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ABSTRACT Aiming at the problem that the traditional multifractal detrended fluctuation analysis (MFDFA)
using the least squares method to fit the trend term is prone to overfitting and takes a long time, this paper
proposes a new non-stationary signal analysis method—smoothed prior analysis multifractal (SPA-MF).
Firstly, the time sequence data is adaptively decomposed by smooth prior analysis (SPA) to eliminate the
local trends of sequence data at different scales, and then the multifractal analysis is performed on the
detrended data obtained by the decomposition. At the same time, the sparrow search algorithm (SSA) is used
to optimize the parameter of the SPA, so as to eliminate the trend item data more accurately. Through the
simulation signal which composed of the BMS signal and noise signal, the feasibility of SPA-MF for feature
extraction is proved. Finally, SPA-MF is applied to extract the features of the reciprocating compressor valve
vibration signal, and the extracted reciprocating compressor valve features are input into support vector
machine (SVM) for classification and recognition. Through the analysis of the experimental results, it can
be seen that the recognition rate of the valve features obtained by the traditional MFDFA method is only
87.5%, and the recognition rate of the SPA-MF method proposed in this paper reaches 96.87%, and the time
spent on feature extraction using SPA-MF is only about 36% of that of MFDFA method, which proves the
SPA-MF method is a feature extraction method with high accuracy and effectiveness.

INDEX TERMS Reciprocating compressor valve, smooth prior analysis, MFDFA, SPA-MF.

I. INTRODUCTION

Reciprocating compressor is an important component equip-
ment in industrial production, so it is of great practical signifi-
cance to make it run normally. According to relevant research
statistics, the valve fault accounts for about 60% of the total
number of reciprocating compressor faults [1], therefore, it is
necessary to analyze and study the valve fault of reciprocating
compressor deeply.

Reciprocating compressor valve in the work will be
affected by friction, impact and other factors, resulting in its
vibration signal has strong nonlinear and non-stationary char-
acteristics [2]. At present, wavelet analysis, empirical mode
decomposition, variational mode decomposition, entropy
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method and multifractal method are mostly used to analyze
and study nonlinear and non-stationary signals [3], [4], [5],
[6], [7]. For example, Cai used wavelet threshold denoising
(WTD) and ensemble empirical mode decomposition to ana-
lyze and process the vibration signal of diesel engine, and
combined rule-based algorithm and BNs/BPNNs to achieve
accurate detection and identification of diesel engine faults
[8]. Ye used variational mode decomposition (VMD) and
multiscale permutation entropy (MPE) to extract fault fea-
tures of rolling bearings, and combined the PSO-SVM to
realize accurate identification of rolling bearing status [9].
Caiused WTD and minimum entropy deconvolution methods
to eliminate the noise in the signal, and combined comple-
mentary ensemble empirical mode decomposition method
and Bayesian network to achieve accurate identification of
early faults of permanent magnet synchronous motor [10].

