
Received 15 October 2022, accepted 17 November 2022, date of publication 1 December 2022,
date of current version 7 December 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3226269

Extended Berkeley Packet Filter:
An Application Perspective
HUSAIN SHARAF, IMTIAZ AHMAD , AND TASSOS DIMITRIOU , (Senior Member, IEEE)
Department of Computer Engineering, College of Engineering and Petroleum, Kuwait University, Kuwait

Corresponding author: Imtiaz Ahmad (imtiaz.ahmad@ku.edu.kw)

ABSTRACT The extended Berkeley Packet Filter (eBPF) is a lightweight and fast 64-bit RISC-like virtual
machine (VM) inside the Linux kernel. eBPF has emerged as the most promising and de facto standard of
executing untrusted, user-defined specialized code at run-time inside the kernel with strong performance,
portability, flexibility, and safety guarantees. Due to these key benefits and availability of a rich ecosystem
of compilers and tools within the Linux kernel, eBPF has received widespread adoption by both industry and
academia for a wide range of application domains. The most important include enhancing performance of
monitoring tools and providing a variety of new securitymechanisms, data collection tools and data screening
applications. In this review, we investigate the landscape of existing eBPF use-cases and trends with aim
to provide a clear roadmap for researchers and developers. We first introduce the necessary background
knowledge for eBPF before delving into its applications. Although, the potential use-cases of eBPF are
vast, we restrict our focus on four key application domains related to networking, security, storage, and
sandboxing. Then for each application domain, we analyze and summarize solution techniques along with
their working principles in an effort to provide an insightful discussion that will enable researchers and
practitioners to easily adopt eBPF into their designs. Finally, we delineate several exciting research avenues
to fully exploit the revolutionary eBPF technology.

INDEX TERMS BPF, eBPF, XDP, Linux kernel, security, network, sandboxing, storage, containers.

I. INTRODUCTION
In recent years, the cloud computing paradigm has grown
both in terms of scale and complexity to offer on-demand
computing services (software, platforms, hardware) to users
over the Internet [1]. Virtualization is one of the key backbone
technologies of cloud computing which allows sharing of
resources (CPUs, memory and network) in service deliv-
ery [2]. In this regard, containers are the most prevalent
lightweight virtualization technology in providing cloud ser-
vices [3]. Additionally, network virtualization has played a
vital role in reducing operational costs for service providers
by effectively utilizing network resources [4]. Hence, con-
temporary applications and services increasingly leverage
geographically distributed virtualized infrastructures and het-
erogeneous networking technologies to deliver services that
are quite diverse in network resource requirements and

The associate editor coordinating the review of this manuscript and

approving it for publication was Jolanta Mizera-Pietraszko .

performance characteristics with adequate Quality of Ser-
vice/Quality of Experience (QoS/QoE) to the users [5].

The emergence of micro-services and containerized appli-
cations, due to their agility and scalability, enabled efficient
hosting and integration of multiple services on a cloud plat-
form [6], [7]. However, the scale, heterogeneity, diversity
and dynamicity of micro-services make it a challenging and
complex task for service providers to accurately monitor,
manage and troubleshoot [8]. Similarly, network function
virtualization (NFV) introduces flexibility in managing net-
works by guiding and allowing rapid deployment of network
services such as firewalls, traffic load balancers, andmore [4].
Monitoring the performance characteristics of virtual net-
work functions (VNF) along with the instances of NFV to
virtualize the hardware makes it critical to guarantee service
availability with desired performance and resiliency in case
of network failures [9]. Network services are often imple-
mented as service function chains (SFCs) by instantiating
multiple containers as micro-services. These SFCs generally
are adaptive and dynamic due to the random nature of service

126370
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-0673-7324
https://orcid.org/0000-0001-6535-4983
https://orcid.org/0000-0002-2298-5037


H. Sharaf et al.: Extended Berkeley Packet Filter: An Application Perspective

requirements. Security of cloud resources is also of
paramount importance, requiringmassive deep traffic observ-
ability and analysis for detection ofmalware, denial of service
(DOS) attacks, anomalies, and proper response [10].

However, the traditional monitoring and inspection tools
are no longer able to meet today’s ever-evolving new envi-
ronments needs either due to the lack of mechanisms for
dynamic and deep fine-grained traffic inspection at arbitrary
locations in the cloud platform or due to the severe over-
head associated with them [11]. Therefore, these cloud tech-
nologies demand a new generation of scalable monitoring,
performance measurement and high-fidelity auditing tools
that give cloud service providers programmatic visibility over
applications, computing and networking infrastructures and
devices without impeding system performance [12]. Further-
more, these tools should be easy to develop and deploy in
order to satisfy the service level requirements imposed by the
growing number of applications such as video conferencing,
autonomous driving, cloud gaming, and the emerging world
of meta-verse which is regarded as the next-generation Inter-
net paradigm [13].

A promising solution that appeared in recent years has
emerged from a filter injected directly into the Linux ker-
nel code known as Berkeley Packet Filter (BPF), originally
described byMcCanne and Jacobson [14]. The improved ver-
sion of BPF, known as extended BPF (eBPF), has wide range
capabilities for handling generic processing events within
the kernel [15]. eBPF is considered to be a general purpose
lightweight in-kernel virtual machine (VM) that offers a com-
bination of flexibility, safety and performance, providing a
programmable interface for developing and running verifi-
able custom code inside the Linux kernel at run-time. Thus,
applications can gauge the kernel by eBPF programs without
any changes in kernel code or affecting other applications
with low overhead at run-time. Additionally, Linux containers
have become the preferred unit of application management
in the cloud, which implies that these two important tech-
nologies can work seamlessly under the same environment.
Therefore, eBPF represents an ideal monitoring and enforc-
ing mechanism for cloud native services that can be used
to collect real-time critical performance metrics related to
security policies, resource and network management.

A. SCOPE AND METHODOLOGY
Since its inception in 2014, eBPF has attracted massive
adoption both by industry and academia for a wide range
of applications such as packet processing for security and
networking applications [16], [17], reducing memory and
storage access latency [18], [19], and enhancing system per-
formance [20]. However, despite the wide deployment of
eBPF, there is no study that covers the application landscape
of this innovative technology in emerging cloud applica-
tions. So far, there is only a single survey related to eBPF
published in 2020 [21] which provides foundational details
about the programming interface with the eXpress Data Path
(XDP) for fast packet processing. Therefore, to understand

the programming details of eBPF, the reader is referred to
Vieira et al. [21]. However, since then, eBPF usage has been
widened to numerous emerging applications which include
machine learning [22], covert channel detection [23], intru-
sion detection [24], and more (details in Section III). Hence
our work is complementary to [21]; our aim is to study eBPF
and its key working principles from an application perspec-
tive and make it available to a wider audience. It is our belief
that this eBPF pioneering technology will have a promising
potential to a diverse range of new emerging applications.

It is thus imperative to study the application domains of
eBPF thoroughly, empowering researchers, companies, and
developers with a clear roadmap of the eBPF landscape.
To conduct this study, we primarily searched using the key-
words ‘‘extended Berkeley Packet Filter’’ and ‘‘eBPF’’ on
Google Scholar. For each paper found, we first looked at
the abstract and then scanned through the paper contents in
order to assign it in one of the four key application domains
of eBPF: networking, security, storage, and sandboxing. Net-
working and Security refer to enhancing existingmechanisms
or designing new approaches in these areas, Storage refers
to speeding up storage operations and shifting local instruc-
tions to remote storages, while Sandboxing is about hosting
programs in unified environments and analyzing their perfor-
mance for optimization reasons.We then further consolidated
the outcomes of the first round among the authors in order to
acquire the set of primary works to be reviewed. This process
resulted in a final set of 46 papers distributed as follows:
Networking - 21, Security - 17, Storage - 4, Sandboxing - 4.
There were also 22 cross papers that overlapped more than
one major category in which case these papers were included
in the most important category.

For each application category we then analyzed and sum-
marized the solution techniques along with their working
principles in order to provide an insightful discussion about
performance gains obtained using eBPF and a comprehen-
sive guidebook for eBPF applications. Finally, based on the
reviewed use-cases, we point to some of its limitations and
highlight several research challenges in order tomake the best
use of this emerging technology.

B. ORGANIZATION
The rest of the paper is organized as follows; In Section II,
we discuss background material, explaining the original BPF
and eBPF, and give a brief explanation of the terms and
technologies mentioned throughout the paper. In Section III,
we categorize eBPF applications and use-cases. Then in
Section IV, we discuss the userspace point of view of the
presented studies. We describe trends and future research
challenges in Section V. Finally, we conclude and summarize
our findings in Section VI.

II. BACKGROUND
In this section, we will briefly explain and describe BPF,
eBPF, and any related terms to better grasp the technolo-
gies described in the paper. To have a better understanding,

VOLUME 10, 2022 126371



H. Sharaf et al.: Extended Berkeley Packet Filter: An Application Perspective

a generic architecture is shown in Figure 1 depicting the main
system components: in the bottom, we have the hardware
equipment (RAM,Network Interface Card (NIC), CPU, SSD,
GPU, etc.). The operating system resides on top of that,
holding its core component, the kernel (in our case, the Linux
Kernel). In this article, we refer to this box by the name
kernel space, which includes all other components along with
the kernel processes. Then comes the userspace, where the
programs and the execution of user processes take place.
Finally, we have the user box on the top, which is responsible
for the interaction between the user and the system.

FIGURE 1. Generic system architecture.

Depending on the system we are describing, the existence
of the User box and the applications in the userspace might
change. For example, a switch in a typical network will
handle packets. Thus, there is no interaction with a user as
the switch is executing the pre-programmed processes. Hence
in this case, the user box (top blue box) and the normal
applications will be removed from the picture.

A. BPF
BPF is a kernel architecture designed mainly for packet
inspection by McCanne and Jacobson [14]. BPF offered sig-
nificant performance enhancements at the time, compared
with the available packet capture tools. Its objective was to
manage and handle the process of copying packets from ker-
nel space to userspace. Kernel space is the operating system’s
core where it executes and manages the operating system
services, while the user space is what a regular user sees and
interacts with. The kernel handles the interaction between
processes in the userspace, and BPF is a filter placed on
the boundaries between the kernel/userspace. The aim was
to do in-place filtering rather than moving everything to the
userspace. Despite BPF capabilities, it was first introduced to

accept/allow or reject/drop packets from entering the network
monitoring applications in the userspace. Figure 2 gives a
clear overview of how and where BPF is placed in the system.

FIGURE 2. Overview of BPF.

The original work [14] demonstrated the performance
increase of using BPF over SunOS STREAMS buffering
models (NIT) [25] by measuring the overhead produced from
moving packets into a buffer before filtering as in SunOS’s
design or after filtering as in BPF’s design. The difference
between the two designs is where the filtering takes place.
SunOS’s design has two buffers, before and after the filter,
which means packets are stored in a buffer, then go into
the filtering process, and once they pass, they are moved to
the second buffer; thus, even unwanted packets are stored
and consume a lot of CPU cycles. In contrast, BPF does
the filtering process for the stream of packets in-place (once
received from network interface), and then stores them in a
buffer which means there is no overhead of storing unwanted
packets before filtering. The authors tested two basic filtering
configurations that will either pass or drop packets. First, they
configured the filter to accept all packets (move all to buffer),
in which case BPF produced 15 times less overhead compared
to NIT. Then they tested the option to filter all packets (drop
all), which means that in SunOS’s design the packets will be
stored in a buffer and then filtered (dropped). At the same
time, the BPF design does not pre-store the packets before
filtering since they are filtered (dropped) once they pass the
network interface as shown in Figure 3. The removal of the
pre-storing buffer significantly increased the gain by two
orders of magnitude towards BPF favor.

B. eBPF
eBPF [15] is the extended version of the classical packet
filter BPF. eBPF was defined as a virtual machine that can
run sandboxed programs in the kernel. Thus, it is possible
to create programs and new filtering applications and host
them securely (as a result of the virtual environment and

126372 VOLUME 10, 2022



H. Sharaf et al.: Extended Berkeley Packet Filter: An Application Perspective

FIGURE 3. BPF and SunOS designs in the two test cases ‘‘Accept All’’ and
‘‘Reject All’’ (i.e. Filter All).

sandboxing) and then append them directly to the kernel code
without the need of redesigning the kernel or even rebooting
the system. Moreover, it is not limited to kernel applications;
developers can execute and run eBPF programs during the
system’s running time. It is no longer a separate layer or
boundary filter like the classic BPF. eBPF is attachable to any
of the smaller sub-processes running in the kernel and almost
everywhere. Figure 4 illustrates the injection points where
eBPF differs from classical BPF. The injection of BPF is
limited to the boundaries between userspace and kernel space
while on the other hand, eBPF can be placed in any point in
the flow. It can be injected between the hardware (storage,
NIC) and the kernel space, inside the kernel, on userspace and
kernel space boundaries, and even on an application running
in the userspace.

FIGURE 4. Injection of (a) BPF, (b) eBPF.

eXpress Data Path (XDP) [26] is an eBPF-based data path
used to intercept packets as soon as they leave the network
hardware and before the kernel itself touches the packet data.
XDP either drops the packets, or forwards them to userspace
(kernel bypass), or passes them to the normal kernel flow

(network stack). Injecting eBPF programs means either
attaching custom user-defined code or attaching a tracing
probe. The tracing probes vary in terms of their name, privi-
leges, mode of operation, type of traced event, and amount
of captured data. eBPF is mainly known to use kprobes
and kernel tracepoints (kernel space tracing for dynamic and
static kernel functions) and uprobes (userspace tracing for
userspace functions) [27].

Figure 5 shows the architectures of BPF and eBPF. BPF
consists of two registers: accumulator and index register,
an implied program counter, and temporary auxiliary mem-
ory. On the other hand, eBPF was expanded from 2 to 11 reg-
isters, the size of registers increased from 32 bits to 64 bits,
and a stack of size 512 bytes was introduced in the eBPF
engine [21]. There are no more limitations to the data size or
structure due to a global data map added to the architecture
of eBPF.

