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ABSTRACT The early 21st-century technological advancements tilted the scales towards data-driven
learning. Thus, modern machine-learning systems rely heavily on data to learn complex models to efficiently
provide relevant predictions. Data-driven learning suffers from overfitting, a situation in which the learning
process seems to have converged into a model that, unfortunately, lacks generalization power. One way
to withstand overfitting is to expand the training dataset with more diverse samples. Typically, this is
implemented (particularly in computer vision research, which is of interest in this study) by multiplying the
original sample using several transformations. Although this strategy might seem straightforward, it does not
affect any preexisting dataset bias because the initial distribution remains more or less similar. Ideally, new
samples of unseen data must be found, but the cost of acquiring them individually is high. This study presents
a novel pipeline that combines state-of-the-art modules to automatically create new thematic datasets with
low bias. The proposedmethod was able to acquire and allocate more than 880K previously unseen images to
produce a data collection, that InceptionV3 classified it with 72% accuracy and achieved 0.0008 performance
variance when testing on similar datasets.

INDEX TERMS AI, dataset bias, domain shift, image datasets, machine learning, web search.

I. INTRODUCTION
Supervised learning is a method for accurately modeling a
known generator function that produces data distribution [1].
Often, engineers and AI practitioners that apply supervised
learning need to tackle a phenomenon with a significant
impact on the learning process, called overfitting. Overfitting
occurs when a model captures the underlying pattern and
noise of the data to the extent that it cannot generalize the
learned concept and make accurate predictions on unseen
data. In cases where model alteration techniques, such as
simplification, regularization, and ensembling, address this
issue only up to a point then the problem lies within the data.

The associate editor coordinating the review of this manuscript and

approving it for publication was Moussa Ayyash .

In recent years, another occurrence that hinders model
performance on unseen data has been observed. Sometimes,
a model performs well on held-out samples of a dataset which
simulate an unknown distribution. However, this does not
necessarily mean that the model behaves correspondingly
well with unseen real-world data. This phenomenon is termed
as ‘dataset bias’ [2].

Dataset bias occurs when the inclusion of samples within
a class follows a specific set of rules. Then, even if a
model can learn how to recognize the dataset’s classes, it is
assumed that all distribution instances adhere to the same
set of rules. For instance, SUN09 [3] and Caltech101 [4] are
generic benchmark datasets that share a class that describes
cars. Ideally, learning on one side and inferring on the
other should work well. However, this was not the case in
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practice. According to [5], one dataset portrays the front
face of cars, whereas the other depicts them mostly from the
aside.

Depending on the application, bias is not harmful by
itself. Consider, for example, the case of quality control on
a production line, where one needs to ensure that a defect
is never missed due to safety implications. Thus, introducing
bias towards recognizing defective samples costs less than the
misrecognized ones. However, a benchmark should ideally be
a representative instance of the natural world, so the computer
vision community should focus on trying to deal with the
problem instead of modeling the dataset. This observation
has been pointed out by Hand [6]: ‘‘However, this also means
that there will be some overfitting both to the individual data
sets in the collection and the collection as a whole. That is,
somemethods will do well on data sets in the collection purely
by chance. Indeed, the more successful the collection is in
the sense that more and more people use it for comparative
assessments, the more serious this problem will become.’’
Acquiring such datasets with real-world distributions is an
impossible and practically infeasible endeavor. Perhaps the
best course of action would be to sample as many distribution
instances as possible to approximate the description of the
real world.

Handpicking such samples is cost ineffective, time con-
suming, and prone to mistakes. Automatic data acquisition
from resources such as the web is not a trivial assignment
because the lack of a sophisticated methodology is expected
to lead to a noisy, imbalanced, and even error-prone
assortment of data. A wide range of challenges are likely
to be encountered when designing frameworks to undertake
this task, such as (a) irrelevant content removal, (b) correct
data for class assignment, (c) composition of suitable queries,
and (d) rectification of corrupted data. In addition, common
concerns exist in dataset formalization procedures, including
(a) balancing samples per class, (b) dealing with conflicting
content, (c) constructing and leveraging inclusion or mutual
exclusion strategies, and (d) handling missing data. These are
all issues that need to be considered during the creation of
benchmark datasets [7], [8], landmark recognition [9], and in
more generic datasets [10]. Therefore, assembling a formal
AI-useful dataset from the Web, even to expand existing
datasets, remains challenging.