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

127182

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 10, 2022


https://orcid.org/0000-0002-3421-6390
https://orcid.org/0000-0002-4499-492X

Y. Li et al.: Fault Feature Extraction Method of Reciprocating Compressor Valve Based on SPA-MF

IEEE Access

The selection of wavelet bases in wavelet analysis is too com-
plex, and there is uncertainty principle in wavelet analysis,
which limits the development of wavelet analysis. EMD can
decompose the signal adaptively and has a good signal-noise
ratio, but EMD method is prone to modal aliasing and has
endpoint effect. As an improvement of the EMD method,
LMD requires significantly fewer iterations, and the problem
of endpoint effect has been alleviated, but there is still the
problem of endpoint effect. When the number of smoothing
times increases, the LMD method is easy to cause the signal
to advance or lag. VMD method has a very good theoretical
basis as support, and has strong robustness, while effectively
avoiding the phenomenon of mode aliasing. The disadvan-
tage of VMD method is that it has boundary effect and is
easily affected by burst signal. Among the above methods,
the multifractal method can not only deeply describe the non-
stationary and nonlinear characteristics of the signal, but also
describe the self-similarity of the vibration signal, so as to
extract the fault characteristics of the nonstationary signal
more comprehensively and accurately. Multifractal method
is easily affected by the trend of non-stationary signals when
analyzing signals, therefore, based on multifractal method,
kantelhardt Proposed the MFDFA method. In MFDFA, the
detrended fluctuation analysis is used to eliminate the trend
component in the signal, and then the signal is analyzed by
combining the multifractal spectrum [11]. The characteristic
parameters obtained by the MFDFA method can well reflect
the characteristics of non-stationary signals, so the MFDFA
method is widely applied in the mechanical fault diagnosis
field. Lin et al. established the relationship between tool
wear and multifractal parameters in milling process by using
MFDFA method, and successfully realized the monitoring
of tool condition by combining SVM [12]. Guo et al. used
the variational modal decomposition (VMD) to decompose
the electromechanical actuators(EMAs) into a number of
intrinsic mode functions (IMFs), and then used MFDFA to
extract the characteristic parameters of IMFs, and success-
fully realized the fault diagnosis of the EMSs[13].Liu et al.
combined VMD and MFDFA methods to identify the valve
state of reciprocating compressors, and introduced principal
component analysis to refine the eigenvectors to obtain higher
recognition rate [14]. On the basis of MFDFA method, many
researchers have improved MFDFA for its problems. In order
to solve the problem of choosing the orders of the detrending
polynomial in MFDFA, Du et al. proposed an Adaptive Multi-
fractal Detrended Fluctuation Analysis (AMF-DFA) method,
which automatically eliminates the trend components in the
signal based on correlation analysis, and proved the effec-
tiveness of the AMF-DFA method through fault diagnosis
[15]. Cao and Shi proposed a sliding window MFDFA method
(W-MFDFA), which uses the sliding window technique to
improve the selection value method of MFDFA, and applied
this method to practical analysis [16]. The above methods do
not fundamentally solve the shortcomings of MFDFA method
itself: when the MFDFA method removes the trend term, it is
assumed that the local trend of sequence signal is in the form
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of polynomial, so the least square method is used to fit the
trend item signal [17]. However, the least square method is
easy to lead to overfitting when fitting the trend term, and it
takes a long time.

Based on the above problems, this paper proposes a new
non-stationary signal analysis method-smoothed prior analy-
sis multifractal (SPA-MF), first, the SPA method is used to
eliminate the local trend of the sequence at different scales,
and then the detrended data is analyzed by multifractal analy-
sis. The SPA-MF method is used to establish the relationship
between the multifractal spectrum parameters and the recip-
rocating compressor valve state. Through the analysis of the
multifractal spectrum parameters, the accurate identification
of the reciprocating compressor valve condition is finally
achieved.

The rest part of this paper is organized as follows. The prin-
ciple of SPA-MF is introduced in Section II. Section IIT com-
bines the typical non-stationary self-similar sequence signal
BMS signal and noise signal to build the simulation signal and
prove the effectiveness of SPA-MF method. In Section IV, the
actual reciprocating compressor valve signal is used to verify
the effectiveness of the proposed method for fault feature
extraction. The conclusions are given in Section V. Section VI
discusses some limitations and shortcomings of this paper
and the future work direction.

Il. PRINCIPLE OF SPA-MF
A. SPA
SPA method was first proposed by Dr. Karjalainen et al,
which can effectively remove the trend term of the sequence.
Compared with traditional trend term adaptive decomposition
methods such as wavelet analysis, EMD and VMD, SPA has
the advantage of simple and efficient algorithm. Meanwhile,
SPA decomposes the signal into trend term and detrend term,
avoiding the influence of components selection on the results
[18]. The specific principle of SPA algorithm is as follows:
The original time signal is set to X, the trend term is set to
X, build the linear observation model of trend term:

X, =HO +v ey

where H is the observation matrix, 6 is the regression param-
eter, and v is the observation error.

Solve the optimal solution 6 of 6 according to Eq. (2),
and then estimate the trend term of the original time signal
according to )2} = Hé.