FIGURE 5. (a) BPF architecture, (b) eBPF architecture.

The new version has additional requirements [17] before
attaching it to the requested hook while offering new features,
ensuring execution safety, efficiency, expandability, and com-
patibility. Figure 6 summarizes the process of creating an
eBPF program and shows the stages required for such a
program to be safely injected and correctly executed in the
kernel. These stages are described next.

1) VERIFICATION STAGE
A verification stage is required to guarantee the program’s
safety by validating it according to the following criteria.

a) Privileges: a process holding an eBPF program must
have the required privileges to run that program, except
when the program does not require any.

b) Run to Completion: a programmust run until it finishes,
and any loop must have a guaranteed exit condition.

c) Memory out of bounds: programs are prevented from
using an infinite number of variables or accessing mem-
ory out of bounds.

d) Size: eBPF programs must be limited to a small size to
ensure fast and efficient execution.

e) Finite Complexity: filtering mechanisms are based on a
Directed Acyclic Graph (DAG), which results in several

VOLUME 10, 2022 126373



H. Sharaf et al.: Extended Berkeley Packet Filter: An Application Perspective

FIGURE 6. Overview of eBPF components and functionality.

execution paths. The verifier must finish the execution
within the time limit for all possible paths in the DAG.

f) Crashes: checking that the program will not crash by
trying different execution paths.

2) JIT COMPILATION STAGE
Due to the limitation of kernel space resources and the pro-
gram’s complexity constraints, eBPF programs written in
Clang or Python must be translated to the correct machine
instructions to optimize execution performance. The JIT
Compilation stage, following the verification stage, uses the
JIT compiler to convert the original version of an eBPF-based
program into its optimized machine bytecode version, ensur-
ing the efficiency of the loaded program.

3) eBPF MAPS
In BPF, the limitation of having only a few data structures that
can be used in the programs made it extremely difficult for
developers to implement more advanced applications. A sig-
nificant advantage of eBPF is its diversity in data structures.
This diversity is based on the concept of eBPF Maps. It is a
method of saving the state between invocations of an eBPF
program and sending or receiving data between eBPF kernel
programs and between kernel and userspace applications.
This means storing pairs of keys/values with arbitrary struc-
ture. Some examples of the available data structures are hash
tables and arrays. A complete list of the data structures is
available in the official documentation of the Linux kernel
which can be found in [28].

4) HELPER FUNCTIONS
In order to generalize the programmability of eBPF, a stable
API has been developed to interact with the kernel, which
includes helper functions. The reason for such API is that
eBPF programs cannot call normal kernel functions since
they will be limited to the kernel version and complicate
the programs’ compatibility. Some of the most used helper
functions are random number generators, time, data, and
eBPF map access.

5) TAILING AND FUNCTION CALLS
Despite the fact that eBPF can handle large programs com-
pared to the original BPF, there is still a breaking point and a
size limit enforced. Tailing and function calls are employed
in eBPF to resolve this issue and enhance the performance
of large programs through the clear use of function calls.
A large program can be divided into a set of subprograms
(function-based), where each function represents a separate
component that will be called only if required. The feature
can be used in two ways. First, a large program that defies
execution time and size constraints can be thought as a chain
of ordered staged subprograms (Figure 7(a)). Second, instead
of implementing multiple functionalities in a program and
executing some of them, it is possible to develop tree-like
functionalities such that a function will call another only if
needed, thus reducing the amount of executed instructions to
only what is important to the program flow (Figure 7(b)).
Tailing and function calls enhance the expandability and
scalability of eBPF programs to build large applications out
of small programs and enhance the overall performance by
reducing the amount of executed instructions.

FIGURE 7. Tailing and function calls use-cases. a) Dividing a large
program into a chain of staged subprograms. b) Dividing sequential
functionalities into a tree-based structure.

III. APPLICATIONS AND USE-CASES
Several papers addressed eBPF and its capabilities, while oth-
ers discussed a specific use-case or application to compare the
performance enhancements with andwithout the use of eBPF.
eBPF is extensively being adopted in both academia and
industry. This section summarizes most of the research papers
published on eBPF while categorizing the exact use-cases
and applications to date. eBPF emerged and became a hot
research topic since 2016.

Figure 8 illustrates the use-cases of eBPF in four major
areas; Networking, Security, Storage, and Sandboxing.
We divided the papers into these major fields according to the
objective of each paper. In the papers where objectives over-
lap (e.g. network security), we classify the paper according
to the main objective. When discussing the networking side,
eBPF is mainly used for performance improvements, captur-
ing and filtering packets, and controlling the flow of network.
In security, the intention is to enhance existing security mech-
anisms and create novel designs addressing security issues.

126374 VOLUME 10, 2022



H. Sharaf et al.: Extended Berkeley Packet Filter: An Application Perspective

Storage related use-cases, focus on increasing memory and
storage (HDD, SSD, NVMe) speeds and performance to han-
dle intensive computations, thereby reducing data movement.
The final part of the roadmap is sandboxing which focuses
on the idea of building better and more suitable, isolated
environments for eBPF hosting. In the following, we describe
each application domain along with its key use-cases.

A. NETWORKING
Networking hardware is responsible for the communica-
tion and interaction among devices in a computer network,
whether it is a small home network, a company network
or the online services available on the internet. A typical
network consists of routing and switching devices, load-
balancers, hubs and data servers. All of thementioned devices
process a huge amount of packets. Due to buffer and memory
limitations, packets may be dropped when there is heavy
traffic in the network, thus pushing companies to get more
and better equipment. eBPF technology offers new oppor-
tunities for improving network capabilities without the need
for extra hardware installations. This section discusses works
employing eBPF to enhance packet processing speeds as well
as reducing and managing the loads on networking devices.

1) IPTABLES-BASED eBPF
A typical firewall in Linux systems is based on iptables,
which is a set of rules handling incoming/outgoing traffic
based on IPs and source/destination ports. For example, one
of the possible iptables rules that increases security is to
allow all outgoing traffic while disallow all incoming traf-
fic. iptables are used to control what IP addresses/ports are
visible to the internet, or opening a set of ports for specific
hosts (IP addresses) in a local network or subnet. Deepak
et al. [29] designed an eBPF-based iptables scheme. They
proposed a generic way to translate a given input table rule set
(old iptables rules) to an eBPF-based version, by storing the
new rules as value-to-action records in the eBPFmaps. There-
fore, the translation model helped overcome the problem of
re-implementing the rules or maintaining a custom code to
assist in the migration of old devices’ configurations into the
new ones.

2) INTER-VM TRAFFIC MONITORING
Monitoring tools and packet analyzers require traffic to be
directed to the place in which they are installed. Traditionally
each application and tool is installed in a separate VM on sep-
arate servers. The traditional way of directing the traffic to the
location of these tools was by using a Test Access Port (TAP)
device. This is hardware equipment similar to a switch that
is installed on top of available servers, replicating the traffic
and sending one copy to the desired application server and the
other to the monitoring server. Nowadays, as a server can run
multiple VMs, the regular application VM and themonitoring
application VM, the old TAP is not helpful. Hence a new ver-
sion of TAP was designed called Virtual TAP (vTAP). vTAP
is installed in the server, using virtual switches, replicating

the traffic and sending it to multiple VMs. The problem of
vTAP is the consumption of host machine resources which
can lead to degradation of its performance. Hong et al. [30]
designed an eBPF-based vTAP to duplicate the incoming traf-
fic and redirect it to the desired VM as well as the monitoring
VM. Testing their design against Open vSwitch (OVS) [31],
showed large enhancements in terms of packets per second
(PPS), receiver throughput (RX), and CPU usage.

3) LOAD BALANCING
The expandability of data centers and data movement leads
to the importance of load balancing. Even a slight enhance-
ment can lead to a large performance increase in the data
centers. Chen et al. [32] proved the feasibility of building
a load balancer based on machine learning (ML). The data
collection stage for building the ML model leverages eBPF
capabilities for collecting runtime system data. This work
showed the efficiency of using data collected with eBPF to
build a new ML model in lieu of the Linux’s Completely Fair
Scheduler (CFS).

4) IN-KERNEL PROCESSING FRAMEWORK USED IN
NETWORK FUNCTIONS VIRTUALIZATION
Network Functions Virtualization (NFV) is the concept of
increasing the flexibility of the network equipment regarding
packet forwarding and routing by making the network pro-
grammable using virtualization technologies [33], [34].

Miano et al. [35] proposed Polycube, a software frame-
work for network functions to run in the kernel. Their objec-
tive was to utilize NFV for in-kernel packet processing
applications using eBPF. The most known NFV frameworks
rely on kernel-bypassing approaches rather than in-kernel
processing [36], [37].

5) SRv6 FUNCTIONS FRAMEWORK USED IN NETWORK
FUNCTIONS VIRTUALIZATION
With the advancements of Software Defined Networking
(SDN) and NFV, it is expected to support programmable
interface in network nodes. A key requirement of the rapid
innovation and constraints of NFV is to be applied dynam-
ically and to make sure that network operators are flexi-
ble for new functions integration. Segment Routing (SRv6)
[38], [39] is one of protocols that needs to support network
functions. A framework is proposed in [40] utilizing eBPF
virtualization to implement network functions in SRv6. The
proposed framework provided helper functions that allowed
network operators to encode their own network functions as
eBPF programs to be automatically executed while process-
ing packets.

6) IN-BAND NETWORK TELEMETRY
In-band network telemetry (INT) is a revolutionized term
corresponding to the old known network telemetry. Teleme-
try refers to the automated process of remotely collecting
and processing network information in order to gain visibil-
ity and meaningful insights about the state of the network.

VOLUME 10, 2022 126375



H. Sharaf et al.: Extended Berkeley Packet Filter: An Application Perspective

FIGURE 8. eBPF roadmap.

INT enabled network re-orchestration on the level of the
packets and on the level of tasks [41].

Bhat et al. [42] discussed the problems of TCP in wire-
less networks. The current TCP protocol depends on TCP
acknowledgements, which may lead to wrong decisions espe-
cially when the wireless medium is congested. Bhat et al.
designed a new algorithm to handle this problem using a rela-
tion between INT data and the window size for the packets.
In order to derive the relation, they used the real-time TCP
data traced by eBPF in the INT end-to-end option. The results
showed throughput improvements of 7 times more than the
existing algorithms with less than 20% link loss. Similarly
Dong et al. [43] demonstrated eBPF capabilities to detect
network congestion at its earlier stages.

SmartNIC enabled the design of telemetry-based network
monitoring application for on-going monitoring while reduc-
ing the footprint of software network analytics. Abranches
et al. [44] implemented a prototype based on eBPF to offload
specific pieces of information and computations to the Smart-
NIC. eBPF maps provide access to SmartNIC statistics.
On top of the statistical counters, their scheme uses the
HyperLogLog (HLL) algorithm to categorise the paths in
order to find unique flows and distinguish them. The authors
also designed a routing unit to route the packets to the desired
application based on IP-to-application routing tables that are
offloaded and stored in the SmartNIC.

Finally, in-band network measurement is an alternative
of in-band network telemetry introduced by Sommers and
Durairajan [45]. They developed an open-source project

code-named ELF for active and dynamic in-band application
flow tracing. One of the main problems of current monitoring
tools is the rigid flow tracing, where the network operator
must define the application routes to be traced, which made
them infeasible in case of mid-flow route changes. Simi-
larly, due to load balancing the selected path may affect the
throughput of the application. ELF uses eBPF to attach probes
accompanying the normal application packets flow, and then
dynamically adjust itself. This is done by periodically analyz-
ing a copy of the returned packets to configure the new flow
of the application and measure the throughput of the network
in order to produce new measurement probes and inject them
into the new path.

7) TRAFFIC MEASUREMENT IN SOFTWARE DEFINED
NETWORKS
Software Defined Measurement (SDM) was recently intro-
duced to refer to traffic flow monitoring and management in
Software Defined Networking (SDN). Zha et al. [46] stud-
ied different designs and frameworks to present a handful
of comparisons for data centers relying on the deployment
of Open vSwitches (OVS) [31]. The authors discussed the
architectural design of UMON [47] as shown in Figure (9(a)),
which preserves OVS’s original architecture while introduc-
ing the flexibility of controlling the monitoring tables using
APIs and decoupling monitoring (e.g., packet/byte counters)
from forwarding in userspace. Moreover, the authors pro-
posed five novel designs, the Flow CAPture scheme (FCAP)
and the Sketch based MONitoring (SMON) with the option

126376 VOLUME 10, 2022



H. Sharaf et al.: Extended Berkeley Packet Filter: An Application Perspective

of implementing the monitoring feature on-path or off-path,
and the final design based on eBPF. The path refers to the
kernel path used during receiving a packet until the time the
packet leaves the OVS (packet out). FCAP/SMON on-path,
illustrated in Figure (9(b)), adds a separate monitoring phase
after the kernel flow cache that uses the kernel filter table
managed by userspace APIs to check for the wanted packets
and then updates a set of tuples that is fetched periodically to
the monitoring tables in the userspace to update the counters
in themonitoring application. In contrast, the off-path scheme
Figure (9(c)) uses a newly added ring buffer cache. Once a
packet is received, it is duplicated and forwarded to the ring
buffer that is used for the monitoring phase (the same as on-
path). The other copy passes through the kernel flow cache
and forwarded out immediately, thus achieving a complete
separation between monitoring and forwarding. The pro-
posed eBPF design Figure (9(d)) uses two sets of eBPF maps
to interface with the monitoring application in the userspace.
The eBPF program is attached at Traffic Control (TC) ingress
and egress, such that once a packet is received, it checks
the eBPF map that is used for storing the monitored hosts
(IP of the desired packets) to filter out unwanted packets and
updates the second eBPFmap used for storing the set of tuples
(the stats collection counters). After the filtering phase, the
packets proceed with the OVS data path. The main advantage
of eBPF over FCAP/SMON is that the monitored hosts can be
updated during runtime due to the shared eBPF maps and the
low complexity of implementing the eBPF program. Results
showed that the eBPF design outperforms the other in terms
of implementation complexity. eBPF is entirely independent
of OVS architecture and can be loaded and updated at run-
time, while the others require recompiling and reinstalling on
any update. In terms of latency andmemory consumption, the
off-path designs win at the cost of high memory consumption
due to the ring buffer write operations; without the ring buffer,
eBPF has the lead. Overall, each design has its pros and cons
and depends on the user to determine which can fit the case
more effectively.