Motivated by the challenges mentioned above, this study
proposes a pipeline that acquires samples from the Web to
remedy the dataset bias problem. Emphasis is placed on
producing a robust and accurate candidate selection method
based on removing irrelevant content and preserving the rank-
ing of the most representative samples. Themain contribution
of this work is a pipeline with novel combinations of modules
which

1) effortlessly creates a dataset given a list of labels,
2) expands/augments existing datasets with previously

unseen real-world samples,
3) requires minimal to none human involvement, and
4) mitigates dataset bias.

The following sections include a review of the relevant lit-
erature, presentation of the novel pipeline, and experimental
verification of the proposed procedure.

II. LITERATURE REVIEW
A. DATASET BIAS
The mismatch between the datasets used in the pattern
recognition domain for developing better algorithms under
laboratory conditions and real applications has been dis-
cussed as early as in [6]. It has been illustrated through
examples that in many, perhaps most, real classification
problems, the data points in the design set are not, in fact,
randomly drawn from the same distribution as the data points
to which the classifier will be applied, for example, the real
world.

In the computer vision domain, this observation became
widely known in the work of Torralba and Efros [2], where
it was pointed out that the cross-evaluation of categories
shared between different datasets led to a lower performance
than expected. The authors attributed this phenomenon to the
data collection procedure, which can be biased by human
and systematic factors, resulting in a distribution mismatch
between datasets.

Several studies have focused on overcoming this problem,
mainly by developing classifiers with better generalization
properties [5]. Datasets with common categories such as
SUN [3], LabelMe [11], PascalVOC [12], Caltech101 [4],
and ImageNet [13] have been used to cross-evaluate the
performance of such classifiers on shared classes. The
problem of partially overlapping label sets among different
datasets was also considered [14].

The computer vision community has become increasingly
aware that existing benchmarks present a characteristic
signature that differs from one dataset to the other. This
observation spawned the related domain shift problem, for
example, performance discrepancies appear on the source
and target image datasets with different marginal probability
distributions when training on one and inferring on the other.
Shared representations to eliminate the original distribution
mismatch, such as subspace data embedding [15], [16],
metrics [17], [18] and vocabulary learning [19] have been
presented. Other studies have demonstrated that deep learn-
ing architectures might produce domain-invariant descriptors
through a highly nonlinear transformation of the original
features [20], [21].

Domain adaptation techniques have been extensively
studied [22], [23], [24]. These approaches intrinsically rely
on having more than one dataset to observe the shift
in the domain; otherwise, the dataset bias problem is
concealed in the first place. To this extent, the authors
of the present work share the same perspective with [2]
that is, ‘‘all the datasets are trying to represent the same
domain – our visual world’’, therefore here, it is proposed
to construct a visually robust dataset with limited bias from
scratch.
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B. DATASET CONSTRUCTION
In the early years of image dataset formation, manual
acquisition and data annotation were preferred approaches.
In situ data acquisition was not an uncommon practice [25],
[26]. This involved an expensive overhead prior to analyz-
ing the data and constructing the actual dataset, that is,
setting up a camera, removing obstacles from the scene,
avoiding capturing humans and human parts to preserve
their anonymity, and finally composing the frame [27],
[28], [29]. Exploiting the Web as a source for manually
gathering images is labor intensive. This task consists of
(a) querying the web with a few keywords, (b) download-
ing the content, and (c) exhaustively manually annotating
the downloaded samples to clear out unwanted material.
Annotation normalization and alignment must be applied
when human annotators collaborate in a task. Benchmark
datasets, such as ImageNet [13] (a dataset that took years
to complete), CIFAR-10 [10], and ETH-Food-101 [30],
are striking examples of datasets constructed by relying
extensively on human expertise.

Several frameworks have been proposed to reduce the
overhead of manual formulation. In [31], visual informa-
tion was used to re-rank the retrieved images from the
web. However, this method relies on statistical modeling
of bootstrapped classifiers to discard unrelated images.
Reference [32] used active learning methods to iteratively
improve the confidence of unlabelled samples using existing
labeled data. Early attempts to automatically construct image
datasets involved retrieving images and textual information
through a web search. In [33], latent topics were extracted
from textual information, and voting classifiers assigned
them to related images. In [34], a sequential framework was
proposed that takes advantage of the ranking information
for the first few results offered by a web search engine.
Under the assumption that these images fall correctly into
the requested label, a binary classifier was incrementally
refined to assess whether those images are relevant or
not. Finding content in such an uncontrolled environment
might be faster than in other approaches, but introduces
additional challenges, viz., the sample per class distribution
might not be the desired, and object co-occurrence is often
disregarded. As discussed in [35], this problem is ubiquitous
in the food image recognition domain, where various image
descriptors have been used to extract local and global
features to recognize multiple-foods photos considering co-
occurrence statistics. In [36], the same authors employed
a manifold learning approach to improve results in that
domain.