6, = argmin (|HO — X|| 2 + 3% [DJHOIP} ()

where, A is regularization parameter and Dy is the discrete
expression of the d-order differential operator. We assume X
has N local extreme points

Xez[Xth»"'?XN] (3)

then the discrete forms of the first-order trend and the second-
order trend of X are:

Xe1 =[X0— X1, X3 —Xo, -+, Xy — Xn_1] 4
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X = [X3 —2X7 + X1, X4 — 2X3 + X2,
o, Xy —2Xy-1 + Xy-2] ©)

then we can deduce that the trend of any order of Dy is

d(Xed)] d(Xed)l
A, dXw
D; = : : (6)
d (Xed)N—a d(Xed)N—a

where X4 is the discrete form of the d-order trend of X, and
then make the differential term Dy (H ) tend to 0, then Eq. (2)
can be expressed as

A~ —1
6, = (HTH + AZHTD§DdH) HTX %)

Finally, we can estimate the trend term of the original time
signal as

X, =Hb. ®)

In order to simplify the calculation of trend term, H is set as
the identity matrix and set the order of D, as 2, as shown in
Eq. (9).

1 -2 1 0 0
0 1 -2 1 o 0

D= . : : : : : ®)
0 0 1 -2 1

When the trend term of the original time signal is removed,
the time detrend term X 4¢ is obtained as

~ A —1
Koo =X — HO, = [1 - (1 + A2D§1)2) }X. (10)

IfL =1—(I+22DID;)", then X4y = LX. Through
the above analysis, it can be known that the trend term and
detrend term of the original time signal can be decomposed
by selecting a reasonable regularization parameter A.

B. SSA-SPA
According to the principle of SPA, it can be seen that the
parameter A is the only factor that affects the quality of
the SPA decomposition, so it is necessary to optimize the
parameter A [19]. At present, the more commonly used
parameter optimization methods are swarm intelligence opti-
mization algorithms, such as Genetic Algorithm (GA), Par-
ticle Swarm Optimization (PSO), Ant Colony Algorithm
(ACO), Sparrow Search Algorithm (SSA), etc. [20], [21],
[22], [23]. In the above algorithms, the SSA method has
the advantages of strong optimization ability and fast con-
vergence speed. Therefore, this paper introduces the SSA to
optimize the parameter A of SPA. The principle of the SSA
is [24]:

In the sparrow population, sparrows are divided into dis-
coverers, scroungers and dangers. The position of sparrows
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can be represented in the following matrix:

P1,1 P1,2 ... Pld
p21 P22 ... P2d

P = . . . . (11)
Pn,1 Pn2 Pn,d

where n represents the number of sparrows and d represents
the number of the parameters to be optimized. The discoverer
leads the population to determine the feeding direction, and
the location of the discoverer is updated as follows:

1
P —— ) ifR, < ST
P <3 - itermax) ns (12)
P+ OL ifRy > ST

41 _
Pij =

where ¢ is the current iteration, j = 1,2,...,d. P?le is the
value of the j-th dimension of the i-th sparrow. itermax 1S a
constant. § € (0, 1] is a random number. R, and ST are
the alarm value and the safety threshold respectively. Q is a
random number. L is a matrix of 1 x d for which each element
inside is 1

The scrounger follows the discoverers to find food. The
location of the scrounger is updated as follows:

P! — PL.
1 0 - exp _worst W ifi >n/2
Pfj _ 8 - itermax
P4 P — PFULAT L otherwise

13)

where P,, is the optimal position occupied by the producer.
Pyorst 1s the current global worst location. A represents a
matrix of 1 x d for which each element inside is randomly
assigned 1 or —1, and AT = AT (4AT)~ 1.

Dangers are randomly selected individuals in a sparrow
population to warn of the danger of predation. The location
of the danger is updated as follows:

Pfyest + IB : ‘Pi,j - P;wst lffl >fg
t+1 pt.o—pt
[,j - 41 1,] worst .
PH k. | —— | iffi=f,
" (fi—fw) +¢ l #

(14)

where Ppg: is the current global optimal location. S is a
normal distribution of random numbers. K € [—1,1] is a
random number. f; is the fitness value of the present sparrow.
fw and f; are the current global best and worst fitness values,
respectively. ¢ is the smallest constant.

