers, using a data transform for each speaker. Next,
we trained a discriminative training algorithm on top of the
LDA+MLLT+SAT.

The parameters, the number of Gaussians and the number
of leaves, were specified at each call of the triphone training
scripts. The number of Gaussians is the number of mixture
models that the training should strive towards, while the
number of leaves is the number of leaf nodes that should be
targeted during the state tying process. There is no standard
rule for determining the appropriate number of Gaussians or
leaves. These values vary according to the type of the training
data, and are determined through testing. Table 2 shows the
parameters for each GMM-HMM training model.

For SGMM training, on top of the LDA+MLLT+SAT
model, a Subspace Gaussian Mixture Model was trained,
where the HMM states, or the decision tree leaves, have
a same structure (i.e. the same number) of Gaussians. The
number of Gaussians set for the HMM states was 700, the
number of leaves was 500, and the number of substates was
1000.

The DNN model had two hidden layers. The p-norm func-
tion was used to activate the nodes and produce their output.
The equation below shows the p-norm function [67].

y = ‖x‖p =

(∑
i

|xi|p
)1/p

Research in [67] showed that the p-norm function outper-
formed other activations (including various versions of Max-
out, and tanh and ReLU) on a consistent basis. The p-norm
units performed better, even with fewer parameters and lay-
ers. The p-norm input dimension was 1000 nodes, and the
p-norm output dimension was 200 nodes, the initial learning

FIGURE 10. Relations among models.

rate was 0.02 and the final learning rate was 0.004. The input
features are MFCC + LDA + MLLT + SAT. Fig. 10 illus-
trates the relations among these methods.

2) EXPERIMENT 4: DECODING NOISY DATA
Experiment 4 was conducted to train with and decode noisy
data. The steps for this experiment are the same as Experi-
ment 3 steps, except that we use noisy data.

E. EXPERIMENT 5: USABILITY STUDY
This study goal was to investigate the usefulness of the pro-
posed car assistant system, and to evaluate the performance
of our Arabic speech recognition system as a part of the
human-vehicle interaction framework. This usability study
was conducted using the following steps:

1) We chose 20 sentences from all topics in the system’s
lexicon. Fig. 11 shows the selected sentences.

2) We developed an evaluation sheet, where 5 indicated
strong agreement and 1 indicated significant disagree-
ment with the statement. Table 3 shows the evaluation
sheet.

3) Ten car drivers were chosen to perform this experiment,
ranging from novice to expert drivers. Participants in
the study ranged in age from 20 to 75.

4) Participants were asked to read the 20 sentences twice,
with and without traffic background noise.

5) These readings were then decoded in real time, where
the participants could see the recognized words imme-
diately. Realtime decoding meant that the participant
did not have to wait until all the audio was acquired.

6) After reading the 20 sentences twice, each participant
was asked to complete the evaluation sheet.

V. RESULTS AND DISCUSSION
A. DATA SET
1) EXPERIMENT 1: GENERATING THE LEXICON
Experiment 1 results are as follows. The prepared lexicon
contained about 4000 words, covering a range of topics,
including car parts, weather, currencies, dates, units, prayers,
capitals, cities, and application services. Fig. 12 shows some
of the words from the lexicon.
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FIGURE 11. Selected sentences for usability study.

TABLE 3. Evaluation sheet.

FIGURE 12. Words from Lexicon.

2) EXPERIMENT 2: GENERATING THE CORPUS
The text corpus was comprised of 6110 elements, including
words, phrases, and sentences. According to our experiment,
asking about the time, weather, locations, the status of car
parts, prayer times, giving some orders like turn AC on or off,
open car window, turn on music, raise volume and others, are
primarily used in Human-Vehicle Interaction. Fig. 13 shows
a small portion of the text corpus.

Experiment 2 results were as follows. The speech corpus
had more than 60,000 recordings (almost 50 recording hours)
along with their transcriptions, 30,000 recordings (almost
25 recording hours) without traffic noise, and 30,000 record-
ings with traffic noise.

B. LANGUAGE MODEL
The output of the SRILM toolkit is a file that contains a
language model in ARPA format, where various probabilities
of an n-gram are listed. Fig. 14 shows the header of the ARPA

FIGURE 13. Part of text corpus.

FIGURE 14. Header of ARPA Format LM.

FIGURE 15. List of 2-grams.

TABLE 4. Experiment 3 results.

file format, which shows the number of distinct n-gram types
detected for each order n, up to the model’s maximum order.
Fig. 15 shows a sample list of 2-grams.

Each of the 2-grams is followed by the log (base-10) of
the word’s conditional probability given the previous 1-gram
words. This says that the probability of the word (attareekh)
coming after (Howa) is 10−1.525045 = 0.029850733.

C. TRAINING ACOUSTIC MODELS AND DECODING
1) EXPERIMENT 3: DECODING NOISE-FREE DATA
Table 4 shows the average WERs from Experiment 3.