More recent approaches focus on enriching a dataset
with subcategories by performing multiple query requests
instead of just a single one [37]. To achieve this, vocabulary-
based resources have been utilized, such as WordNet [38],
ConceptNet [39] and the Google Books Ngram Corpus [40].
Using synonyms or word pairs to multiply facets of a
keyword can substantially increase the number of candidate
samples [41]. However, unwanted content due to word

ambiguity will certainly appear [42], and a mechanism for
discarding it must be developed. Because word pairs can be
of arbitrary length, word-to-word distance has been applied
to reduce candidate queries [43]. Nevertheless, the query
composition complexity challenge for unambiguous Web
retrieval is only partly addressed.

The Web is regarded as a valuable resource, especially
when aiming to use it to acquire extensive collections
of data for practical AI applications. However, collecting
data blindly without treatment can quickly become futile.
To meet the challenges in this task, we propose a pipeline
attuned to creating AI-usable datasets with data acquired
from the Web. This pipeline consists of several modules
that collaborate to construct a dataset. This process begins
with defining the aim, requirements, and expectations of the
dataset. The source from which the labels of the classes
were obtained must be credible. For example, ontologies
can be employed to construct a formal list of labels for
a specific topic. The Europeana ontology [44], [45] for
cultural artifacts, the Amalthea hierarchy [46] for food dishes,
and the International Code of Zoological Nomenclature
(ICZN) [47] for animal taxonomies are a few examples of said
ontologies. As an additional advantage, ontologies usually
provide rich information about the relationships among the
objects they describe. Thus, keyword or query expansion is
possible without introducing text mining or understanding
complexities. More than one popular search engine can be
used to retrieve image data from theWeb, such as engines that
provide indexed content according to a query [31]. However,
undesired content in the form of duplicate and irrelevant
images is expected to appear in the retrieved results.

III. MODELLING THE EFFECT OF DUPLICATE AND
IRRELEVANT SAMPLES WITHIN THE TRAINING SET
This section presents an in vitro ablation study to demonstrate
the need for removing duplicate and irrelevant samples when
creating image datasets for pattern recognition tasks. Two
benchmark datasets and a robust classifier displayed the
effects of including the type of noise at different ratios.

The Food-101 (ETHZ [30]) dataset was considered in
this study as the target domain for the classifier to learn.
It contains 1000 sample images for each of its 101 food
dish classes. The dataset is split into training and testing
sets with 75-25% ratios according to the initial publication
instructions. ImageNet [13] was used to generate irrelevant
samples. A random portion is retrieved regardless of the label
and class according to the needs of each noise addition stage.

InceptionV3 [48] with its weights initialized on ImageNet,
was chosen as the benchmark classifier. This architecture was
chosen mainly due to its past state-of-the-art performance,
ease of training and parameter configuration, and, last but
not least, its wide adoption and usage in the available
relevant literature. The top layer was substituted to reflect the
101-class problem, as in [49].

The procedure begins by using the benchmark (Food-101)
for training; thus, the baseline classification performance
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TABLE 1. Degradation of a classifier’s performance when adding
duplicate and irrelevant samples: (a) without augmentation; (b) with
augmentation.

FIGURE 1. Model performance with the inclusion of noise at various
proportions.

is calculated. Then, the training set is altered to represent
an instance in which noise in the form of duplicate and/or
irrelevant samples is inserted. In this process, ‘noise’ samples
replace valid ones progressively for each type of noise.
The model was reinitialized and trained for each dataset.
Throughout these experiments, the test set remained the same
with no addition of noise.

As per standard practice, the model was also trained with
affine transformations of the training samples to reduce
overfitting phenomena. The entire procedure (with and
without augmentation via transformations) is repeated ten
times, and the mean TOP-1 accuracy and standard deviation
are reported in TABLE 1.

FIGURE 1a & 1b depict the mean values of TABLE 1.
As anticipated, noise in the combined form of duplicate
and irrelevant samples negatively affected the generalization
performance of the model. The latter is due to duplicate
samples offering no information to the learner other than
what has not been seen. On the other hand, irrelevant samples
might boost the generalization capacity of a model because
it struggles to make up features fitting samples that should
not exist in the first place. It should be noted that, in small
percentages, both types of noise do not dramatically affect
the performance of the model in comparison with those
that are absent. However, the greater the noise, the greater
the performance degradation, even in cases where their
proportion is not the same. Thus, caution should be exercised
when acquiring samples from different distributions for a
given domain situated in uncontrolled yet rich environments,
such as the Web.