The specific steps to optimize the parameter A of SPA by
using the SSA is as follows:

Step 1: Establish the parameter value range, the parameter
A value range in the text is set to 1 - 20;

Step 2: Initialize population parameters such as the number
of iterations, the proportion of discoverers, etc.;

Step 3: Perform SPA decomposition on the input signal
sequence;
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Step 4: Calculate fitness values and sort;

Step 5: Update sparrow position
Eq. (12) ~ (14);

Step 6: Calculate the fitness value and update the sparrow
position;

Step 7: Judge whether the stop conditions are met. If so,
exit and output the results. Otherwise, repeat steps 4-6.

according to

C. PRINCIPLE OF MFDFA
For non-stationary time series x (i),i = 1,2,---
specific steps of MFDFA are as follows:

(1) The time signal issetto X = x(),i =1,2,---,N,
and perform dispersion analysis on X, and get the sequence
Y as

. N, the

J
Y(j):Z x()—x"] j=1,2,---,N (15

=1
|

= zlv Zx k). (16)
K=1

(2) Divide Y into Ny = int (N /s) subintervals, each of
length s. Since Y is not necessarily divisible by s, it is re-
divided from the end of Y to get 2NNV, subintervals.

(3) For 2N, subintervals, use the least square method to
obtain the trend item sequence y,, (i) of each subinterval
sequence, where i = 1,2,--- ,s,m=1,2,--- , N.

(4) Calculate F? (s, m), whenm = 1,2, - - - , Ny, then

F?(s,m) = —ym (DY (17)

1 s
;Z{Y[(m— 1)s+i]

i=1

and when m = Nyy1, Ngy2, - - -, 2N, then

2 _l - _ _ q 12
F=(s,m) = < El{Y[N (m—=1)s+1i] = ym ()}
18

(5) Average over F (s, m) to obtain the g-order fluctuation
function

L2 Y
Fy(s) = F2(s,m)|” (19)
2N
S m=1

where ¢ is non-zero real numbers, if ¢ = 0 then

4N,
Y In [F2 G, m)] ] (20)
=1

(6) After analyzing F,; (s) and s, it can be found that F (s)
and s have a power-law relationship, that is

1
Fo (s) = exp {4N
\y

Fy(s) ocs"@ 1)

where & (q) is called generalized Hurst exponent. When the
time series has only single fractal properties, A (¢) is a con-
stant. When the time series has multifractal characteristics,
the relation of 4 (¢) and g is nonlinear.
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FIGURE 1. Flow chart of SPA-MF method.

Data preprocessing

(7) According to the exponent A (g), the scaling exponent
7, can be obtained, and its relationship with 4 (g) is

7y =qh(g) -1 (22)

(8) According to the Legendre transform, the multifractal
singular spectral exponent « and spectral function f () can
be obtained as

oy = dtg/dg (23)
fla) =qga; — 14 24)

The fractal property of time series can be judged by spec-
tral function f (o). When f («) is constant, time series has
single fractal property. When f («) is a single peak function,
the time series has multifractal characteristics [25].

D. PRINCIPLE OF SPA-MF

In step (3) of Principle of MFDFA, the MFDFA method
assumes that the local trend of the sequence signal is poly-
nomial when eliminating the trend term, so the least squares
method is used to fit the trend term signal. However, the least
square method is easy to lead to overfitting when fitting the
trend term, and it takes a long time. Therefore, this paper uses
the SPA method instead of the least squares method to fit the
trend term signal in the non-stationary signal, and then forms
the SPA-MF method. Other steps of the SPA-MF method are
the same as the MFDFA method. The flow chart of the SPA-
MF method is shown in Figure 1.

Ill. SIMULATION ANALYSIS

In order to verify the effectiveness of the SPA-MF method,
a typical non-stationary self-similar sequence BMS signal is
used for simulation analysis. The time series generated by the
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FIGURE 2. BMS simulation signal.
BMS signal is shown in Eq. (25).

P n(i—1)
X = <—) (I =pp)tme= §=1,2,---N (25)
1 —p1

In Eq. (25), both n,,,4, and p; are parameters for generating
the BMS sequence, where p; € (0,0.5) and N = 2"max,
Selecting p; = 0.3 and n,,4x = 10 to generate a BMS signal
with a length of 1024 according to Reference [26], as shown
in Figure 2.