8) MONITORING WiFi NETWORKS
Sheth et al. [48] pointed out the importance of gaining deep
insights into network operation especially in wireless envi-
ronments. The authors proposed the first framework called
FLIP, leveraging eBPF to monitor WiFi networks in order
to solve two issues; accurate wired-to-wireless packet mon-
itoring and energy consumption on access points (AP) sta-
tions. eBPF’s time-stamping facility enabled accurate mea-
surement of wired-to-wireless packet switching as it goes
through multiple layers before being attached to the desired
wireless access channel. Besides, APs stations suffer from
wasting huge amount of energy due to the awakening pro-
cess, which is the process of going-to-sleep and awakening-
from-sleep. To solve these energy consumption issues, the
authors proposed profiling duty-cycle patterns of the stations
using eBPF capabilities. Although FLIP was the first of its
kind, the results showed an energy consumption reduction

FIGURE 9. (a) OVS-based UMON architecture,(b) On-Path-based
FCAP/SMON architecture,(c) Off-Path-based FCAP/SMON
architecture,(d) eBPF-based design.

of 6% compared to the standard power monitoring tools.
However, the protocol does not require extra hardware instal-
lations as regular power monitoring tools do.

9) MULTI-STREAMING CONTROL FOR REAL-TIME EDGE
COMPUTING
Data multi-streaming has to be handled by sensors, IoT
devices, edge servers, etc. Themost important network-related
problem is limited capacity due to the congestion caused
by replicating data for computation on edge devices.
Baidya et al. [49] proposed a computation-aware communi-
cation control framework using eBPF for real-time IoT data
traffic processed at the network edge. The authors achieved
better network and edge server resources utilization, while
featuring a dynamic network and packet filtering control.

10) PACKET STEERING
The evolution of network interface cards (NICs) directed
researchers to find new approaches for improving Applica-
tion Level Parallelism (ALP). The difference between CPU
and NIC operating speeds caused the system to lag as it can-
not keep up with NIC speeds [50]. Even if the CPU speed can
handle the traffic (for example 100 Gbps) arriving from the
NIC, the memory hierarchy and the small capacity of caches
are the bottleneck of the overall process. In [51], a scheme
was proposed by combining application level partitioning
and packet steering to improve application level parallelism.
Figure 10 illustrates the original approach of handling the
arrived packets and the new proposed scheme using eBPF
XDP program. In Figure 10(a), the packets are stored in a
network stack in the kernel and passed to core 1. This core
will determine if it is possible to send the packet to other
cores in order to distribute the work. The current bottleneck
is the speed of core 1 as it needs to process all packets.
The proposed approach in Figure 10(b) used eBPF technol-
ogy to bypass the kernel and distribute the work directly to
the available cores. Although this approach requires further

VOLUME 10, 2022 126377



H. Sharaf et al.: Extended Berkeley Packet Filter: An Application Perspective

FIGURE 10. (a) The original flow for handling arrived packets, (b) the new
approach for packet steering by bypassing the kernel using eBPF XDP
program.

evaluation, the authors believe this implementation is a step
forward to increase application level parallelism and reducing
the overhead of packet processing.

11) 5G MOBILE GATEWAY
Parole et al. in [52] and [53] discussed eBPF integration
for 5G mobile gateway in the Mobile Packet Core (MPC).
5G Mobile gateway is responsible for the interconnection of
the mobile user devices to Packet Data Networks (e.g. the
Internet). The experimental results showed that eBPF can
be a good solution for small, distributed centers for edge
computing.

12) FAILURE/CONGESTION DETECTION AND PATH
REROUTING
Multiple researchers have been studying the area of detecting
network path failures and congestion at the time of occurring
or even before by analyzing the behavior of the network
and predicting the possible upcoming issues. The designs
were based on selecting which and what network parameters
to capture and use for the action stage, combining multiple
parameters, and observing network behavior. The action stage
could include alerts sent to the network admin, dynamic
rerouting of the flow, data collection for building machine
learning prediction models, etc. Based on the experiment
environment, we divided the use-cases into Multi-protocol
Label Switching (MPLS) and Software-Defined Wide Area
Network (SD-WAN).

a: SEGMENT ROUTING WITH IPv6 (SRv6)
SRv6 is a new routing mechanism [39], [54] based on divid-
ing the network into segments and appending routing instruc-
tions (labels) on top of the packets rather than maintaining
the complete routing paths for each packet on each routing
node in the network. The packets will hold the directions
(the segments to visit) and traverse the network. On each
routing point the packet will use the saved segment directions
and the router will point the packet to the next segment
routing point. Segment Routing reduces the overhead of the
routing nodes individually by only maintaining the informa-
tion related to the connected nodes, not the entire network.

Xhonneux et al. [55] proposed a new scheme to provide
fast-reroute services using eBPF in SRv6. The authors dis-
cussed the main three elements (detecting failures, re-route
packets on a failure detection and finding backup paths) to
provide a fast-reroute service. In their design, the authors
classified the network nodes into two types; the master node
and the slave node. In Figure 11, we can assume all nodes
in segment 1 to be master nodes and the rest are slaves. The
master nodes will store the status link (ON/OFF) in the eBPF
maps while the slaves will compute the link status when
required. The proposed scheme combined with Topology-
Independent Loop-Free Alternate (TI-LFA) [56] mechanism
leveraging eBPF, leads to a throughput enhancement of 8%
compared to classical Bidirectional Forwarding Detection
protocol (BFD) [57] that adds an extra application layer
protocol and complicates the setup process of the routing
paths for the packets (requires a symmetric setup).

FIGURE 11. Segment routing with eBPF included. Segment 1 routers
considered master nodes with eBPF installed. Other segments routers are
eBPF-based slave routers.

Jadin et al. [58] proposed an alternative approach to detect
failures and reroute paths in SRv6 based on the TCP protocol,
called TCP path changer (TPC). The authors divided the
tasks into i) recovery from distant link failures; this refers to
the detection of route failures from both sender or receiver
sides which is then used to select an alternative path, and
ii) dynamic selection of lowest-delay paths by monitoring
the performance characteristics of the paths. Recovering from
path failures requires tracking the path differently from the
sender and receiver sides. The sender can be configured to
function based on either a counter-based form or a time-based
one. In the first type Figure (12(a)), a counter of the number
of retransmission timeout messages (RTO) from the sender is
maintained and once the counter exceeds a specific number
pre-configured by the network designer, a different path is
used to re-transmit. In a time-based form Figure (12(b)), the
total time of the RTO messages is maintained instead of their
actual number. The receiver side, in both cases, works in a
counter-based form Figure (12(c)) to count the number of
duplicated acknowledgments sent from this side (receiver)
to the sender side and use it as a trigger to change the
route. When a packet reaches the receiver, it will respond

126378 VOLUME 10, 2022



H. Sharaf et al.: Extended Berkeley Packet Filter: An Application Perspective

with ACK to the sender to proceed with the next packet,
but if the same packet reaches the receiver, it means that the
ACK did not reach out to the sender endpoint because of an
issue in the path. Path selection is based on a multi-armed
bandit (MAB) [59] approach that balances the exploration of
new paths and exploitation of the current paths based on a
reward function that captures the implications of the selected
paths (collected performance statistics). The available paths
are stored in descending order based on their accumulated
reward value reflecting the lowest-delay paths. Overall, the
proposed approach handles the detection of path failures and
then reroutes to the other paths based on the list of lowest-
delay paths. TPC runs in an isolated eBPF VM in the kernel
space and stores the path headers and the connections on two
different eBPF maps. The configurations setup (paths and
their requirements) is done by the TPCDaemon, which is a
userspace program that works as an interface to the eBPF
maps and the eBPF VM hosting the main code.

FIGURE 12. (a) counter-based sender, (b) time-based sender,
(c) counter-based receiver.

b: SOFTWARE-DEFINED WIDE AREA NETWORKING
(SD-WAN)
Software Defined Networking (SDN) on a large scale of geo-
graphically distanced areas is referred to as Software-Defined
Wide Area Network (SW-WAN). Troia et al. [60] designed
a new scheme based on eBPF to capture and account for
the number of TCP retransmissions in the Open Network
Operating System (ONOS) [61]-based WAN controller and
deliver them through a buffer to the monitoring applications
in the userspace. The proposed design consists of a Kernel
Agent (KA) that is the eBPF program, a buffer for storing
the captured flow information, and the monitoring applica-
tion with the pre-defined threshold tables for the number of
tolerable TCP retransmissions for each service flow before
rerouting the packets flow. The main objective of the design
is to increase service resiliency by optimizing andminimizing
the downtime caused by network failures (i.e., congestion,
off links). The authors claim that the system has a low CPU
usage compared to the others, but no actual comparison has
been presented. Nevertheless, it can detect real-time segment
losses, and no pre-installed software is required as it depends
on the eBPF in the Linux operating systems.

13) EXECUTION CHARACTERISTICS MEASUREMENT IN
EDGE CLOUDS
Gowtham et al. [62] designed the MessTool framework to
profile end-to-end behaviour of distributed applications in
cloud developments. The aim of the framework is to help
in measuring the performance of cloud infrastructures con-
sidering application provider requirements, in a way to pro-
vide insights to design specialized cloud environments for
designated purposes. MessTool leveraged eBPF capabilities
of event tracing and time-stamping facility in the kernel to
measure the execution characteristics of an event along the
path of execution.

14) FAST AND SCALABLE PUBLISH/SUBSCRIBE SYSTEM
The Publish/Subscribe architecture [63] shown in
Figure 13(a) can be used to provide notification services
based on user interests. Publishers (the agents responsible
for publishing) generate the notifications, and the subscribers
(the agents that consume) collect what they are interested
in (subscribed for). This scheme is based on intermediate
devices called brokers (switch-like middleware). Brokers
implement a forwarding-like table for matching notifications
and subscribers running on the application layer. An applica-
tion of this idea can be found in IoT.

In IoT, the sensors (IoT devices) are pre-programmed
to collect data. These data are sent to the broker (the
middleware). The broker will forward the data to its sub-
scribers’ list based on their subscription (their interests).
Tatarski et al. [64] presented a novel architecture for Pub-
lish/Subscribe scheme that reduces the overhead of running
the matching-forwarding process in the application layer
(user space) to take place in the kernel level by utilizing eBPF.
The authors suggested splitting the broker into conventional
edge-broker (CEB) and eBPF-based cloud broker (eBPF-CB)
as can be seen in Figure 13(b). CEB pre-processes the notifi-
cations (decoupling, grouping, and labeling) as the ordinary
broker does and then forwards them to the eBPF-CB. Since
the data is already pre-processed, the objective of the cloud
broker is limited to forwarding packets only. eBPF’s role
is to intercept the packets as soon as they arrive, replicate
and replace their destinations IP and forward them to the
corresponding subscribers. The authors evaluated the notifi-
cations forwarded per second for the user space broker and
the eBPF-CB. Results show that the latter outperforms the
userspace broker by a factor of 20 to 25. Generally speaking,
the idea was to divide the original broker task into two sub-
tasks, processing and forwarding. Although the authors only
addressed the forwarding task and their approach has sig-
nificantly increased the forwarding speed and the scalability
of the design, they did not evaluate either the complete path
latency since they introduced a new processing stage which
may add extra latency, or the overall power consumption and
its effects on the lifespan of the edge broker and the cloud
broker.

VOLUME 10, 2022 126379



H. Sharaf et al.: Extended Berkeley Packet Filter: An Application Perspective

FIGURE 13. (a) The standard publish/subscribe design, (b) the proposed
eBPF-based publish/subscribe design.

15) SERVERLESS EDGE CLOUD COMPUTING IN IoT
Serverless Edge Cloud (SEC) is a new cloud paradigm to
move computations in cloud architectures closer to the edge-
end. Although the main advantage of cloud architectures is
its low latency and centralized computation, which can be
easily managed and scaled with the available resources, cloud
computations suffer from the high cost of maintaining the
quality of the offered service. The main goal of SEC is to
reduce the cost while maintaining the same service quality.
Wang et al. [65] proposed a new SEC-based design for IoT
traffic using the Knative framework [66] to solve two main
issues i) the cold-start problem of SEC designs and ii) the
overhead of Knative queue proxy. The standard protocol used
in IoT communications is the Message Queueing Telemetry
Transport (MQTT) [67], which is based on the design patterns
of publish/subscribe scheme of Figure 13(a). On the other
hand, Knative uses HTTP for its communications. Thus,
the first thing the authors introduced is an MQTT-to-HTTP
adaptor that converts from standardMQTT protocol to HTTP
protocol for Knative to be able to handle it. The cold-start
problem occurs when a service goes into sleepmode due to an
extended period of inactivity which results in in high response
latency when a request arrives and the service becomes func-
tional again. The authors designed a prediction component
for requests arrivals based on XGBoost [68]. The authors
leveraged eBPF to design an event-driven proxy (eProxy) to
replace the Knative queue proxy. The eProxy will let the CPU
stay in its idle state without wasting any cycle. It is placed on
top of the ethernet interface; therefore, on predefined events
(e.g., packets arrivals, a chain of packets), the eProxy will be
triggered, and the CPU will start processing. Results showed
that replacing the eProxy with the queue proxy can save up
to 37% of the CPU overhead. However, more experiments are
needed to study the latency introduced by the new interme-
diate components (MQTT-to-HTTP adaptor and the MQTT
broker from publish/subscribe design). This is left as future
work.

a: INSIGHTS
• Performance is the main focus of networking works.
It can have the form of system utilization

(CPU, memory, registers, network stack, etc.), through-
put, processing power, energy consumption, extendibil-
ity and scalability of available resources.