IV. PROPOSED PIPELINE
This paper proposes a pipeline to construct image datasets
by gathering samples from the Web and assigning them
to classes with respect to a list of predefined keywords
(i.e., class labels). A high-level graphical overview is shown
in FIGURE 2. A list of keywords was used to query the
web for the data. The list of query keywords can either
be anything that a practitioner provides manually or terms
automatically retrieved from an ontology, provided that a
parsing mechanism is used. Then the images collected from
the Web are processed via modules to filter out irrelevant
and duplicate content. Irrelevant images were considered
to be outside the scope of the categories described by the
query keywords. Duplicate images are exact or geometrically
transformed copies of the other images in the dataset. These
definitions and related policies were followed throughout
the data-collection procedure. Duplicate images were not
allowed within a given class or across the dataset.

A. IRRELEVANT DETECTION
A majority voting decision of the binary classifiers was used
to reject irrelevant content from the stream of the retrieved
samples. The majority voting is similar to unweighted
averaging. Nevertheless, instead of averaging the output
probability, it counts the votes of all predicted labels from
the base learners. It makes a final prediction using the label
with the highest number of votes. Equivalently, it takes an
unweighted average using the label from the base learners,
and chooses the label with the most significant value. This
determines whether an image is relevant to the desired dataset
or should be discarded.

Three state-of-the-art deep architectures (InceptionV3 [48],
MobileNet [50], and ResNet-50 [51]) were used in this
study to perform binary classification. All they require is a
binary class dataset, which represents the scope of what is
considered relevant and what is not. Hence, when a sample
reaches this module, the three deep neural network binary
classifiers independently vote on whether it is relevant.
Subsequently, the majority outcome of the said votes is the
final decision: to discard it or to let it move to the next filtering
module (deduplication).

B. DUPLICATE DETECTION
Adeduplicationmechanismwas developed to reject duplicate
images, leveraging previous work in duplicate image detec-
tion, which has been broadly applied in many applications,
such as forensics and closed-loop systems. Several methods
have been proposed for duplicate image detection, including,
but not limited to, relying on textbook image descriptors [52],
[53] and bespoke deep neural networks [54], [55], [56].
Typically, a feature extractor combined with a distance
measure compares any two images to determine their
similarity. The application of a threshold defines the degree
of similarity, which in our case, reduces to being a duplicate
or not. A reliable method is needed to (a) bring closer those
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FIGURE 2. The proposed pipeline.

images that are either the same or geometrically transformed
copies of one another while at the same time, and (b) separate
those that have just a visual resemblance or are entirely
different.

Moreover, as this pipeline aims to construct a large-scale
dataset, the deduplication method must scale well as more
and more data are being collected into the candidate pool.
Hence, the manner in which these descriptors are stored
affects their retrieval speeds. If these descriptors were put into
a simple list, then the search algorithm would be required
to query all items individually, resulting in a square search
space. Although the triangle inequality holds, the search
space is reduced from n2 to n2−n

2 , where n is the number of
items. However, the computational complexity still reaches
an impractical O(n2).
To address the computational complexity of the search

mechanism, a Burkhar-Keller Tree (BK-Tree) structure [57]
has been exploited. It is a tree-based data structure used
to find near matches to a string query. The original
implementation performed approximate matching in strings,

and was used for spell checking [58]. The critical property
that constitutes a BK-Tree advantageous as a searching
instrument is that it exhibits low complexity. To achieve this,
it exploits two functions: triangle inequality and Levenshtein
distance. The triangle inequality bounds the solution within
the upper and lower limits and allows for the item’s ordering.
The Levenshtein distance counts the operations required to
transform a query word to a match, for example, the next
node to visit, while traversing the structure. Finally, the
tree structure minimizes the search space and reduces the
complexity to O(nlogn).