The scaling exponent 7, and order ¢ of BMS signal have
theoretical values, as shown in Eq. (26),

¢y = (1 + )
In2
where p» = 1 —p; and 0.5 < p» < 1. The generalized Hurst
exponent % (¢) and multifractal spectrum of the BMS signal
can be calculated according to Eq. (22) ~ (24). Drawing the
h(g) ~ q, Ty ~ q, and the multifractal spectrum function
f (o) ~ o of the BMS signal,as shown in Figure 3.

It can be seen from Figure 3 that & (¢) of the BMS signal
decreases nonlinearly with g, 7, increases nonlinearly with
g, and the curves of the multifractal spectrum function f (&)
and o show a single inverted bell shape, all indicating that the
BMS signal has multifractal characteristics. The fault signal
of reciprocating compressor valve has the characteristics of
periodicity and randomness. In order to be closer to the actual
situation, a noise signal is added on the basis of the BMS
signal, and the final simulated signal is shown in Eq. (27):

y(@) =x@+a() 27)

where, x (i) is the BMS signal and a (i) is the Periodic white
noise signal. Set the parameter p; in BMS signal to 0.3 and
0.03 respectively to form two different time series y; (i) and
¥2 (i).The simulation signal y; (i) is shown in Figure 4.

Use MFDFA and SPA-MF methods to solve the multi-
fractal spectra of y; (i) and y» (i), and then extract multi-
fractal feature parameters respectively. Figure 5 shows the
multifractal spectrum and important parameter points of y; (i)
under the MFDFA method. Taking Figure 5 as an example,
next, several important multifractal spectrum characteristic
parameters are introduced in detail.

Selecting the maximum value ¢4, of multifractal singular
spectral exponent and the minimum value o;,;, of multifractal
singular spectral exponent to form the characteristic parame-
ter Ax, Aa represents the width of fractal spectrum, and Aw
reflects the regularity of signal fluctuation. The larger A« is,
the more irregular the signal fluctuation is, and the greater the
fractal intensity of the sequence is [27];

(26)
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FIGURE 3. BMS signal theory results: (a) h (q) — q curve of the BMS
signal;(b) 7q — g curve of the BMS signal;(c) f («) — « curve of the BMS
signal.
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FIGURE 4. The simulation signal y; (/).

The singular spectral exponent o corresponding to the
maximum value f (o) of the singular spectral function is
selected to form the characteristic parameter, « reflects the
nonuniformity of the signal, the smaller the «y is, the more
irregular the signal is [28];

Using characteristic parameter A« and characteristic
parameter g to form the characteristic parameter Acg, =
(otmax — @0)/ (@g — amin)-The characteristic parameter Aoy,
reflects the symmetry and singularity of the singular spectral
function.

Selecting the singular spectral function f (otqy) corre-
sponding to the maximum value o, of the singular spectral
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TABLE 1. Characteristic parameters of the simulated signal based on
SPA-MF and MFDFA.

SPA-MF MFDFA
Y, Y, Diff 4 Y, Diff
Aa 0.2885 03706  0.0821  0.3126 02153  0.0973
a, 0.0568  0.0436  0.0132  0.4348  0.4831  0.0483
Aa, 0.8069  1.0430 02361  0.4982 02483  0.2499
A 0.0200 03343 03143 04075  0.5382  0.1307
df 0.6173  0.7937  0.1764  0.8064  0.7054 0.101
time(s) 18 116

exponent, and the singular spectral function f (¢;,) corre-
sponding to the minimum value «,,;, of the singular spec-
tral exponent to form the characteristic parameter Af =
f (@max) — f (@min), Af reflects the proportion of large and
small peaks in the signal. The larger the Af is, the stronger
the fractal characteristic of the sequence is;

Selecting the maximum value f (o )4y Of singular spectral
function and the minimum value f(¢),;, of singular spectral
function to form the characteristic parameter df = f(&)max —
f(@)min of valve, df canreflect the fractal strength of vibration
signal. The larger the df is, the stronger the fractal character-
istic of signal is.

Time series y; (i) and y; (i) are recorded as Y; and Y»,
the features extracted by MFDFA and SPA-MF are shown in
Table 1.