• The crucial point is what components of eBPF are being
used and for what purpose. Feedback from eBPF probes
can be used to collect information (resource usage, pack-
ets information). eBPF maps can be used to store data to
be efficiently accessible from userspace or kernel space,
or to be a point for exchanging data between them.

• Gathered data are used for profiling (applications, users,
devices), modifying packets headers (changing flow
direction) copying packets (duplicated for analysis and
redundancy) and change connected devices’ behaviour
based on the collected information (powering off idle
devices, controlling network protocols). These can be
used for better load balancing, congestion control,
reduction of resource usage for overloaded devices, and
reduction of energy consumption for idle devices.

Table 1 is a summary of the discussed studies related to
the networking domain along with their key aspects, pointing
out the limitations of the proposed designs and the future
areas left for exploring. The first column refers to the study
utilizing eBPF, the second column defines the place in which
the eBPF program is stored and executed (Kernel Space (KS),
Userspace (US), Network Interface Card (NIC), Storage Ser-
vice (SS)), the third column defines the main role of the eBPF
program, the fourth column summarizes the main aspects of
the study, and the fifth column reports the challenges for
possible future directions as mentioned by the authors.

B. SECURITY
A vital area where the power of eBPF can be leveraged
is data and network security. As attackers can get unprivi-
leged access to resources and data lying in servers, security
breaches may lead to data modification or destruction, leak
of confidential user or company data and ultimately negative
advertising and loss of user trust in the services offered by a
company.

The importance of eBPF in security is its highspeed pro-
cessing that can enable packet analysis before the packet gets
into the system and even before reaching the network stack
in the kernel. Moreover, eBPF is a robust tool that is used for
efficient data gathering when it comes to building training
datasets for machine learning-based security applications.
It also can provide a level of trustworthiness to the increased
untrusted open-source codes since eBPF already has a built-
in verifier. The following are the security-related studies we
examined in this work.

1) DNS PRIVACY
Domain Name System (DNS), as the root of the world-
wide internet, is the basis for controlling the internet flow,
node’s connectivity, and user interaction with the internet.
Gaining access to the DNS layer provides deep insights into
user behavior. Distributing single-user traffic across different
DNS providers helps maintain users’ privacy. In [69] a new

126380 VOLUME 10, 2022



H. Sharaf et al.: Extended Berkeley Packet Filter: An Application Perspective

TABLE 1. Summary of eBPF use-cases in the networking domain.

scheme was proposed to enhance user privacy by changing
the DNS flow for each application running in the system.
eBPF provided users with insights over their DNS network
traffic to assist in choosing which DNS servers to use and
which path to follow. The proposed solution protects users
from data leakage and privacy attacks compared to the stan-
dard methods.

2) AUDIT LOGGING IN FORENSICS ANALYSIS
Forensics is about analyzing any digital system to discover
the attacker’s fingerprints as a postponed investigation action.
Two critical requirements for forensics analysis include
recording system activities and presenting the data concisely.
Rohit [70], designed an eBPF-based framework for effi-
cient audit logging that adds a runtime overhead of just 1%.

VOLUME 10, 2022 126381



H. Sharaf et al.: Extended Berkeley Packet Filter: An Application Perspective

The audit system’s strength is its presentation of the collected
data from two primary sources, kernel activities tracked by
the default configuration of eBPF and the user’s run-time
defined instrumentation code. The presented audit system
helped in expanding the available auditing tools while over-
coming their limitations by reducing the generated audit log
size, keeping low run-time overhead, no additional modules
to be installed in the kernel, and making it suitable and
scalable for use with multiprocessing environments.

3) SECURE AUDITING FOR CONTAINERS
The authors in [71] proposed saBPF a deployable secure
auditing tool for containers security. Their design was evalu-
ated against Linux Security Modules (LSM) [72] to ensure
that saBPF is maintaining the same performance level as
the traditional auditing tools, thus proving its practicality.
The authors extended the eBPF framework to allow cus-
tomizability of audit rule configurations at compilation time
so that each container has its own set of configured rules
and audit policies. Each individual container can deploy a
separate secure auditing tool regardless of other containers
in the same hosting system without affecting the host system
performance. The authors emphasized the effects of doing the
configuration at compilation time instead of run-time, which
minimized the run-time audit complexity and improved over-
all performance.

4) MACHINE LEARNING BASED IDS
Bachl et al. [22] developed an intrusion detection system
based on machine learning that runs on the kernel utilizing
eBPF. Their solution is using decision trees to process and
decide whether a packet is a malicious one while considering
the context of the old packets. In order to have accurate
results, they implemented their IDS as a userspace application
and as an eBPF program. Their results showed an increase
of 20% on the number of processed packets for the kernel
IDS over the userspace version.

5) CONTAINERS IDS
A good use-case proposed in [73] is to apply eBPF’s mon-
itoring power for developing intrusion detection systems
specialized in containers security. The paper showed how
the technology could retrieve the complex container and
application-level context and improve the legacy runtime
security tools by reducing the performance impact on the
host.

6) HOST-BASED ANOMALY DETECTION SYSTEM
ebpH [16] is an eBPF-based version of Somayaji’s pH
design [74]. The idea behind both algorithms is to build pro-
files for each executable on the system. The profiles establish
a normal behavior record for the system processes. When a
system call violates the established profiles, ebpH will raise a
warning to the user and delay that system call so the user can
respond and take appropriate action. Performance-wise, ebpH
detection produced negligible overhead to the system while

maintaining safety guarantees because of eBPF. The code of
ebpH is available as open-source, making it a suitable project
for individuals to implement a host-based anomaly detection
system on their own devices.

7) FAST PATTERN MATCHER BASED IDS
Wang and Chang [24], designed a Snort [75] like IDS based
on eBPF.While Snort is designed to run in the user space as an
intrusion detection and prevention tool, Wang’s and Chang’s
implementation is running in the kernel. Their approach is
based on two newly added components, a control program
in the user space to configure the execution of the eBPF
program, and an eBPF-based Fast Pattern Matcher (FPM)
that runs on the kernel level. The FPM engine is based on
the Aho-Corasick (AC) algorithm [76], constructing a state
machine from the keywords, and then, in a single pass, fig-
uring out the longest matching pattern. Although subjected
to eBPF-limitations, the experimental results demonstrated
efficiency of their design against Snort under the same testing
conditions.

8) SERVICE MESH OBSERVABILITY IN MICROSERVICES
The evolvement of microservices in containers raised the
problem of coordinating the traffic that is directed to the same
service. The host device is the coordinator in the standard case
which leads to the development of management applications.
One of the design patterns is referred to as service mesh
(e.g. Istio [77]), illustrated in Figure 14(a). The design of
service mesh is to have a layer (the control plane) placed
transparently on top of the microservices allowing traffic
management, observability, and security, without modifying
the service code. The problem of modern tools is the use of
static and rigid metrics to collect events and logs. Levin pro-
posed ViberProbe [78] as the first (at the time of writing) scal-
able eBPF-based dynamic and adaptive microservice metrics
collection framework. eBPF will assign application specific
configurations and collect their metrics. The collected data
can then be used to generate the new configuration based on
service pattern analysis and then be deployed and distributed
as shown in Figure 14(b).

FIGURE 14. Service mesh overview.

9) VM AND CONTAINERS PACKETS VISIBILITY
Deri et al. [79] considered the problem of packet visibil-
ity as a result of data encryption while entering/leaving

126382 VOLUME 10, 2022



H. Sharaf et al.: Extended Berkeley Packet Filter: An Application Perspective

VMs and containers. The standard method to solve this
issue is by deploying packet analyzers per VM or con-
tainer, which is infeasible in real-life scenarios. The authors
designed a novel tool that enables communications visibility
at the operating-system level by monitoring network activ-
ities using kernel probes and tracepoints rather than nor-
mal IDS/IPS which monitors packets crossing the system
boundaries.

10) CONTAINERS POLICIES ENFORCEMENT
Containers share host resources, and the way containers
interact with the host is by sending system calls (syscalls).
Containerizing applications enable the reusability of the host
resources to deploy more applications. In this manner, per-
container policies are necessary to support different security
protocols on the deployed applications in the host system.

Bélair et al. [80] presented SNAPPY which stands for Safe
Namespaceable And Programmable PolicY. The SNAPPY
framework allowed the definition of per-namespace policies
for Linux Security Model (LSM) hooks. The paper’s main
contributions were allowing untrusted processes to enforce
eBPF-based policies into the kernel using the designed
namespace policy_NS and implementing dynamic eBPF
helpers that can be loaded at runtime. The authors also
demonstrated that SNAPPY could be integrated with relevant
containers engines (e.g. Docker). Similar work has been done
by Findlay et al. [81] as they proposed BPFcontain, a flexi-
ble policy language to confine containers and ensure least-
privilege access.

11) PROCESS CONFINEMENT
Process confinement is defined by limiting open-source
codes and untrusted codes from running and accessing
unauthorized system resources and other applications. The
confinement process adds more overhead to the system, espe-
cially the cloud. The objective is tominimize the overhead at a
low rate. Findlay et al. [82] presented a proof-of-concept con-
finement application called bpfbox based on eBPF. Their pro-
totype showed less overhead compared with AppArmor [83].
Proving the power of bpfbox opened several opportunities for
future applications related to systems security.

12) MULTI-LEVEL CONTROL FLOW ATTESTATION
System attestation is the process of ensuring the integrity
of a system’s configuration and the correctness of system
execution behavior. In remote attestation, a third party needs
to verify that devices are working and behaving according to
pre-defined configurations. An attestation certificate is used
as proof of the trustworthiness of the system. Papamartzi-
vanos et al. [84] proposed a hybrid Control Flow Attestation
(CFA) framework to overcome the limitations of standard
remote attestation solutions, which include i) the need for
extra hardware installations and ii) the overhead of precise
monitoring and tracing of the system’s configuration and
operation. The framework is based on multi-level monitor-
ing and reporting using eBPF and Intel Processor Trace

technologies (Intel PT) [85]. Although the intention was to
develop a pure software-based attestation solution, Intel PT
is hardware assumed to already exist in the system. The main
idea behind their multi-level design is first to monitor the
system using eBPF (the authors call it high-level monitoring)
similar to the other use-cases, and if suspicious activity is
detected and alerted, then use Intel PT to do in-depth inves-
tigations. In other words, eBPF will be used for tracing soft-
ware commands and execution flow as first level attestation;
if it fails, second level forensics analysis is initiated where
Intel PT is used to access the programs and data memory
to detect exploits. Results showed that eBPF tracing is well
suited and does not add to the overall overhead. In contrast,
the Intel PT, even on the small scale of targeting specific
issues, will add extra overhead, which is why the best and
most efficient scalable solution for CFA is to use multi-level
tracing and reporting. The overhead of monitoring and the
inspection depth is related to the level. In the case of a two-
level system, the low level (i.e., first level) has less overhead
but at the cost of inspection depth, while the high level
(i.e., second level) generates more overhead but with an
accurate and precise inspection picture.

13) ASYMMETRIC DoS DETECTION
Denial of service (DoS) attacks aim at interrupting the system
and loading it with useless traffic or asking for intensive
computations to occupy available resources, thus preventing
regular users from accessing system services. Attack mitiga-
tion is about reducing the effect of the attack or preventing
the attack from happening in the first place. One way of
classifying DoS attacks is by observing the number and the
type of resources used to launch the attack against the targeted
resources [86]. When they are of the same amount and type,
it is referred to as Symmetric DoS, and if the resources used
are less than the targetted ones or of different types, they
are called Asymmetric DoS (ADoS). Classical methods of
identifying DoS attacks are no longer applicable in case of
ADoS due to its unique characteristics [87].

FINELAME [88] is amonitoring tool with ADoS attacks in
mind as its prime focus for detection. Using eBPF, three com-
ponents have been introduced; i) attaching application-level
probes to the functions handling the processing of the incom-
ing requests, ii) monitoring data resources in both ker-
nel/user space, and iii) building a semi-supervised learning
model trained on the gathered data to detect anomalies in
the requests pattern. FINELAME has reached almost 100%
accuracy distinguishing between attacking and legitimate
requests while being subjected to ReDoS, Billion Laughs, and
SlowLoris attacks.

14) AUTO RULE GENERATION FOR DDoS MITIGATION
Distributed Denial of Service (DDoS) is a category of DoS
attacks that uses infected computers called Bots, controlled
by the attacker computer (master), to send useless traffic to
the victim system to overflow its resources. This results in
distributed machines sending malicious traffic without any

VOLUME 10, 2022 126383



H. Sharaf et al.: Extended Berkeley Packet Filter: An Application Perspective

tracepoints to investigate the origins of the attack initia-
tor. The attacker starts by sending commands to the con-
trolled servers (CS) which then deliver these commands to all
infected computers (called zombies). The infected computers
will send a massive amount of useless traffic to the victim,
which will use all of its available resources to handle the
incoming requests. When an average user sends safe packets
to the affected machine, the packets will be dropped due to
insufficient resources.

Wieren [89] discussed the use of eBPF for auto rules gen-
eration to build DDoS mitigation systems. As illustrated in
Figure 15, the legitimate and the invalid traffic will pass into
the XDPfilter, when the accepted trafficwill be objected to an
anomaly detection system (ADS). ADS will permit the legit-
imate traffic to go through and once an anomaly is detected,
a copy of the packets will be sent to rules generation systems.
A set of new filters will be produced and attached to the XDP
filter, and the cycle is repeated. The study demonstrated the
potential of getting a filtering accuracy of 100%.

FIGURE 15. Auto rule generation for DDoS attacks.