In this work, we propose two slight modifications to the
BK-tree: (a) to store and query the binary feature vectors
extracted by locality-sensitive hashing (LSH) algorithms
and (b) to use Hamming instead of Levenshtein distance.
Hamming distance

(∑i=1,...,n
ui 6=vi

1
)
is a classic metric, as it

is a mapping to the set of real numbers (R) with a zero
(0) minimum that corresponds to the distance to oneself,
which is commutative and satisfies the condition that
only equal entities have a zero distance and the triangle
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FIGURE 3. A Query image (middle) is compared with two Test images,
where only one is a duplicate (bottom). Equation (1) applies.

inequality holds:

d(u, v) ≥ 0

d(u, v) = 0 ⇐⇒ u = v

d(u, v) = d(v, u)

d(u, v) ≤ d(u,w)+ d(w, v) (1)

It can substitute the original metric in LSH algorithms
to perform the same task and can be applied to the setting
of binary vectors instead. All the properties of the original
search mechanism are guaranteed to continue to exist. This is
shown in FIGURE 3 where the feature vectors are extracted
from three different images of the same subject (label).
In particular, the query image in the middle is different from
test(1), whereas test(2) is a manipulated version of the query
image (contrast and tone enhancement, slight rotation, and
cropping).

Finally, the deduplication module in the proposed pipeline
employs three LSH methods [59] which are fast feature
extractors that are reliable for detecting most affine trans-
formations, namely, (a) the average image hash, (b) the
perceptual hash, and (c) the difference hash. These methods
produce binary and compact feature vectors, making them
computationally important. TheHamming distance fits nicely
as a metric for these descriptors because it measures the
number of transforming steps a vector must take to become
another. In other words, the steps required for a query to
be transformed into a test vector. An exclusive BK-tree
is constructed for each descriptor. Each time an image is
encountered, its signature is extracted and compared with all
candidate image hashes within the tree structures. A majority
voting approach decides whether an image is duplicate or
not; no tiebreaker is needed because there are three voters
with equal voting weights. The query hash is stored in its
respective BK-tree if and only if there is no duplicate decision

outcome. Additionally, the query image is added to the
candidate pool.

V. EXPERIMENTS AND DISCUSSION
This section details the assessment of the performance of the
proposed approach in creating an AI-useful image dataset
using Web samples. It also details whether sampling from
many sources mitigates the dataset bias phenomenon. The
domain of food recognition is chosen for the experimental
procedure. There are already too many publicly available
food datasets [60] for the computer vision community to
experiment with and develop approaches for tasks such as
dish and ingredient recognition and calorie calculation based
on volume. Among these datasets, two versions of Food-
101 are available: the originally published (ETHZ [30]) and
its twin version (UPMC [61]), which, although share the
same categories, they were collected from different sources.
Hence, the choice of using these datasets as a case study
presents noticeable practical advantages, such as the capacity
for (a) validation of the pipeline’s ability to construct formal
datasets, (b) direct observation of any dataset bias between the
published benchmarks, and (c) cross-evaluation of whether
sampling from many different sources fixes the dataset bias.

A. IRRELEVANT SAMPLE REMOVER
A binary class dataset was constructed to train three
classifiers (InceptionV3, MobileNet, and ResNet-50). Sam-
ples were taken from benchmark datasets to populate the
relevant/non-relevant (food/non-food) classes. Specifically,
for the food images, random samples were taken from
FoodX-251 [62] and ISIA Food-200 [63]; thus, 100K images
were collected. On the other hand, the non Food samples were
taken from benchmark datasets with generic categories, such
as PascalVOC, Caltech-101, and ImageNet. Similarly, 100K
imageswere obtained. Special attentionwas given to the latter
case; therefore, the categories and their samples depicted no
food.

The training procedure followed the idea of using clas-
sifiers pretrained on ImageNet to extract features. A set of
classification layers consisting of Global Average Pooling,
a Dense Layer of 512 neurons, 20% Dropout, and the final
2-neurons Dense classifier was attached at the top of the
model. This model was used to predict whether a sample was
relevant. SGD was chosen as an optimizer to minimize the
binary cross-entropy loss function. Empirically, it was found
that after ten epochs, no significant performance improve-
ment was achieved. Based on the losses, no overfitting was
detected, as shown in FIGUER 4.

This approach exploits robust classifiers, which, based on
the validation outcome on the test set, should agree on most
of their individual decisions, anyway. However, in the case of
disagreement, the voting mechanism provides the tiebreaker
with a final decision. Based on the proposed approach
regarding the irrelevant detection mechanism, discarding
unwanted samples is both fast and accurate, as shown
in TABLE 2.

VOLUME 10, 2022 126837



V. Sevetlidis et al.: Tackling Dataset Bias With an Automated Collection of Real-World Samples

FIGURE 4. Binary cross-entropy for InceptionV3 (left), MobileNet (middle) and ResNet50 (right) while training on the custom food/nonFood dataset.

TABLE 2. Irrelevant detection performances.