The average WER for the monophone models was the
worst among all the models. This was expected because
context-independent phones were used in building this
model. The first large improvement can be seen when switch-
ing frommonophones to triphones as the unit used in training,
where the WER decreased by 2.596%. Tri2B (LDA+MLLT)
performed slightly worse. This was not expected, but was
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FIGURE 16. Example of incorrect decoded sentence.

TABLE 5. Experiment 4 results.

attributed to the small amount of training data, which did
not allow the system to do adequate alignments. MPE+tri2B
performed slightly better, while MMI+tri2B performed
worse, which was also attributed to the small amount of
data. The best result for the acoustic model (trained using
GMM-HMM) was obtained for the tri3B model with a 5.87%
WER. That’s a 3.07% WER improvement from the previous
model. SGMM also showed an improvement with a 5.80%
WER, and the best of all models was the DNN-HMM model
with a 5.168% WER. For DNN-HMM model most of the
errors are coming from the masculine and feminine suffixes,
word prefixes and some letters’ diacritics. Fig. 16 shows an
example of sentence decoded incorrectly, where masculine
verb decoded instead of feminine one.

2) EXPERIMENT 4: DECODING NOISY DATA
Table 5 shows the average WERs from Experiment 4.

In Experiment 4, there was no pre-processing step for noise
cancellation. Its purpose was to test how well the model
would recognize noisy data.

The monophone model WER was the worst perform-
ing among all the models with a 14.49% WER. The first
significant improvement was seen when switching from
monophones to triphones with a 3.116% improvement in
WER. The best triphone result was from the tri3B model
(i.e. the acoustic model trained using GMM-HMM) with
an 8.18% WER which was a 4.34% WER improvement
from the previous triphone model. SGMM showed a fur-
ther improvement with a 7.38% WER, and the best of all
models was the DNN-HMM model with a 6.684% WER.
For DNN-HMM model most of the errors are coming from
the masculine and feminine suffixes, word prefixes, some
letters’ diacritics and missing some words in some cases
when noise were high. Fig. 17 shows an example of sentence
decoded incorrectly, where one word is missed in the decoded
sentence.

FIGURE 17. Example of incorrect decoded sentence.

TABLE 6. Experiment 5 results.

D. EXPERIMENT 5: USABILITY STUDY
Table 6 shows the results from Experiment 5, in the form
of the mean scores from the evaluation sheets filled out by
ten participants after they read the sentences and saw the
transcriptions.

In general, these results are encouraging. Except for
‘‘Noise Tolerance’’, all the criteria used to measure the sys-
tem’s usability scored mean ratings of more than 4.0 out
of 5.0. The highest score was for ‘‘Ease of Use’’, where no
prior experience was needed to use the system. The lowest
score was for ‘‘Noise Tolerance’’, which indicates that the
system did not perform very well within noisy inputs. This
motivates us to concentrate our efforts on improving the
system’s performance when dealing with noisy data, via the
use of noise filters.

VI. CONCLUSION AND FUTURE WORK
A. CONCLUSION
This research proposed to answer the following research
questions:
Q1: How could we develop an automatic speech recogni-

tion system for an Arabic car assistant?
A: This study proposed a car assistant speech recognizer

for Arabic language with the aim of reducing driver distrac-
tion to reduce car accident rates. To achieve our goal, MFCC
was used to extract the acoustic features, and a bi-gram
language model was analyzed using SRILM toolkit. Three
different acoustic models GMM-HMM, SGMM-HMM and
DNN-HMM were developed twice (with and without noise)
and compared. For the GMM-HMM approach, various dis-
criminative and adaptation techniques were trained at differ-
ent stages.

VOLUME 10, 2022 127527



G. A. Jaradat et al.: Novel Human-Vehicle Interaction Assistive Device for Arab Drivers

The experimental results showed that the Deep Neural Net-
work (DNN) outperformed the other models with a 5.168%
WER, while SGMM-HMM had a 5.80% WER, and the
best GMM-HMM model had a 5.87% WER, for noise-
free data. For noisy data DNN-HMM had a 6.684% WER,
SGMM-HMM had a 7.38%WER, and the best GMM-HMM
had an 8.18% WER. It was also shown that MPE discrimi-
native training performs better than MMI for this data. This
systemwas judged by 10 participants to be important, respon-
sive and able to reduce driver distraction.
Q2: How can we develop a lexicon, as well as text and

speech corpora in Arabic specifically for the car assistant
domain?
A2: This study built a domain-specific lexicon, to com-

prehensively support the human-vehicle interaction domain.
Many linguistic variants were transcribed using IPA to pro-
duce comprehensive text and speech corpora, and this data
was used successfully to build our system. This data will be
made available to other researchers upon request.

B. FUTURE WORK
To improve our system performance, we must extend the
topics included in the lexicon, and extend the speech corpus
to hundreds, or even thousands, of hours. We must also use
effective noise filters as a pre-processing step. Based on the
literature and our experimental results, it is anticipated that
building an end-to-end ASR system using a Time Delay Neu-
ral Network (TDNN) will achieve better recognition rates.
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