15) STEGANOGRAPHIC MALWARE DETECTION
Steganography is the process of hiding a message inside a
legitimate image, file, or code that is considered not secret.
Steganographic malware is a steganographic approach where
the embedded information is malware. Caviglione et al. [23]
showed the possibility of detecting steganographic malware
(stegomalware) using eBPF programs with minimal over-
head. Their results showed that the most straightforward
eBPF code could provide valuable data to be sent and ana-
lyzed by advanced and sophisticated techniques like machine
learning-based tools for stegomalware detection. Similarly,
Carrega et al. [90] discussed the idea of data gathering using
eBPF for building a generalized model for detecting hidden
information that could act as a threat.

a: INSIGHTS
• Security is an important requirement of networked sys-
tems. It can help protect against unauthorized access and
misuse of data or resources by implementing defense
mechanisms and controls at various levels of the network
and system stack. The use-cases studied here are apply-
ing filtering rules and policies on various system levels,

changing packets flow, monitoring and coordinating the
traffic between separated microservices, and data gath-
ering for building security models.

• Gathered data are used to develop accurate, efficient
and trustworthy security tools to detect suspicious pack-
ets, irregular and abnormal behavior, profile violations,
as well as audit and train machine learning-based secu-
rity models.

• Filtering rules and policies constructed out of the gath-
ered data can be applied in the kernel, NIC, per-
container/VM, in-between containers/VMs, and even
on the function-based level (before, after, and inside a
function call in the kernel) while maintaining the low
overhead profile.

• Monitoring and coordinating traffic for separated
microservices (geographically separated applications or
servers) helps analyzing the collected data and patterns
to push new tuned metrics and configurations.

Table 2 summarizes key aspects of the discussed studies,
pointing out the limitations of the proposed designs and the
future areas left for exploring.

C. STORAGE
This subsection will summarize studies related to problems
with storage devices and the ways required to enhance per-
formance. eBPF can be used as a tool to speedup memory
handling or executing operations remotely on data residing
in the storage devices.

1) KERNEL-BYPASSING FOR NVMe STORAGE
One of the problems of new Non-Volatile Memory Express
(NVMe) storage devices is the overhead produced by the
kernel storage path as it is responsible for half of the access
latency. Zhong et al. [20] designed an eBPF program that
handles the accessing and traversing of dependent requests
for data located in storage by applying the concept of
kernel-bypass and avoiding the extra delay caused by cross-
ing boundaries between user space and kernel space. Their
benchmarks showed that it is possible to reduce latency by
half and increase input/output operations per second (IOPS)
by 2.5x.

2) EXECUTION OF OPERATIONS ON REMOTE STORAGE
The rapid development and improvements of NVM stor-
age devices technology (e.g. Samsung PM1743 [91]
with 13 GB/sec (gigabytes per second) read/write speed) has
resulted in the reduction of the memory-to-storage speed gap.
On the other hand, network devices (e.g. Ethernet, NIC) are
improving at a slower rate. For example a typical Ethernet
NIC can handle a traffic of 1 Gb/sec (gigabits per second),
which is extremely far from the speed of storage devices (e.g.
Samsung 980 Pro with read speed of 7 GB/sec (56 Gb/sec)
and write speed of 5 GB/sec (35 Gb/sec)). This perfor-
mance gap raised the problem of ‘‘data movement wall’’.
Kourtis et al. [18] proposed a prototype discussing near-
memory computing to support remote operations execution

126384 VOLUME 10, 2022



H. Sharaf et al.: Extended Berkeley Packet Filter: An Application Perspective

TABLE 2. Summary of eBPF use-cases in the security domain.

on storage using eBPF. The authors focused on the three prob-
lems faced by programming storage devices: Any storage
extension must balance between safety and expressiveness

while running extensions must exhibit minimal overhead
and highest possible efficiency. Moreover, the compatibility
of the extension to support all domains and applications

VOLUME 10, 2022 126385



H. Sharaf et al.: Extended Berkeley Packet Filter: An Application Perspective

must be enforced. Two cases of remote execution have been
tested. Remote numerical increment operations reduced the
latency to half due to halving the network operations requests.
Offloading search operations in data indexed as a binary tree
could cut down the latency by 86% on a data size of 1 TB.

3) COMPUTATIONAL STORAGE DEVICE OVER NVMe ZONED
NAMESPACES
Computational storage device (CSD) is an alternate approach
towards near-memory computing and solving the data move-
ment issue. CSD’s main objective is to offer a programmable
interface to run user defined programs and operations as
close as possible to the storage devices, reducing the data
movement cost. One of the proposed designs presented by
Lukken et al. [92] is Zoned Computational Storage Device
(ZCSD) which is using CSD over NVMe Zoned Namespaces
with the help of eBPF running in the userspace. ZCSD is still a
work-in-progress. However, the initial prototype, showed the
potential of performance gains with low software overhead.

4) USERSPACE SWAPPING
Zhong et al. [19] proposed a new swapping scheme named
LightSwap running in the userspace to handle page faults
(missing pages) and errors (i.e., fetching page errors,
corrupted pages, etc.) to reduce the cost of thread context
switching by avoiding the slow kernel data path. LightSwap
supports local and remote memory (using NIC) to store the
data. The analysis of read/write latency of the kernel and
user stacks showed that most of the penalty is caused by the
kernel stack which can be up to 10 times slower than the
user stack, which is why they suggested moving the swapping
from being handled in kernel space to userspace. LightSwap
is based on 1) the use of Light Weight Threads (LWT)
and integration with the conventional swapping mechanism,
2) eBPF technology to store the default thread context and
page fault context (caused by a LWT fault) in the eBPF maps,
and 3) a new try-catch exception framework. To deal with
page faults, eBPF maps can be used as a shared place to store
the contexts (thread, LWT page fault) between the userspace
and kernel space. On a page fault, the current LWT will
be held (storing its current context), wait until the page is
fetched and then resume its execution. LWT fault handling
(swapping pages) is done asynchronously so that other LWTs
will be scheduled to execute while waiting to resolve the fault.
The authors proposed the try-catch exception framework to
protect applications from paging errors. Applications use
the framework to protect desired code from paging errors
and leave the resolution of the error to their customized
codes. Compared with Infiniswap [93], results showed that
LightSwap can reduce the page fault handling latency
by 3-5 times and improve throughput by 40% (depending on
the environment setup).

a: INSIGHTS
• eBPF is extended to provide efficient access mecha-
nisms of different types of data structures and storage

technologies (SSD, NVMe, etc.) and offload simple
commands and operations to be executed directly in the
local storage or ship them to remote storages.

• Optimizing the data structure while storing and having
clear visibility of blocks and pages in the storage by
leveraging eBPF allows the user to access the data effi-
ciently. This reduces data retrieval time and the number
of requests for the application to obtain the data. Ulti-
mately, this results in less latency, more access per time
unit, and less overhead caused by the storage.

• Encapsulating requests with eBPF headers increases
their safety guarantees and ability to be placed and
kept between the kernel and the storage. This helps
user-defined programs to bypass the kernel and ignore
kernel layers overhead for both independent requests
and chain of dependent requests.

• Finally, use-cases leverage eBPF to explore an alter-
native solution to offload commands (single, repeated,
chunk, dependant, and independent) and running
user-defined functions (using storage APIs) to reduce
the latency and number of requests for local storage
designs as well for data being stored in a distant place
(separated hardware).

Table 3 is a summary of the discussed studies along with
their key aspects, limitations of the proposed designs and
future areas left for exploring.

D. SANDBOXING
The process of ensuring that a program satisfies deploy-
ment constraints is known is Sandboxing. A compiler will
re-compile the code to ensure that code meets the environ-
ment rules and constraints. In eBPF, the static verification
and JIT compilation stages which are responsible for out-
putting the bytecode as described in Section II, represent the
sandboxing process. Sandboxing ensures the efficiency of
eBPF execution while producing an optimized bytecode ver-
sion with formal correctness and safety guarantees. Here we
present some of the studies discussing program sandboxing
using eBPF.

1) eBPF PROGRAM SYNTHESIS
A recent study by Xu et al. [94] showed the importance
and the potentials of optimizing eBPF bytecode. The authors
developed K2, a program synthesis optimized eBPF bytecode
compiler. Their results showed that it is possible to have byte-
code with 6-26% reduced size, 0-4.75% better throughput in
terms of packets per second per core, and 1.36-55.03% lower
average packet-processing latency. K2 works independently
of the eBPF static verifier and there are two distinct sets
of checks for the code. K2 compiles the code into different
outputs and pass them to eBPF verifier to drop the ones that
are rejected by the verifier. Then it checks the performance
of the versions that passed the verification and compare them
in terms of their latency, size, and throughput, as shown in
Figure 16. According to the authors, the more time spent

126386 VOLUME 10, 2022



H. Sharaf et al.: Extended Berkeley Packet Filter: An Application Perspective

TABLE 3. Summary of eBPF use-cases in the storage domain.

FIGURE 16. eBPF program synthesis.

on the K2 compilation, the more optimized results will be
produced.

2) VIRTUAL MACHINES ON IoT MICROCONTROLLERS
The rapid increase of Internet of Things (IoT) devices and
microcontrollers with low-power consumption enabled the
emergence of dynamic and scalable isolated environments for
applications running onmicrocontrollers. According to Zand-
berg and Baccelli the requirements of building suitable iso-
lated environments for microcontroller applications as stated
in [95] are: memory footprint, extra hardware installation for
memory protection, tolerable code execution speed slump,
and the amount of data transferred for updating the applica-
tion. The authors discussed the use of eBPF as a new inter-
esting approach for building tiny VMs scalable and updatable

for hosting microcontroller programs. They compared their
design rBPF with WASM3 [96] and native C implementation
in terms of ROM and RAM usage, code size, and execution
times. Initial results showed that rBPF beats both approaches
in terms of RAM and ROM usage by 15 orders of magnitude
and was capable of executing 1.3 million instructions per
second. Although for code size and execution time, rBPF
falls behind WASM3 and native C by a large difference, this
overhead can be ignored since microcontrollers are not made
for computation-intensive use-cases yet.

3) EMBEDDED DEVICES FIRMWARE PATCHING
The generality of eBPF light virtualization and its appli-
cability on different operating systems with low execution
requirements (with eBPF there is no need to reboot or restart
the system to run an eBPF-based program) made it a perfect
solution for running firmware updates to redirect the system
flow in case of vulnerabilities existence until proper actions
are taken. In [97], a use-case of eBPF was presented towards
creating a firmware hot-patching framework for embedded
devices. Vendors are facing troubles in patching a variety of
embedded devices simultaneously on vulnerabilities or bugs
discovery, since they need different firmware configurations
and versions. This issue raised the importance of looking for
a general firmware patching solution, and here comes the role
of eBPF. The authors in [97], developed RapidPatch which is
a firmware patching framework capable of generating generic
patches for heterogeneous embedded devices to accelerate the
patch development and deployment process.

4) HARDWARE-BASED ANDROID NATIVE CODE ANALYZER
Zhou et al. [98] proposed a novel hardware-based Android
native code analyzer named NCScope utilizing the built-in
features and components ofmodernAndroid systems, namely
the Embedded Trace Microcell (ETM) [99] and the eBPF.
The study presented four use-cases: 1) self-protection (SP)

VOLUME 10, 2022 126387



H. Sharaf et al.: Extended Berkeley Packet Filter: An Application Perspective

in financial apps to check the percentage of the apps that
implement and secure their execution structure and data,
2) anti-analysis (AA) defense in malicious apps to avoid
being detected by software that analyzes their codes,
3) detecting memory corruptions and 4) comparing the per-
formance of functions implemented in the native code. The
problems existing solutions face include incomplete instruc-
tion traces, high overhead, which can be used as a trigger for
the anti-defense mechanisms in malicious apps, and unreli-
able analysis as a result of testing and analysis performed
on emulators rather than in actual systems. ETM is used
for instruction traces based on target addresses to track app
behavior, while eBPF collects app memory data based on the
parameters of the function calls at run-time. Results showed
that NCScope introduces a minimal overhead with only
a 1.2x slowdown compared to other solutions that can cause
up to 40x slowdown to the system. Also, out of 900 finan-
cial apps (i.e., banks, wallets, cryptocurrencies, payment
apps, etc.), 26.8% implement a SP mechanism in their code,
and out of 450 tested malicious apps, 78.3% of them have
AA defenses to prevent from being detected. Moreover, the
collected data can help diagnose memory bugs and provide
helpful and precise insights to evaluate the performance of
the native code functions.

a: INSIGHTS
• The key objective in sandboxing studies is to use eBPF
virtualization to createmore efficient environments (uni-
fied, secure) to host re-optimized codes (eBPF bytecode,
patches) and analyze programs and their hidden features
for a wider range of devices independently of the system
specifications and requirements.

Table 4 summarizes sandboxing-related studies.

IV. USERSPACE
Userspace use-cases are very limited in number since most
designs focus on processing packets in the earliest possible
stage without interrupting any of the system’s flows. For
example, using XDP, the arrived packets can be processed
before even touching the network stack in the kernel. Addi-
tionally, XDP can let the packets bypass the kernel to reach
userspace for processing. Nevertheless, it might be beneficial
to extract and generalize common ideas relevant to userspace
processing studies.

In particular, after examining the objectives and the imple-
mentation of the reviewed works, we decided to present
another grouping approach from the point of view of how
these technical solutions interact with eBPF. As shown in
Figure 17, we also classified the studies according to their
eBPF injection mode, place, type and interfacing with the
eBPF maps mode and type. We should stress, however, that
this categorization is more restricted in scope as it aims to
uncover eBPF usage at the userspace level. Hence, it is not as
beneficial as our more general approach of revealing eBPF
usage at the Networking, Security, Storage and Sandboxing
levels. However, we include it here for completeness.

FIGURE 17. Types of userspace relationship to eBPF.