B. DUPLICATE SAMPLE REMOVER
An experiment was conducted, similar to that proposed
in [64], to determine the optimal threshold for image hashing
algorithms. A random subset was used, which comprised
2000 unique images from the CIFAR-10 dataset. For
each image, the following transformations were applied to
produce 40 images: (a) contrast adjustment; (b) despeckling;
(c) flipping; (d) the values of the R, G, and B channels were
increased by 10% respectively; (e) cropping by 5%, 10%,
20%, and 30%, preserving the center region of the original
image and then resizing to the original size; (f) downsampling
the image by 10%, 20%, 30%, 40%, 50%, 70% and 90%;
(g) format conversion from JPEG to GIF; (h) an outer frame
of random color was added four times to the image, where the
size of the frame is 10%of the image, respectively; (i) rotating
by 90◦, 180◦ and 270◦; (j) scaling up by 2, 4, and 8 times,
scaling down by 2, 4, and 8 times; (k) intensity adjustment
by 70%, 80%, 90%, 110% and 120%; and (l) saturation
adjustment by 70%, 80%, 90%, 110% and 120%. The
transformations resulted in a total of 82000 images, of which
the signatures were extracted respectively with each image
hashing method. Distances and confusion matrices were
calculated for all images. The desired threshold θ is the one
that minimizes the following function:

argmin
θ
|FN − FP| (2)

The point at which the false negative (FN) line intersects with
the false positive (FP) one is the threshold θ , as FIGURE 5
illustrates. Another sample of 20000 images was taken from
the same dataset, mutually exclusive to the training set, to test

TABLE 3. Duplicate detection performance.

the thresholds. Subsequently, 500 were randomly selected
and underwent the transformations mentioned above. This
resulted in a test set of 40000 images. The achieved cross-
validated F1 score for θ (α) = 3 (average image hash),
θ (d) = 14 (difference hash) and θ (p) = 14 was 89.8%,
as reported in TABLE 3.

C. CONSTRUCTING FOOD-101 FROM THE WEB
A query list was gathered from the 101 labels compos-
ing the Food-101 classes. These queries were given to
custom-tailored crawlers to seek content using four search
engines and two image repositories. The sample collection
consisted of 606 crawling tasks performed in parallel. In total,
885,662 images were obtained. As expected, for popular
foods, the samples were far more than those of less-
known dishes, as shown in FIGURE 6, which displays the
distribution of samples per class. For comparison with the
benchmark dataset, the green dashed line at the one thousand
mark signifies the FOOD-101 (ETHZ) counts of the samples
per class.

Estimating whether an image is relevant to the scope
of the dataset requires no memory of previous samples or
knowledge of the image label. This procedure begins when
the collection tasks report that they have completed their jobs.
Thus, the samples were filtered based on their relevance to the
dataset. 111.6K (12.6%) were discarded as irrelevant, while
the rest were kept as valid.

In contrast with the less demanding relevance filtering, the
deduplication mechanism needs to know the label a sample
will be assigned to and all unique samples processed before
it. A BK-tree structure per class label and descriptor served
to store unique samples. Thus, this module extracts its LSH
feature vectors for any incoming sample and searches for the
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FIGURE 5. Finding the distance that minimizes the parameter θ .

FIGURE 6. The distribution of samples per class. The red vertical line signifies the samples per class of FOOD-101 (ETHZ and UPMC).

respective tree for a match. If none was found, the sample
was characterized as unique and stored within the structure;
otherwise, it was discarded as a duplicate. Hence, 129.3K
(14.6%) images were further rejected.

Finally, after removing the unwanted content, the dataset
resulted in 644,800 images (5190.37(±1459.88) samples per
class). That is, an increase of 538.3% over the ETHZ Food-
101 dataset (which contains 101K images in total) or 6.3
more samples were collected for every benchmark image.
FIGUER 7(right) shows the ratio between the valid, the
irrelevant, and the duplicate samples.1 For practical purposes,

1The color coding corresponds with FIGURE 2.

the discarded samples being irrelevant or duplicates were kept
for further experimentation.