As can be seen from Table 1, after using SPA-MF to
calculate the multifractal spectral characteristic parameters
of signals Y| and Y, respectively, the parameters Aoy, Af,
df have obvious distinction, and the parameter A« and o
have weak distinction. Using the MFDFA method to cal-
culate the multifractal spectral characteristic parameters of
the signals Y7 and Y, respectively, the parameter Aoy, has
obvious distinction, the parameters Af and df have small
distinction, and the parameters A« and ¢ are almost indistin-
guishable. Meanwhile, under the same condition, ittook 116 s
to extract the feature parameters using the MFDFA method,
while only 16 s using the SPA-MF method. To sum up, for
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FIGURE 6. Reciprocating compressor experimental platform.

simulation signals Y1 and Y,, compared with the traditional
MFDFA method, the SPA-MF method proposed in this paper
can extract the multifractal spectrum features of simulation
signals faster, and the multifractal spectrum features extracted
by SPA-MF method can more clearly distinguish two differ-
ent signals, which proves the feasibility of extracting signal
features by SPA-MF method.

IV. EXPERIMENT
A. SPECIFIC STEPS

Step 1: Using the 2D12-70/0.1-13 reciprocating compres-
sor build a signal acquisition system to collect separately the
valve vibration acceleration signals under the normal state,
valve plate fracture state, valve plate gap state, and valve
spring failure state.

Step 2: Calculating the generalized Hurst exponent 4 (g),
the scaling exponent 7, and the multifractal spectrum of the
valve vibration acceleration signal data in different states by
the SPA-MF method proposed in this paper.

Step 3: Calculating the eigenvectors group F =
[Aa, ag, Aagr, Af, df] of the valve faults by the multifractal
spectrum, and inputting the eigenvectors and corresponding
labels into the SVM for training and testing, and finally com-
paring the test results with the traditional MFDFA method.

B. EXPERIMENT

The research object of this paper is 2D12-70/0.1-13 recip-
rocating compressor, the discharge capacity is 70 m®/ min,
the discharge pressures of I stage and II stage are
0.2746-0.2942 Mpa and 1.2749 Mpa respectively, and the
crankshaft speed is 496 r/ min. The acceleration sensor is
used to collect the vibration signals of the normal state and
three fault states of the suction valve position of the secondary
cylinder, the measuring point of the acceleration sensor is set
on the valve cover, the sampling frequency is set to 50 kHz,
and the sampling time is 4 s [29]. The reciprocating compres-
sor is shown in Figure 6.

Figure 7 shows the picture of the valve in different states,
the upper left of the picture shows the normal state, the lower
left of the picture shows the valve plate fracture state, the
upper right of the picture shows the valve plate gap state, and
the lower right of the picture shows the valve spring failure
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FIGURE 8. Vibration signal of reciprocating compressor valve under four
states:(a) Normal state; (b) Valve plate fracture state; (c) Valve plate gap
state; (d) Valve spring failure state.

state. Normally, the valve has six springs. When the valve is
in the valve spring failure state, the valve has four springs.

Taking 40 groups of samples in each of the four states of
the reciprocating compressor valve, a total of 160 groups,
with 12096 points in each group. The vibration acceleration
signals of the reciprocating compressor valve under four
states are shown in Figure 8.

In order to verify that the SPA method can effectively
decompose the trend item and detrend item of vibration
signal, take the valve spring failure state as an example, the
vibration acceleration signal of the valve is decomposed by
SPA. After optimizing SPA parameter by SSA method, when
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0.4
"'@""'G—w,,@_é —+—Normal state
0.3 . %o —+—Valve plate fracture state
% Mk, Ay —%—Valve plate gap state
0.2F o —=—Valve spring failure state
=
o L
= 0.1
or R TT¥eee
01 xTT
-0.2- L . . . . . %VM”* Sy
-10 -8 -6 4 -2 0 2 4 6 8 10

q
FIGURE 10. h(q) — q curve of valve under four states.

A = 6, the SPA has the best decomposition effect. The
decomposition results are shown in Figure 9.

According to Figure 9, it can be seen that after the sig-
nal is decomposed by SPA, the decomposed trend item and
detrend item are clearly distinguished, and the detrend item
effectively retains the vibration characteristics of the original
vibration signal.