A. eBPF INJECTION
eBPF injection refers to the process of attaching eBPF
codes to a system location. Modes of injection can be
i) dynamic/auto such that the eBPF program decides when
to attach an eBPF code, and ii) user defined since the user
decides what to control and attach. From our observations,
we concluded that there are four categories for injection loca-
tions: i) eXpress Data Path (XDP), since this is the first point
of packets leaving the network hardware to interact with ker-
nel space, ii) kernel stacks in the kernel space, iii) userspace,
and iv) remote hardware as in case of remote storages. Then
we looked at the form of the code and tracepoints that are
injected, which we refer to by the term type. We grouped
the types into i) eBPF program that refers to custom-defined
code to perform a particular task (e.g., filtering and dropping
packets), ii) kernel probes (e.g., kprobes and kernel trace-
points) to trace kernel functions, and ii) userspace probes
(e.g., uprobes) to trace userspace functions. The following
are examples of different eBPF injection modes, location, and
type combinations:
1) An eBPF design uses XDP (location) to host auto-

generated (mode) filtering rules by analyzing data col-
lected from kernel probes (type).

2) An application developer attaches custom-defined
(mode) uprobes (type) in userspace (location) to trace
the flow of the application functions in userspace.

3) In data centers, simple instructions (e.g., increment oper-
ation) (type) can be shifted to be executed in remote
storages (location).

B. eBPF MAPS INTERFACING
The eBPF maps are used mainly for storing data. They have
two modes; i) auto/dynamic, where the values stored are
updated or retrieved without the user interfering, and ii) on
request, such that whatever data the user wants to collect or
update is done by triggering the event. As for the types of
interfacing, there are four: i) configuring eBPFmaps to create
and define the needed amount and type of data that must
be pre-stored there for later processing, ii) retrieving stored
data to userspace to be presented and visualized by the user
or further processed in userspace, iii) retrieving stored data
for kernel space functions, and iv) storing the collected data

126388 VOLUME 10, 2022



H. Sharaf et al.: Extended Berkeley Packet Filter: An Application Perspective

TABLE 4. Summary of eBPF use-cases in the sandboxing domain.

from all eBPF tracepoints types. In a sense, all designs need
to deal with the eBPF maps, which means they all have some
form of userspace interaction. The following are examples of
different interfacing modes and types of combinations:

a) An eBPF program placed in XDP to count different
IPs’ number of packets and deliver them to an abnormal
behavior analysis tool.

b) A TCP monitoring eBPF-based program developed to
retransmit packets once they exceed the round trip time-
out threshold defined by the network admin stored in the
eBPF maps.

c) An optimization tool capturing the traffic of a specific
application flow to be used for analyzing its perfor-
mance with different implementation approaches.

According to what we have seen, all studies are mostly
linked to userspace by tracing userspace functions usage, for
example, uprobes or fetching the data from the eBPF maps
for visualization, further analysis and processing. There have
been some studies that specify the userspace scope entirely
and differentiate it from kernel space. However, for themajor-
ity of works the userspace role is to retrieve data from eBPF
maps.

V. FUTURE RESEARCH DIRECTIONS
Due to its key advantages, eBPF has attracted a massive
attention both within industry and academia for a broad
range of emerging applications. Analyzing a large number
of uses-cases of eBPF revealed some of its limitations which
create exciting future research opportunities to enhance its
capabilities and realize the full potential of this innovative
technology.

The eBPF code safety properties are checked and verified
by the static analyzer before it can get executed within the
kernel. However, the static checker cannot verify even mod-
est size code which limits the complexity of the acceptable

programs. Furthermore, generating compact eBPF code for
performance enhancement is cumbersome. Formal methods
have been on the forefront to address these issues. Nel-
son et al. in [100] reported an automated proof strategy
that can verify the correctness of reasonably large code
sizes. Similarly, Vishwanathan et al. in [101] have provided
proofs of soundness and optimality for arithmetic opera-
tors (addition, subtraction) and proposed a better, precise
and faster multiplication algorithm in the domain of tnums
(tristate numbers). Improved verification of eBPF programs
with soundness guarantees is the key to remove any vul-
nerability and protect against any kind of attacks. Recently,
Demoulin et al. in [94] have proposed a powerful program-
synthesis-based compiler that automatically generates com-
pact and fast eBPF bytecode with formal correctness and
safety guarantees, which is an important key contribution.
However, more follow-up research work is needed in this
fertile and important field to verify and optimize large pro-
grams quickly with performance and soundness guarantees,
and to integrate it with the Linux toolchain to enrich the
eBPF capabilities for broader applications such as Femto-
Containers [102] for resource constrained low-power IoT
devices.

Even though most eBPF works built their grounds on
its security guarantees, some vulnerabilities and issues
were discovered that need to be addressed before attack-
ers exploit them. Securing eBPF-based applications regard-
less of the eBPF verification itself is a major concern.
These eBPF-based programs introduce new features that
may be misused to bypass the verifier and harm the sys-
tem. SNAPPY [80] when misused, enables a malicious
administrator to insert malicious kernel modules leading to a
DoS attack. Other works emphasize the role of developers in
ensuring that any eBPF-based program is bug-free and works
appropriately [97]. Appropriate monitoring of I/O can be

VOLUME 10, 2022 126389



H. Sharaf et al.: Extended Berkeley Packet Filter: An Application Perspective

an effective indicator for Cryptolockers (Ransomware) [90].
Draining IoT devices’ batteries and DoS attacks can result
from missing an execution time boundary of eBPF-based
programs [18], [95]. Moreover, the most important aspect
about eBPF security is ensuring the correctness and security
guarantees of the eBPF verifier itself [71], [81]. Improper
updating to the ALU32 bounds used for bitwise operations
led to out of bounds arbitrary code execution and therefore,
lunching DoS attacks which in turn is used for local privilege
escalation (LPE) [103]. Several vulnerabilities concerning the
eBPF verifier have been listed in the CVE database [104],
pointing to the importance of revisiting the verifier and ensur-
ing its robustness and correctness.

eBPF is a powerful data gathering tool for security analysis
and has been used for intrusion detection in several fields such
as host-based [16], machine learning [22], and covert channel
detection within IPv6 traffic flows [23] with a minimum
performance overhead. In [22], the authors used flow-based
decision trees to develop a machine learning model which
provides a significant performance advantage. An important
and interesting direction, ripe for further research, is inves-
tigation of other complex machine learning models such as
random forest or deep neural networks using eBPF. This will
open new avenues for machine learning-based applications
of eBPF for load balancing [32], container auditing mech-
anisms for forensics analysis [71], detecting a wider array
of threats such as crypto-lockers and analyzing other per-
formance metrics such as energy consumption, RAM usage
patterns, etc. [23].

Networking has been one of the key domains of eBPF
applications. Recently, eBPF has been used to enhance the
privacy of the standard Domain Name System (DNS), DNS
over TLS and DNS over HTTPS communications with low
overhead [69], [105]. However, as pointed out by the authors
in [69] and [105], more research work is needed to analyze
encryptedDNS trafficwith theminimumoverhead. Similarly,
the authors in [42] employed eBPF to get real-time in-band
network telemetry information for congestion control in order
to greatly increase performance for TCP. This pioneering
work opens several exciting avenues for exploring flow con-
trol, TCP fairness etc., as reported by the authors [42]. The
emerging trend is to use WiFi links for the bulk of Internet
traffic. Recent application of eBPF to WiFi access points for
determining energy consumption and packet switching delay
opens other interesting opportunities for research [48].

Storage latency and I/O operations may become the bottle-
neck in high performance computer systems. Hence, eBPF
has been exploited to reduce the storage access latency in
emerging storage devices [20] or reduce performance costs
of systems calls [106]. As mentioned in [20] and [106],
these interesting works provide more avenues for further
exploration such as offloading other key storage operations to
the kernel including compression and deduplication. Another
promising avenue of programmable computational storage
based on non-volatile memory devices is being pursued for
in-memory processing (near data processing) to overcome

the performance bottleneck in a CPU-driven system for data-
intensive workloads [107]. Future extensions are possible to
provide for built-in support for popular application level data
structures such as B+ trees, hash tables, etc. for near data
processing as highlighted by the authors. Another exciting
research direction reported by authors in a vision paper [92] is
an eBPF-based programmable storage service for the emerg-
ing edge computing paradigm. This storage service will allow
an application specific customization such as replication,
consistency, garbage collection, as well as offloading part
of the computation to the storage service in order to meet
low latency requirements for a set of disruptive applications
like autonomous driving, augmented reality and live video
analytics [108].

As cloud services are becoming pervasive, so the data
centers are becoming carbon-intensive due to their massive
energy consumptions, and hence, attracting global concerns
due to their impact on climate. Therefore, reducing the car-
bon footprint of data centers is an important design goal,
which can be addressed both at the hardware and software
levels. In the software-centric approach as reported recently
in [109], both the energy and carbon footprint need to bemade
visible to application developers on a fine-grained basis by
systemAPI to make informed tradeoffs between performance
and carbon emissions. We envision that eBPF can play a vital
role in tracking energy and resource usage at a fine-grained
level in order to automatically make proper resource selection
within the service-level agreements (SLAs) to reduce carbon
footprint.

Finally, unified performance and evaluation metrics, and
testing policies may be needed to correctly evaluate variety
of use-cases for eBPF. eBPF is still under active development
and new features are regularly being announced, which will
pave the way for new applications to emerge in the near
future.

VI. CONCLUSION
The phenomenal growth of cloud services demands new
generation of deep monitoring and inspection tools for
resource provisioning, traffic engineering, security and strin-
gent QoS/QoE requirements. In this perspective, eBPF has
emerged as one of the promising candidate technologies to
cope with these challenges in cloud services. Recognizing
the pervasive adoption of eBPF in emerging cloud applica-
tions, we presented the application landscape of this inno-
vative technology. The prime aim was to offer a use-case
oriented comprehensive guidebook of eBPF applications for
research and product developers. We started with background
knowledge for eBPF, emphasizing its salient features and
capabilities. Then, we surveyed four key application domains
of eBPF related to networking, security, storage, and sand-
boxing fields. For each application domain, we discussed and
summarized a broad set of use-cases alongwith their essential
characteristics and pros/cons. Finally, we suggested several
exciting research opportunities to avail the tremendous poten-
tial offered by this technology. In particular, we identified

126390 VOLUME 10, 2022



H. Sharaf et al.: Extended Berkeley Packet Filter: An Application Perspective

four promising areas for further exploration which include
fast verification and optimization of large eBPF bytecode
with performance and soundness guarantees, eBPF-based
machine learning applications for security and network man-
agement, eBPF-based programmable storage service for the
emerging edge computing paradigm, and reducing the carbon
footprint of data centers. We hope this study will inspire
further developments in the colorful eBPF landscape that
will help broaden its scope and usefulness in evolving cloud
applications.

REFERENCES
[1] B. Varghese and R. Buyya, ‘‘Next generation cloud computing: New

trends and research directions,’’ Future Gener. Comput. Syst., vol. 79,
pp. 849–861, Feb. 2018.

[2] A. Bhardwaj and C. R. Krishna, ‘‘Virtualization in cloud computing:
Moving from hypervisor to containerization—A survey,’’ Arabian J. Sci.
Eng., vol. 46, no. 9, pp. 8585–8601, Sep. 2021.

[3] E. Casalicchio and S. Iannucci, ‘‘The state-of-the-art in container tech-
nologies: Application, orchestration and security,’’ Concurrency Com-
put., Pract. Exper., vol. 32, no. 17, Sep. 2020, Art. no. e5668.

[4] B. Yi, X. Wang, S. K. Das, K. Li, and M. Huang, ‘‘A comprehensive
survey of network function virtualization,’’ Comput. Netw., vol. 133,
pp. 212–262, Mar. 2018.

[5] A. Kiani and N. Ansari, ‘‘Profit maximization for geographically dis-
persed green data centers,’’ IEEE Trans. Smart Grid, vol. 9, no. 2,
pp. 703–711, Mar. 2018.

[6] M. Waseem, P. Liang, and M. Shahin, ‘‘A systematic mapping study
on microservices architecture in DevOps,’’ J. Syst. Softw., vol. 170,
Dec. 2020, Art. no. 110798.

[7] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, ‘‘Microservices yesterday, today, and tomor-
row,’’ Present Ulterior Softw. Eng., pp. 195–216, 2017, doi: 10.1007/978-
3-319-67425-4_12.

[8] M. Waseem, P. Liang, M. Shahin, A. D. Salle, and G. Márquez, ‘‘Design,
monitoring, and testing of microservices systems: The practitioners’ per-
spective,’’ J. Syst. Softw., vol. 182, Dec. 2021, Art. no. 111061.

[9] S. Yang, F. Li, Z. Zhou, X. Chen, Y. Wang, and X. Fu, ‘‘Online
control of service function chainings across geo-distributed datacen-
ters,’’ IEEE Trans. Mobile Comput., early access, Dec. 15, 2021, doi:
10.1109/TMC.2021.3135535.

[10] F. K. Parast, C. Sindhav, S. Nikam, H. I. Yekta, K. B. Kent, and S. Hakak,
‘‘Cloud computing security A survey of service-based models,’’ Comput.
Secur., vol. 114, Mar. 2022, Art. no. 102580.

[11] M. Kleehaus and F. Matthes, ‘‘Challenges in documenting microservice-
based IT landscape: A survey from an enterprise architecturemanagement
perspective,’’ in Proc. IEEE 23rd Int. Enterprise Distrib. Object Comput.
Conf. (EDOC), Oct. 2019, pp. 11–20.

[12] S. Karumuri, F. Solleza, S. Zdonik, and N. Tatbul, ‘‘Towards observ-
ability data management at scale,’’ ACM SIGMOD Rec., vol. 49, no. 4,
pp. 18–23, Mar. 2021.

[13] H. Ning, H. Wang, Y. Lin, W. Wang, S. Dhelim, F. Farha, J. Ding, and
M. Daneshmand, ‘‘A survey on metaverse the state-of-the-art, technolo-
gies, applications, and challenges,’’ 2021, arXiv2111.09673.

[14] S. McCanne and V. Jacobson, ‘‘The BSD packet filter A new architecture
for user-level packet capture,’’ in Proc. USENIX winter, vol. 46, 1993,
pp. 1–11.