Implementation-wise, the modules were developed as
individual software services (SaaS). Containerization and
job orchestration are essential design details that contribute
to the speed and parallelism of tasks. If multi-processing
and multi-threaded practices were neglected, it would have
resulted in the collection of samples in more than 1100 hours
(approximately 45 days), removal of irrelevant samples in
370 hours (15 days), and rejection of duplicate content
in 580 hours (24 days). This approach requires a total of
84 days of operational time. In contrast, the achieved data
collection time was 88.25 hours, a decrease of more than an
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FIGURE 7. The relative contribution of search engines (left). The ratio between the rejected samples and those that were considered valid (right).

order of magnitude. In addition, the achieved irrelevant and
duplicate sample rejection lasted 8.5 hours and 22.75 hours
respectively, a decrease of more than an order of magnitude
in both cases, for the exact same infrastructure (computing
and networking).2 The total amount of time needed from
start to finish in order to construct the dataset used in the
following experiments was 103.43 hours or slightly more
than 4 days, which is a 95.23% decrease in time with respect
to a typical serial design (no sophisticated parallel processing
whatsoever).

D. ABLATION STUDY
An additional ablation study was performed to establish the
requirement for the proposed rejection (filtering) modules.
For comparison with an earlier ablation study, which
examined the need for filtering out duplicate and irrelevant
content, the same deep learning architecture was used before,
namely InceptionV3.

The samples acquired from the Web are considered
an assortment of data and cannot be applied in typical
classification experiments with fairness. A two-step mutual
exclusion rule was applied to construct fair training and
testing sets as follows:

1) a test set was sampled without including duplicates
2) all samples within the test set were examined for

duplicates on the rest of the data. Any existing
duplicates that were found during this procedure were
removed

Hence, no shared examples exist within the training and test
sets for the rest of the experiments.

The four cases this ablation study considers are with regard
to the training set, as follows:
• using all the unfiltered data
• using irrelevant-filtered data
• using duplicate-filtered data
• using irrelevant- and duplicate-filtered data

2The time reported in the case of irrelevant and duplicate samples rejection
is the cumulative operational time since the modules ran asynchronously.

TABLE 4. Evaluating InceptionV3 performance with and without the use
of the rejection modules. ‘‘Yes’’ indicates the use of the module; ‘‘No’’
otherwise.

TABLE 4 presents the performance of InceptionV3 for all
dataset instances. These results coincided with the declining
trend observed and presented earlier in the in vitro study.
Having no irrelevant but many duplicate samples granted
no performance gains, besides increasing the demand for
training resources such as memory and time. However,
having irrelevant data decreased the model’s performance,
as expected, because useful information relevant to the
learning problem could not be extracted. The worst and best
cases are the two opposites regarding the use of no filtering
and rejecting noisy data altogether, respectively.

E. WIDER SAMPLING FIXES DATASET BIAS
Using the labels of the Food-101 dataset to construct another
one sampled from a multitude of Web resources presented
the practical advantages of (a) having two benchmark dataset
versions of the same classes, allowing the study of the
dataset bias phenomenon first hand and (b) the effect of more
exhaustive sampling on the bias phenomenon.

This section describes a cross-evaluation experiment
conducted to assess this discrepancy. For consistency,
InceptionV3 was used once more as a classifier. The top
layer was substituted as in the earlier experiments to fit
the 101-class problem. The architecture was trained for
25 epochs, at which point the performance improvement
plateaued. In addition, this experiment explicitly used no
transfer-learning techniques at all. Hence, the deep learning
architecture was trained for all its layers from scratch.
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FIGURE 8. (left) Top-1 accuracy cross-evaluation on Food-101 and its variations; (right) Top-5 accuracy cross-evaluation on Food-101 and its variations.

The data split for training and testing was based on the initial
publication instructions for both the datasets.

Training on ETHZ and testing on itself performed
significantly better than when testing on UPMC. This is
not the case when the opposite scenario is addressed. The
classifier trained on UPMC and tested on ETHZ performed
comparably well, as if it was tested with itself, albeit less
accurately. The mismatch in the first case probably occurred
because of the selection of samples being biased on ETHZ’s
behalf of ETHZ. Perhaps the architecture was able to learn
representations that easily modeled the sample inclusion
rules.

On the other hand, the makers of the UPMC version
claimed that they queried a single search engine; thus,
the included images contained samples of different origins
and wrongly assigned labels, resulting in a comparable yet
noisy dataset. In the latter case, looser rules regarding a
sample’s inclusion resulted in a classifier that learned more
general representations. However, the drop in performance
regarding the UPMC/ETHZ test suggests that neither version
adequately captures the real-world domain shaped by its
classes.

Moving forward, the dataset constructed using the pro-
posed approach is introduced into the experimental setup.
A 75-25% stratified split was performed on the dataset3

The same classifier (as in the architecture, hyperparameters,
and training procedure) is trained on the newly constructed
version and tested on all other versions consecutively.
Additionally, the previous models were tested on this version
too. The cross-evaluation of TOP-1 and TOP-5 accuracy
performances are reported in TABLE 6 and TABLE 5
respectively.