The SPA-MF method is used to analyze the vibration
acceleration signal data under the four states of the valve,
and the corresponding relationship between the generalized
Hurst exponent / (¢) and g under the four states of the valve
is obtained, as shown in Figure 10

It can be seen from Figure 10 that the generalized Hurst
exponents % (g) and g of the reciprocating compressor valve
signal have a nonlinear relationship, which indicating that the
valve vibration signal has multifractal characteristics. With
the increase of g, h (q) gradually decreases. When ¢ < 0,
the i (g) values of the vibration signal under the normal state
and the valve spring failure state are similar, and have clear
distinction with the other two states. When g < 0, the & (q)
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value of the vibration signal under the valve plate gap state is
the largest, and the /4 (g) values under the valve spring failure
state and the normal state are smaller; near ¢ = 0, h(q)
changes the fastest; when g > 0, the & (¢) value in the normal
state is significantly smaller than the value of the other three
states of the valve.

In order to analyze the multifractal characteristics of the
four states of the valve more deeply, the corresponding rela-
tionship between the scaling exponent 7, and g under the four
states of the valve is drawn, as shown in Figure 11.

It can be seen from Figure 11 that with the increase of g, the
scaling exponent 7, of the valve signal changes in an upward
convex shape. When g < 0, the 7, value increases nonlinearly
with g, in which the 7, value under the valve plate gap state
is the smallest, and the 7, values under the normal state and
the valve spring failure state are similar and larger than the
other two states; when ¢ = 0, 7y = —1; wheng > 0, 7,
decreases nonlinearly with g, and the 7, value in the normal
state decreases rapidly, which is significantly smaller than the
7, value in the other three states of the valve.

According to the generalized Hurst exponent % (¢) and the
scaling exponent 7,4, draw the multifractal spectrum under the
four states of the valve, as shown in Figure 12.

As can be seen from Figure 12, the multifractal spectrum
of the four states of the valve presents an inverted bell shape,
indicating that the vibration signal of the valve has multifrac-
tal characteristics. Among them, the figure of the valve in the
valve spring failure state is significantly narrower than that in
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TABLE 2. Characteristic parameter values of the valve under four states.

Aa au Aam Af df
Normal 0.5491  0.0224  1.0589  -0.3343  0.7289
Fracture 0.5045  0.0532 22079  -0.7629  0.9234
Gap 0.5728  0.1035  1.5557  -0.2491  0.8033
Spring 0.3413  0.0688  1.5845  -0.3308  0.5735
failure

other three states, and the multifractal spectrum in the normal
state changes slowly.

According to the analysis of the above simulation signal,
the multifractal spectrum parameters Ao, oo, Aogr, Af, df
of the valve are extracted to form the feature vector
F = [Aa, ag, Aagr, Af, df] of the valve. The characteristic
parameter values of valve under four states are shown in
Table 2.

It can be seen from Table 2 that the fractal spectrum width
(Aw) of the normal state and the valve plate gap state is larger
than the other two states, and the fractal spectrum width of
the valve spring failure state is the smallest; The parameter
ap can reflect the nonuniformity of the signal. It can be
seen that the parameter oo in the normal state is smaller,
that is, the nonuniformity in the normal state is small, and
the nonuniformity in the other three states are larger, which
is also in line with the actual situation; Ac«yg, reflects the
symmetry and singularity of the singular spectral function,
it can be seen from Table 2 that the characteristic value Aoy,
under the valve plate fracture state is relatively large, and
the characteristic value Aoy, under the normal state is the
smallest. It can be seen from Table 2 that the parameter Af
under the valve plate fracture state is small and is clearly
distinguished from the other three states; It can be seen from
the parameter df that the value of df under the valve plate
fracture state is the largest, indicating that the fractal strength
is the largest, while the value of df under the valve spring
failure state is the smallest, indicating that the fractal strength
reflected by the parameter df is the smallest.

Based on the analysis of the five parameters in the four
states of the valve, it can be seen that a single characteristic
parameter cannot completely distinguish the working state
of the valve, so the five characteristic parameters are com-
bined to form the characteristic vector of the valve: F =
[Aa, ag, Aoy, Af, df]. Corresponding labels are set for the
four states of the reciprocating compressor valve, in which
label 1 corresponds to the normal state, label 2 corresponds to
the valve plate fracture state, label 3 corresponds to the valve
plate gap state, and label 4 corresponds to the valve spring
failure state. 32 of the 40 groups of data in each of the four
states are selected as the training set (80%), and 8 groups
are selected as the test set (20%) to verify the effectiveness
of the fault feature extraction method. Figure 13 shows the
SVM diagnosis results based on the SPA-MF method and the
MFDFA method respectively, and the SVM diagnosis results
based on the SPA-MF method and the MFDFA method are
listed in Table 3 for comparative analysis.