[15] eBPF. Accessed: Oct. 20, 2021. [Online]. Available: https://ebpf.io/
[16] W. Findlay. (Apr. 2020). Host-Based Anomaly Detection With Extended

BPF. httpswww.cisl.carleton.ca~willwrittencourseworkundergrad-ebpH-
thesis.pdf

[17] N. Hedam, ‘‘EBPF-from a programmer’s perspective,’’ EasyChair, Lon-
don, U.K., Tech. Rep. 5198, 2021.

[18] K. Kourtis, A. Trivedi, and N. Ioannou, ‘‘Safe and efficient remote
application code execution on disaggregated NVM storage with eBPF,’’
2020, arXiv:2002.11528.

[19] K. Zhong, W. Cui, Y. Lu, Q. Liu, X. Yan, Q. Yuan, S. Luo, and K. Huang,
‘‘Revisiting swapping in user-space with lightweight threading,’’ 2021,
arXiv:2107.13848.

[20] Y. Zhong, H. Wang, Y. J. Wu, A. Cidon, R. Stutsman, A. Tai, and J. Yang,
‘‘BPF for storage: An exokernel-inspired approach,’’ in Proc. Workshop
Hot Topics Operating Syst., Jun. 2021, pp. 128–135.

[21] M. A. M. Vieira, M. S. Castanho, R. D. G. Pacífico, E. R. S. Santos,
E. P. M. C. Júnior, and L. F. M. Vieira, ‘‘Fast packet processing with
eBPF and XDP: Concepts, code, challenges, and applications,’’ ACM
Comput. Surv., vol. 53, no. 1, pp. 1–36, Jan. 2021.

[22] M. Bachl, J. Fabini, and T. Zseby, ‘‘A flow-based IDS using machine
learning in eBPF,’’ 2021, arXiv:2102.09980.

[23] L. Caviglione, W. Mazurczyk, M. Repetto, A. Schaffhauser, and
M. Zuppelli, ‘‘Kernel-level tracing for detecting stegomalware and covert
channels in Linux environments,’’ Comput. Netw., vol. 191, May 2021,
Art. no. 108010.

[24] S.-Y. Wang and J.-C. Chang, ‘‘Design and implementation of an intrusion
detection system by using extended BPF in the Linux kernel,’’ J. Netw.
Comput. Appl., vol. 198, Feb. 2022, Art. no. 103283.

[25] Sunos 4.1.1 Reference Manual, S. M. Inc, Mountain View, CA, USA,
Oct. 1990.

[26] BIBentryALTinterwordspacing T. Hoiland-Jorgensen, J. D. Brouer,
D. Borkmann, J. Fastabend, T. Herbert, D. Ahern, and D. Miller, ‘‘The
express data path Fast programmable packet processing in the operating
system kernel,’’ in Proc. 14th Int. Conf. Emerg. Netw. EXperiments Tech-
nol., New York, NY, USA: Association for Computing Machinery, 2018,
pp. 54–66, doi: 10.11453281411.3281443.

[27] J. Evans, ‘‘Linux tracing systems & how they fit together,’’
Tech. Rep., 2017. [Online]. Available: https://jvns.ca/blog/2017/
07/05/linux-tracing-systems/

[28] Kernel Development Community. Accessed: Oct. 23, 2021. [Online].
Available: httpswww.kernel.org

[29] A. Deepak, R. Huang, and P. Mehra, ‘‘eBPFXDP based firewall and
packet filtering,’’ in Proc. Linux Plumbers Conf., 2018, pp. 1–5.

[30] J. Hong, S. Jeong, J.-H. Yoo, and J. W.-K. Hong, ‘‘Design and imple-
mentation of eBPF-based virtual tap for inter-VM traffic monitoring,’’ in
Proc. 14th Int. Conf. Netw. Service Manage. (CNSM), 2018, pp. 402–407.

[31] Open Vswitch. Accessed: Oct. 25, 2021. [Online]. Available:
httpwww.openvswitch.org

[32] J. Chen, S. S. Banerjee, Z. T. Kalbarczyk, and R. K. Iyer, ‘‘Machine
learning for load balancing in the Linux kernel,’’ in Proc. 11th ACM
SIGOPS Asia–Pacific Workshop Syst., Aug. 2020, pp. 67–74.

[33] M. Chiosi et al., ‘‘Network functions virtualisation An introduction, ben-
efits, enablers, challenges and call for action,’’ in Proc. SDN OpenFlow
World Congr., vol. 48, 2012, pp. 1–16.

[34] European Telecommunications Standards Institute (ETSI).
Accessed: Nov. 3, 2021. [Online]. Available: httpswww.
etsi.orgtechnologiesnfv

[35] S. Miano, F. Risso, M. V. Bernal, M. Bertrone, and Y. Lu, ‘‘A framework
for eBPF-based network functions in an era of microservices,’’ IEEE
Trans. Netw. Service Manage., vol. 18, no. 1, pp. 133–151, Mar. 2021.

[36] Data Plane Development Kit. Accessed: Jul. 10, 2022. [Online].
Available: httpswww.dpdk.org

[37] L. Rizzo, ‘‘Netmap a novel framework for fast packet IO,’’ in Proc. 21st
USENIX Secur. Symp. (USENIX Secur.), 2012, pp. 101–112.

[38] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A.Wang, J. Stringer, P. Shelar, K. Amidon, andM.Casado, ‘‘The
design and implementation of open vSwitch,’’ in Proc. 12th USENIX
Symp. Netw. Syst. Design Implement. (NSDI), May 2015, pp. 117–130.
[Online]. Available: httpswww.usenix.orgconferencensdi15technical-
sessionspresentationpfaff

[39] C. Systems. Segment Routing. Accessed: Mar. 7, 2022. [Online].
Available: httpswww.segment-routing.net

[40] BIBentryALTinterwordspacing M. Xhonneux, F. Duchene, and
O. Bonaventure, ‘‘Leveraging ebpf for programmable network functions
with ipv6 segment routing,’’ in Proc. 14th Int. Conf. Emerg. Netw. Exp.
Technol., New York, NY, USA: Association for Computing Machinery,
2018, pp. 67–72, doi: 10.11453281411.3281426.

[41] L. Tan, W. Su, W. Zhang, J. Lv, Z. Zhang, J. Miao, X. Liu,
and N. Li, ‘‘In-band network telemetry: A survey,’’ Comput.
Netw., vol. 186, Feb. 2021, Art. no. 107763. [Online]. Available:
httpswww.sciencedirect.comsciencearticlepiiS1389128620313396

[42] R. V. Bhat, J. Haxhibeqiri, I. Moerman, and J. Hoebeke, ‘‘Adaptive
transport layer protocols using in-band network telemetry and eBPF,’’ in
Proc. 17th Int. Conf. Wireless Mobile Comput., Netw. Commun. (WiMob),
Oct. 2021, pp. 241–246.

VOLUME 10, 2022 126391

http://dx.doi.org/10.1007/978-3-319-67425-4_12
http://dx.doi.org/10.1007/978-3-319-67425-4_12
http://dx.doi.org/10.1109/TMC.2021.3135535
http://dx.doi.org/10.11453281411.3281443
http://dx.doi.org/10.11453281411.3281426


H. Sharaf et al.: Extended Berkeley Packet Filter: An Application Perspective

[43] X. Dong and Z. Liu, ‘‘Multi-dimensional detection of Linux network
congestion based on eBPF,’’ in Proc. 14th Int. Conf. Measuring Technol.
Mechatronics Autom. (ICMTMA), Jan. 2022, pp. 925–930.

[44] M. Abranches, O. Michel, E. Keller, and S. Schmid, ‘‘Efficient network
monitoring applications in the kernel with eBPF and XDP,’’ inProc. IEEE
Conf. Netw. Function Virtualization Softw. Defined Netw. (NFV-SDN),
Nov. 2021, pp. 28–34.

[45] J. Sommers and R. Durairajan, ‘‘Elf High-performance in-band
network measurement,’’ in Proc. TMA, 2021. [Online]. Available:
https://ix.cs.uoregon.edu/~ram/papers/TMA-2021.pdf

[46] Z. Zha, A. Wang, Y. Guo, and S. Chen, ‘‘Towards software defined
measurement in data centers: A comparative study of designs, imple-
mentation, and evaluation,’’ IEEE Trans. Cloud Comput., early access,
Jun. 10, 2022, doi: 10.1109/TCC.2022.3181890.

[47] A. Wang, Y. Guo, F. Hao, T. V. Lakshman, and S. Chen, ‘‘Umon
Flexible and fine grained traffic monitoring in open vswitch,’’ in Proc.
11th ACM Conf. Emerg. Netw. Exp. Technol., 2015, pp. 1–7, doi:
10.11452716281.2836100.

[48] J. Sheth, V. Ramanna, and B. Dezfouli, ‘‘FLIP: A framework for lever-
aging eBPF to augment WiFi access points and investigate network
performance,’’ in Proc. 19th ACM Int. Symp. Mobility Manage. Wireless
Access, Nov. 2021, pp. 117–125.

[49] S. Baidya, Y. Chen, and M. Levorato, ‘‘EBPF-based content and
computation-aware communication for real-time edge computing,’’ 2018,
arXiv:1805.02797.

[50] A. Kaufmann, S. Peter, N. K. Sharma, T. Anderson, and
A. Krishnamurthy, ‘‘High performance packet processing with flexnic,’’
in Proc. 21st Int. Conf. Architectural Support Program. Lang. Operating
Syst., New York, NY, USA: Association for Computing Machinery,
2016, pp. 67–81, doi: 10.11452872362.2872367.

[51] P. Enberg, A. Rao, and S. Tarkoma, ‘‘Partition-aware packet steering
using XDP and eBPF for improving application-level parallelism,’’ in
Proc. 1st ACM CoNEXT Workshop Emerg. Netw. Comput. Paradigms,
2019, pp. 27–33, doi: 10.11453359993.3366766.

[52] F. Parola, ‘‘Prototyping an eBPF-based 5g mobile gateway,’’ M.S. thesis,
Dept. Comput. Eng., Politecnico di Torino, Turin, Italy, 2020.

[53] F. Parola, F. Risso, and S. Miano, ‘‘Providing telco-oriented network
services with eBPF: The case for a 5G mobile gateway,’’ in Proc. IEEE
7th Int. Conf. Netw. Softwarization (NetSoft), Jun. 2021, pp. 221–225.

[54] C. Filsfils, N. K. Nainar, C. Pignataro, J. C. Cardona, and P. Francois,
‘‘The segment routing architecture,’’ in Proc. IEEE Global Commun.
Conf. (GLOBECOM), Dec. 2014, pp. 1–6.

[55] M. Xhonneux and O. Bonaventure, ‘‘Flexible failure detection and fast
reroute using eBPF and SRV6,’’ in Proc. 14th Int. Conf. Netw. Service
Manage. (CNSM), 2018, pp. 408–413.

[56] A. Bashandy, C. Filsfils, B. Decraene, S. Litkowski, P. Francois,
D. Voyer, F. Clad, and P. Camarillo. (Oct. 2018). Topology Inde-
pendent Fast Reroute Using Segment Routing. Internet Engineering
Task Force, Internet-Draft Draft-Bashandy-RTGWG-Segment-Routing-
TI-LFA-05. [Online]. Available: httpsdatatracker.ietf.orgdochtmldraft-
bashandy-rtgwg-segment-routing-ti-lfa-0

[57] D. Katz and D. Ward, Bidirectional Forwarding Detection (BFD),
document RFC 5880, Jun. 2010. [Online]. Available: httpsrfc-
editor.orgrfcrfc5880.txt

[58] M. Jadin, Q. De Coninck, L. Navarre, M. Schapira, and O. Bonaventure,
‘‘Leveraging eBPF to make TCP path-aware,’’ IEEE Trans. Netw. Service
Manage., vol. 19, no. 3, pp. 2827–2838, Sep. 2022.

[59] S. Bubeck and N. Cesa-Bianchi, ‘‘Regret analysis of stochastic and
nonstochastic multi-armed bandit problems,’’ 2012, arXiv:1204.5721.

[60] S. Troia, M. Mazzara, M. Savi, L. M. M. Zorello, and G. Maier,
‘‘Resilience of delay-sensitive services with transport-layer monitoring
in SD-WAN,’’ IEEE Trans. Netw. Service Manage., vol. 19, no. 3,
pp. 2652–2663, Sep. 2022.

[61] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, and G. Parulkar, ‘‘Onos
towards an open, distributed sdn os,’’ in Proc. 3rd Workshop Hot Topics
Softw. Defined Netw., 2014, pp. 1–6, doi: 10.11452620728.2620744.

[62] V. Gowtham, O. Keil, A. Yeole, F. Schreiner, S. Tschoke, and A. Willner,
‘‘Determining edge node real-time capabilities,’’ inProc. IEEE/ACM25th
Int. Symp. Distrib. Simul. Real Time Appl. (DS-RT), Sep. 2021, pp. 1–9.

[63] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, ‘‘The
many faces of publishsubscribe,’’ ACM Comput. Surv., vol. 35, no. 2,
pp. 114–131, Jun. 2003, doi: 10.1145857076.857078.

[64] M. Tatarski, H. Parzyjegla, P. Danielis, and G. Muhl, ‘‘Fast publish-
subscribe using Linux eBPF,’’ Tech. Rep., 2022. [Online]. Available:
http://dx.doi.org/10.15496/publikation-67449

[65] I.-C. Wang, S. Qi, E. Liri, and K. K. Ramakrishnan, ‘‘Towards a proactive
lightweight serverless edge cloud for Internet-of-Things applications,’’ in
Proc. IEEE Int. Conf. Netw., Archit. Storage (NAS), Oct. 2021, pp. 1–4.

[66] Knative Framework. Accessed: Dec. 5, 2021. [Online]. Available: http-
sknative.devdocs

[67] M. B. Yassein, M. Q. Shatnawi, S. Aljwarneh, and R. Al-Hatmi, ‘‘Internet
of Things: Survey and open issues ofMQTT protocol,’’ in Proc. Int. Conf.
Eng. MIS (ICEMIS), May 2017, pp. 1–6.