The ETHZ version seems to be the one that suffers
the most from dataset bias because testing on all other
versions could not match that performance. In particular,
testing the new version produced an outcome that could
not be considered beneficial: a classification score of less
than 50%. As mentioned earlier, training on UPMC and

3Common samples with ETHZ and UPMC were also removed: 657 and
4271, respectively. This is proportional to 0.65% and 4,7% of these datasets.

TABLE 5. Cross-evaluation of Top-1 accuracy on Food-101 and its
variations.

TABLE 6. Cross-evaluation of Top-5 accuracy on Food-101 and its
variations.

testing on ETHZ resulted in comparable results to testing
on itself. However, testing the version produced by the
proposed approach resulted in an accuracy of just above
50 % (top-1). The constructed dataset appears to be a
useless assortment of data at this point. However, a top-1
of 72.5% accuracy performance when training on the new
version and testing on itself suggests otherwise. Moreover,
testing the latter on the twin benchmark versions produced
meaningful and equivalent to itself results. Note how small
the variance between performances is in FIGUER8 (left). The
standard deviations in TABLE 6 and TABLE 5 confirm this
observation. Similar issues can be noticed when examining
the top-5 performances e.g., TABLE 5, FIGUER8 (right).
The ETHZ version has been secluded into itself. Meaningful
results appear when using theUPMCversion, yet the variance
of performance is large among versions. Stable performance
appears when using the newly constructed dataset.

VI. CONCLUSION
In this work, an important phenomenon is studied that
many benchmark datasets suffer from, the dataset bias,
a phenomenon by which a collection of data is not descriptive
of the whole domain it represents—learning to transfer
knowledge from one domain to a different one deals with
a similar but not the same problem. In any case, a dataset
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is intended to reflect a real-world domain unless it was
designed explicitly not to. Another major challenge is to
create large datasets in an automated manner and to guarantee
their usability.

To this end, this study proposes a method to automatically
construct non-biased datasets by sampling many different
sources to handle these issues. The proposed approach uses
a list of keywords to query Web-based resources; it then
collects samples and discards all those that are duplicates or
irrelevant to the scope of the dataset. This study provides
evidence that such noisy data degrade the performance of
classification tasks.

The advantages of the proposed method for constructing a
dataset are as follows: (a) it can build a dataset quickly, (b) it
scales well to many more classes, and (c) it allows for looser
sample inclusion criteria to occur by imposing a hard rule on
excluding duplicate and irrelevant content.

Therefore, the proposed method can be used, for instance,
if a classifier has reached its potential given a dataset and no
model alteration techniques or virtual augmentations increase
its performance. Broader sampling can be used to learn more
general representations or a portion of it can be used to
augment the dataset with unseen data.

The main weaknesses of the proposed method are: (a) it
requires a robust classifier to decide whether a sample is
relevant to the scope of the dataset, and, as a consequence,
(b) in non-thematically uniform datasets, constructing the
non-relevant class to train the relevant/irrelevant classifier
can be cumbersome. Thus, the proposed method scales well
for thematic datasets such as the food-related ones (that we
tested). A different approach is required in other cases where
a dataset might contain classes of broad interest.

The ETHZ and UPMC Food-101 (the twin benchmark
datasets) were used in the empirical study. They presented
a practical advantage: they shared the same class labels,
although their data came from different sampling protocols.
Thus, they were used as a cross-evaluation testbed. Through-
out the experiments, InceptionV3 was used as a classifier
mainly for consistency. In most cases, it was trained from
scratch using the same procedure.

Three deep learning models are compared with each
other. All were trained on Food-101, but one for each
version, the ETHZ, the UPMC, and OURS, respectively. The
model trained on ETHZ performs remarkably, but only to
itself. The model trained on UPMC learned more general
representations than the previous model, yet its performance
was subpar on the other two datasets. In contrast, based on
the procedure proposed in this study, the model trained on
the newly constructed dataset performed comparably well on
all three datasets.

In conclusion, this work presented a pipeline consisting
of a combination of filtering modules that, in an automated
manner, can construct a dataset of images with real-world
samples acquired from the Web. The experiments presented
in this work show that more exhaustive sampling, as in
sampling from many different sources, alleviates the dataset

bias. We are upgrading this method with sample selectivity
and query expansion techniques to balance the number
of samples per class without sacrificing the generalization
properties of broader sampling.
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