127189



IEEE Access

Y. Li et al.: Fault Feature Extraction Method of Reciprocating Compressor Valve Based on SPA-MF

4 * PERROBB D
O Actual test set
* Predictive test set
3 ROBROBD®®
—
)
=
<
]
2+ BRFPRR®OD  * *
1 lessstdtd ‘ : = :
1 8 16 24 32
Group
(a)
4r * PERODDB®
O Actual test set
* Predictive test set
3F RRROBBBSP
)
£
]
-
2+ PERRPDDD
1 255228 ®® : : ‘
1 8 16 24 32
Group
(b)

FIGURE 13. SVM diagnosis results based on SPA-MF and MFDFA
respectively:(a) SVM diagnosis results based on MFDFA; (b) SVM
diagnosis results based on SPA-MF.

TABLE 3. Comparison results.

MFDFA SPA-MF
Normal 100% 100%
Fracture 87.5% 100%
Gap 75% 87.5%
Spring failure 87.5% 100%
Total 87.5% 96.87%
Time (s) 1016 366

It can be seen from Figure 13 that when the MFDFA
method is used, except for the normal state, multiple groups
of data are incorrectly identified in other states. When the
SPA-MF method is used, only a group of data in the valve
plate gap state is incorrectly identified as other states, which
indicates that the SPA-MF method has better recognition rate.
For the error recognition of the state, the main reason is
that the noise factor has not been completely eliminated in
the signal decomposition process. In addition, the number of
samples will also affect the training effect of SVM, resulting
in the error recognition of the valve state. As can be seen
from Table 3, under the same conditions, the total recog-
nition rate of the valve features extracted by the traditional
MFDFA method is only 87.5%, and the total recognition
rate of the SPA-MF method proposed in this paper reaches
96.87%. Meanwhile, it takes an average of 1016 s to extract
the characteristic parameters of the reciprocating compressor
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by using the MFDFA method, while it only takes an average
of 366 s to extract the characteristic parameters by using the
SPA-MF method, and the time used is only about 36% of the
MFDFA method, which proves the accuracy and efficiency
of SPA-MF method in the valve feature extraction.

V. CONCLUSION

The fault feature extraction method based on SPA-MF pro-
posed in this paper can draw the following conclusions after
experimental research and analysis.

(1) Aiming at the problem that the traditional MFDFA
method using the least squares method to fit the trend
term is easy to lead to overfitting and takes a long time,
this paper proposes a new non-stationary signal analysis
method - SPA-MF, on the basis of solving the above prob-
lems, the method further plays the role of denoising, at the
same time, the feasibility of the SPA-MF method is proved
by the simulation signal.

(2) The characteristic vector of the reciprocating compres-
sor valve composed of the parameters of the multifractal
spectrum obtained by the SPA-MF method can comprehen-
sively and quantitatively reflect the characteristics of the
valve vibration signal, so as to extract effectively the signal
characteristics of the reciprocating compressor valve under
different states.

(3) Compared with the MFDFA method, the SPA-MF
method can extract the fault characteristics of the reciprocat-
ing compressor valve faster, and can more accurately distin-
guish the vibration fault characteristics of different states of
valve.

VI. FUTURE WORK

This paper proposes a new non-stationary signal analysis
method, which successfully realizes the feature extraction
and state recognition of the reciprocating compressor valve.
The SPA-MF method is not only suitable for fault diagnosis
of reciprocating compressor in the future, but also suitable for
fault diagnosis of other mechanical equipment, so it has great
application prospects. However, this paper still has some
limitations and shortcomings, mainly including two aspects:
(1) When studying the valve fault, the composite failure of
valve is not studied. (2) This paper does not study the problem
of fault characteristics under different speeds and loads. Next,
we will conduct a more in-depth study on the above issues.
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