[68] T. Chen and C. Guestrin, ‘‘Xgboost A scalable tree boosting system,’’
in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
2016, pp. 785–794, doi: 10.11452939672.2939785.

[69] S. Rivera, V. K. Gurbani, S. Lagraa, A. K. Iannillo, and R. State, ‘‘Lever-
aging eBPF to preserve user privacy for DNS, DoT, and DoH queries,’’
in Proc. 15th Int. Conf. Availability, Rel. Secur., Aug. 2020, pp. 1–10.

[70] R. Aich, ‘‘Efficient audit data collection for Linux,’’ M.S. thesis, Dept.
Comput. Sci., Stony Brook Univ., New York, NY, USA, 2021.

[71] S. Y. Lim, B. Stelea, X. Han, and T. Pasquier, ‘‘Secure namespaced kernel
audit for containers,’’ in Proc. ACM Symp. Cloud Comput., Nov. 2021,
pp. 518–532.

[72] BIBentryALTinterwordspacing C. Wright, C. Cowan, S. Smalley,
J. Morris, and G. Kroah-Hartman, ‘‘Linux security modules General
security support for the Linux kernel,’’ Linux security modules: General
security support for the Linux kernel,’’ in Proc. Found. Intrusion
Tolerant Syst., [Organically Assured Survivable Inf. Syst.], 2002.
[Online]. Available: httpswww.usenix.orgconference11th-usenix-
security-symposiumlinux-security-modules-general-security-support-
linux

[73] G. Fournier, S. Afchain, and S. Baubeau, ‘‘Runtime security monitoring
with eBPF,’’ in Proc. 17th Symp. la Sécurité des Technol. del’Inf. et de la
Commun. (SSTIC), 2021, pp. 1–23.

[74] A. B. Somayaji, ‘‘Operating system stability and security through process
homeostasis,’’ Univ. New Mexico, Albuquerque, NM, USA, 2002.

[75] Cisco. Accessed: Dec. 10, 2021. [Online]. Available: httpswww.snort.org
[76] A. V. Aho and M. J. Corasick, ‘‘Efficient string matching An aid to bibli-

ographic search,’’ Commun. ACM, vol. 18, no. 6, pp. 333–340, Jun. 1975,
doi: 10.1145360825.360855.

[77] Istio. The Istio Service Mesh. Accessed: Dec. 15, 2021.
[Online]. Available: httpsistio.iolatestaboutservice-mesh

[78] J. Levin and T. A. Benson, ‘‘ViperProbe: Rethinkingmicroservice observ-
ability with eBPF,’’ in Proc. IEEE 9th Int. Conf. Cloud Netw. (CloudNet),
Nov. 2020, pp. 1–8.

[79] L. Deri, S. Sabella, and S. Mainardi, ‘‘Combining system visibility and
security using eBPF,’’ in Proc. 3rd Italian Conf. Cyber Secur., in CEUR
Workshop Proceedings, vol. 2315, P. Degano and R. Zunino, Eds. Pisa,
Italy: CEUR-WS.org, Feb. 2019.

[80] M. B’elair, S. Laniepce, and J.-M. Menaud, SNAPPY Program. Kernel-
Level Policies for Containers.hskip 1em plus 0.5em minus 0.4emre-
lax New York, NY, USA Association for Computing Machinery, 2021,
pp. 1636–1645, doi: 10.11453412841.3442037.

[81] W. Findlay, D. Barrera, and A. Somayaji, ‘‘BPFContain: Fixing the soft
underbelly of container security,’’ 2021, arXiv:2102.06972.

[82] W. Findlay, A. Somayaji, and D. Barrera, ‘‘BPFbox Simple precise pro-
cess confinement with eBPF,’’ in Proc. ACM SIGSAC Conf. Cloud Com-
put. Secur. Workshop, 2020, pp. 91–103, doi: 10.11453411495.3421358.

[83] C. Cowan, S. Beattie, G. Kroah-Hartman, C. Pu, P. Wagle, and V. Gligor,
‘‘SubDomain parsimonious server security,’’ in Proc. 14th Syst.
Admin. Conf. (LISA 2000). Dec. 2000, pp. 1–20. [Online]. Available:
httpswww.usenix.orgconferencelisa-2000subdomain-parsimonious-
server-security

[84] D. Papamartzivanos, S. A. Menesidou, P. Gouvas, and T. Giannetsos,
‘‘Towards efficient control-flow attestation with software-assisted multi-
level execution tracing,’’ in Proc. IEEE Int. Medit. Conf. Commun. Netw.
(MeditCom), Sep. 2021, pp. 512–518.

[85] Intel Platform Analysis Technology. Accessed: Jan. 5, 2022. [Online].
Available: httpswww.intel.comcontentwwwusendevelopertopic-
technologyplatform-analysis-technologyoverview.html

[86] A. Chen, A. Sriraman, T. Vaidya, Y. Zhang, A. Haeberlen, B. T. Loo,
L. T. X. Phan, M. Sherr, C. Shields, and W. Zhou, ‘‘Dispersing asymmet-
ric ddos attacks with splitstack,’’ in Proc. 15th ACMWorkshop Hot Topics
Netw., 2016, pp. 197–203, doi: 10.11453005745.3005773.

126392 VOLUME 10, 2022

http://dx.doi.org/10.1109/TCC.2022.3181890
http://dx.doi.org/10.11452716281.2836100
http://dx.doi.org/10.11452872362.2872367
http://dx.doi.org/10.11453359993.3366766
http://dx.doi.org/10.11452620728.2620744
http://dx.doi.org/10.1145857076.857078
http://dx.doi.org/10.11452939672.2939785
http://dx.doi.org/10.1145360825.360855
http://dx.doi.org/10.11453412841.3442037
http://dx.doi.org/10.11453411495.3421358
http://dx.doi.org/10.11453005745.3005773


H. Sharaf et al.: Extended Berkeley Packet Filter: An Application Perspective

[87] A. Praseed and P. S. Thilagam, ‘‘Modelling behavioural dynamics for
asymmetric application layer DDoS detection,’’ IEEE Trans. Inf. Foren-
sics Security, vol. 16, pp. 617–626, 2021.

[88] H. M. Demoulin, I. Pedisich, N. Vasilakis, V. Liu, B. T. Loo, and
L. T. X. Phan, ‘‘Detecting asymmetric application-layer Denial-of-
Service attacks in-flight with FineLame,’’ in Proc. USENIX Annu. Tech.
Conf. (USENIX ATC), Jul. 2019, pp. 693–708. [Online]. Available: http-
swww.usenix.orgconferenceatc19presentationdemoulin

[89] H. V. Wieren. (Nov. 2019). Signature-Based DDoS Attack Mitigation
Automated Generating Rules for Extended Berkeley Packet Filter and
Express Data Path. [Online]. Available: httpessay.utwente.nl80125

[90] A. Carrega, L. Caviglione, M. Repetto, and M. Zuppelli, ‘‘Programmable
data gathering for detecting stegomalware,’’ in Proc. 6th IEEE Conf.
Netw. Softwarization (NetSoft), Jun. 2020, pp. 422–429.

[91] SAMSUNG. Accessed: Jan. 18, 2022. [Online]. Available:
httpswww.samsung.comsemiconductorssdpm1743

[92] C. Lukken, G. Frascaria, and A. Trivedi, ‘‘ZCSD: A computa-
tional storage device over zoned namespaces (ZNS) SSDs,’’ 2021,
arXiv:2112.00142.

[93] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin, ‘‘Efficient
memory disaggregation with Infiniswap,’’ in Proc. 14th USENIX
Symp. Netw. Syst. Design Implement. (NSDI). Boston, MA, USA:
USENIX Association, Mar. 2017, pp. 649–667. [Online]. Available:
https://www.usenix.org/conference/nsdi17/technical-
sessions/presentation/gu

[94] Q. Xu, M. D. Wong, T. Wagle, S. Narayana, and A. Sivaraman, ‘‘Syn-
thesizing safe and efficient kernel extensions for packet processing,’’ in
Proc. ACM SIGCOMM Conf., Aug. 2021, pp. 50–64.

[95] K. Zandberg and E. Baccelli, ‘‘Minimal virtual machines on IoT micro-
controllers: The case of Berkeley packet filters with RBPF,’’ in Proc. 9th
IFIP Int. Conf. Perform. Eval. ModelingWireless Netw. (PEMWN). IEEE,
2020, pp. 1–6.

[96] E. Ronen and A. Shamir, ‘‘Extended functionality attacks on IoT devices:
The case of smart lights,’’ in Proc. IEEE Eur. Symp. Secur. Privacy
(EuroS&P), Mar. 2016, pp. 3–12.

[97] M. Salehi and K. Pattabiraman, ‘‘Poster AutoPatch: Automatic hotpatch-
ing of real-time embedded devices,’’ in Proc. ACM SIGSAC Conf. Com-
put. Commun. Secur., Nov. 2022, pp. 3451–3453. [Online]. Available:
httpswww.usenix.orgconferenceusenixsecurity22presentationhe-yi

[98] H. Zhou, S. Wu, X. Luo, T. Wang, Y. Zhou, C. Zhang, and H. Cai,
‘‘Ncscope Hardware-assisted analyzer for native code in Android apps,’’
in Proc. 31st ACM SIGSOFT Int. Symp. Softw. Test. Anal., 2022,
pp. 629–641, doi: 10.11453533767.3534410.

[99] Embedded Trace Macrocell Architecture Specification.
Accessed: Jan. 28, 2022. [Online]. Available: httpsdevel-
oper.arm.comdocumentationihi0014q

[100] L. Nelson, J. Van Geffen, E. Torlak, and X. Wang, ‘‘Specification and
verification in the field Applying formal methods to BPF just-in-time
compilers in the Linux kernel,’’ in Proc. 14th USENIX Symp. Operating
Syst. Design Implement. (OSDI), 2020, pp. 41–61.

[101] H. Vishwanathan, M. Shachnai, S. Narayana, and S. Nagarakatte,
‘‘Semantics, verification, and efficient implementations for tristate num-
bers,’’ 2021, arXiv:2105.05398.

[102] K. Zandberg and E. Baccelli, ‘‘Femto-containers Devops on microcon-
trollers with lightweight virtualization & isolation for iot software mod-
ules,’’ 2021, arXiv:2106.12553.

[103] V. Palmiotti. (Mar. 2022). Kernel Pwning With eBPF a Love Story.
[Online]. Available: httpswww.graplsecurity.compostkernel-pwning-
with-ebpf-a-love-story#toc-4

[104] Common Vulnerabilities and Exposures. Accessed: Feb. 6, 2022.
[Online]. Available: httpscve.mitre.orgcgi-bincvekey.cgikeyword=eBPF

[105] J. Steadman and S. Scott-Hayward, ‘‘DNSxP: Enhancing data exfiltration
protection through data plane programmability,’’Comput. Netw., vol. 195,
Aug. 2021, Art. no. 108174.

[106] L. Gerhorst, B. Herzog, S. Reif, W. Schröder-Preikschat, and T. Hönig,
‘‘AnyCall: Fast and flexible system-call aggregation,’’ inProc. 11thWork-
shop Program. Lang. Operating Syst., Oct. 2021, pp. 1–8.

[107] G. Frascaria, A. Trivedi, and L. Wang, ‘‘A case for a programmable edge
storage middleware,’’ 2021, arXiv:2111.14720.

[108] C. Lukken and A. Trivedi, ‘‘Past, present and future of computational
storage A survey,’’ 2021, arXiv:2112.09691.

[109] T. Anderson, A. Belay, M. Chowdhury, A. Cidon, and I. Zhang,
‘‘Treehouse A case for carbon-aware datacenter software,’’ 2022,
arXiv:2201.02120.

HUSAIN SHARAF received the B.Sc. degree in
computer engineering from Kuwait University,
in 2019, where he is currently pursuing the M.Sc.
degree in computer engineering. He is also work-
ing as a Cyber Security Engineer at the Electronic
and Cyber Crime Combating Department, Crimi-
nal Investigation General Department, Ministry of
Interior (Kuwait). Prior to that, hewasworking as a
Mobile ApplicationDeveloper and recently shifted
to desktop and web application development as

a Freelance Full-Stack Developer. His research interests include machine
learning, parallel and distributed computing, cryptography, and quantum
computing.

IMTIAZ AHMAD received the B.Sc. degree in
electrical engineering from the University of Engi-
neering and Technology Lahore, Pakistan, in 1984,
theM.Sc. degree in electrical engineering from the
King Fahd University of Petroleum and Minerals,
Dhahran, Saudi Arabia, in 1988, and the Ph.D.
degree in computer engineering from Syracuse
University, Syracuse, NY, USA, in 1992. Since
1992, he has been with the Department of Com-
puter Engineering, Kuwait University, Kuwait,

where he is currently a Professor. His research interests include the design
automation of digital systems, parallel and distributed computing, machine
learning, and software-defined networks.

TASSOS DIMITRIOU (Senior Member, IEEE) is
currently a Professor with the Computer Engineer-
ing Department, Kuwait University. Prior to that,
he was an Associate Professor with the Athens
Information Technology, Greece, where he was
leading the Algorithms and Security Group, and
an Adjunct Professor with Carnegie Mellon Uni-
versity, Pittsburgh, PA, USA, and Aalborg Univer-
sity, Aalborg, Denmark. He conducts research in
areas spanning from the theoretical foundations of

cryptography to the design and implementation of leading edge efficient and
secure communication protocols. Emphasis is given in authentication and
privacy issues for various types of networks (ad hoc, sensor and ubiquitous
networks, RFID, and smart grid), security architectures for wireless and
telecommunication networks, and the development of secure applications
for networking and electronic commerce. His research in the above fields
has resulted in numerous publications, some of which received distinction,
and numerous invitations for talks in prestigious conferences.

He is a member of ACM, a Fulbright Fellow, and a Distinguished Lecturer
of ACM. For more information visit the link (http://tassosdimitriou.com/).

VOLUME 10, 2022 126393

http://dx.doi.org/10.11453533767.3534410

