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ABSTRACT Residual histograms can provide valuable information for vision research. However, current
image restoration methods have not fully exploited the potential of multiple residual histograms, especially
their role as overall regularization constraints. In this paper, we propose a novel framework of multiple
residual Wasserstein driven model (MRWM) that can organically combine multiple residual Wasserstein
constraints and various natural image priors for image denoising. Specifically, by utilizing the Wasserstein
distance derived from the optimal transmission theory, the multiple residual histograms of the observed
images are forced to be as close as possible to the reference residual histogram, thereby improving the
accuracy of residual estimation. Furthermore, the proposed concrete MRWM unifies the multiple residual
Wasserstein distribution approximation and the image total variation prior knowledge to carry out image
denoising. Alternating iterative algorithm of histogram matching and Chambolle dual projection has the
characteristics of less parameters and easy implementation. Finally, our experiments confirm that compared
with some representative image denoising algorithms, theMRWMcan obtain better performance in objective
evaluation, and can better preserve the details such as the image edges, making the image look more natural.

INDEX TERMS Wasserstein distance, multiple residual, histogram matching, image denoising.

I. INTRODUCTION
Image denoising, which aims to reconstruct a potential clean
image x from a noisy degraded image y, is one of the classic
but still active low-level vision research tasks [1], [2], [3], [4],
[5], [6], [7], [8], [9]. A widely used data model is y = x + n,
where n is additive white Gaussian noise. At present, meth-
ods on image denoising can be divided into two categories:
model-based methods and deep learning-based methods. The
first class of methods often estimates clean image by mining
various image priors, while the second one mainly employs
neural networks to learn a mapping from noisy image to clean
image [5], [6], [10], [11]. Here we briefly describe these two
classes of image denoising methods respectively.

A. MODEL-BASED METHODS
Due to the fact that the gradients of natural images have
heavy-tailed distributions, sparse priors are widely applied to
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image denoising [12]. Sparse coding has been shown to be
effective in image denoising by representing image patches
as sparse linear combinations of atoms in an over-complete
dictionary [13]. Later, by using superpixel segmentation,
SSLRR [14] presents a low-rank approximation image
denoising method. A local low-rank image denoising method
via tensor decomposition [15] is introduced. By utilizing
intra and inter patch correlation, LIIC [16] shows an image
denoising method with low-rank regularization. SLG [17]
proposes a structure-based low-rankmodel for noise removal.
SLG exploits manifold structure information to embed graph
kernel norm regularization into a low-rank approximation
model. The weighted singular-value thresholding algorithm
solves the model effectively and achieves excellent denoising
performance.

As one of the milestones in the history of image denoising,
BM3D [18] fully explores the nonlocal self-similarity (NSS)
of natural images. The combined use of NSS and sparse
priors has resulted in some outstanding work [12], [19], [20].
By forcing the gradient histogram of the denoised image to
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be as close as possible to the reference gradient histogram
of the clean image, GHP [21] presents a texture-enhanced
image denoising algorithm. Based on the information that
in some practical problems singular values have clear phys-
ical meaning and should be treated differently, WNNM [22]
applied to image restoration studies the weighted kernel norm
minimization problem, in which different singular values can
be weights adaptively.

Recently, ATVBH [23] presents a higher-order TV image
restoration method by combining first-order and second-
order total variations with adaptive parameter estimation.
CAS [24] fully utilizes local and non-local correlation
of natural image contents, respectively, to achieve near-
optimal sparse representations that minimize signal uncer-
tainty. For highly correlated image data groups, CAS employs
a content-adaptive transform to obtain the sparsest repre-
sentation, thereby resulting in outstanding denoising perfor-
mance. By combining a thresholding function and image
TV regularization, a modified TV regularization method
M-TVRM [25] is proposed for salt and pepper noise (SPN)
removal. The thresholding function based on SPN character-
istics is utilized for noise pixel detection, and the image TV
regularization is employed to restore the noisy pixels.

By mining the fact that many natural images have
low-dimensional block manifold structure [26], [27], [28],
[29], LDMM [1] and G-LDMM [30] are applied to image
denoising and inpainting by point integral method and
weighted non-local Laplacian(WNLL), respectively. The
combination of low-dimensional manifold and residual dis-
tribution approximation produces W-LDMM [31], which is
well applied to natural image restoration. It can be seen that
various image prior information plays an important role in
these methods.

B. DEEP LEARNING-BASED METHODS
In recent years, image denoising methods based on deep
learning have been widely developed. Deep convolutional
neural networks have achieved great success in low-level
visual tasks including image denoising [32], [33], [34].
An improved encoder-decoder network [35] is constructed
for image denoising by utilizing symmetric skip connec-
tions. By adding batch normalization to the residual learning
framework, DnCNN [36] builds image denoising networks
that perform significantly better than traditional denoising
algorithms. To enable memory of the network, a densely
connected denoising neural network [37] is constructed.

After these, a convolutional neural network based on mul-
tilevel wavelet denoising [38] is proposed. A fast and flexible
network FFDNet [39] is put forward to process images with
nonuniform noise. By solving the fractional optimal control
problem, FOCNet [6] develops an advancedGaussian denois-
ing neural network. Employing graph convolution operation,
a neural network architecture is proposed to create neurons
with non-local receptive fields for image denoising [40].

To deal with the problem that feature scaling in image
denoising loses some visual informative details, AGSN [41]

presents a fast and accurate image denoising method by atten-
tion guided scaling network. By utilizing the attention guided
adversarial training, AGSN enhance the reconstruction qual-
ity of the images with challenging noisy texture. In DER-
Net [42], a multilevel network that efficiently utilizes GPU
memory is proposed for biological-image denoising. DER-
Net, which is composed of U-Net encoder-decoder structures,
has a strong ability to recover the details of biological images.
It can be found that these deep learning methods obtain excel-
lent image denoising performance, but also need to pay a high
computational cost under the powerful hardware platform.

C. MOTIVATION
With the continuous improvement of modern imaging tech-
nology, multiple images with the same content can be
obtained almost instantaneously on one imaging device. For
example, a mobile phone can take dozens of images in a
second, while a high-speed camera can take a larger number
of images in an instant. But these images in the acquisition,
transmission, storage, processing links sometimes inevitably
encounter noise pollution. Therefore, denoising multiple
noisy images is a realistic and meaningful research topic.
One can consider estimating a latent clean image x from
multiple noisy image data {yµ, µ = 1, 2, · · · ,M} acquired in
an instant from an imaging facility. Here M is the number of
contaminated images. In other words, the observed versions
of the multiple noisy images can be defined as the following
formula:

yµ = x + nµ, µ = 1, 2, · · · ,M , (1)

where nµ is additive white Gaussian noise with mean zero
and standard deviation σ . As in the literatures [43], [44], the
noise standard deviation σ can be estimated from multiple
noisy images through the finest scale wavelet coefficients and
median filtering.

Different from the most image restoration methods that
focus on mining the prior information of images, the multiple
residual Wasserstein driver model (MRWM) proposed in this
paper is designed primarily to regularize the multiple residual
images nµ = yµ−x, (µ = 1, 2, · · · ,M ), i.e., the differences
between the degraded images yµ and the potential image x.

Although the Gaussian noises contained in the images are
random, their distribution is clear. Therefore, we can make
full use of the Wasserstein distance to make the estimated
residual histograms as close as possible to the reference
Gaussian noise histogram, so as to improve the residual
estimation accuracy. As we know, the training of the GAN
based denoising network [45], [46], [47] is to minimize
the weighted sum of the content loss and adversarial loss.
However, the proposed MRWM is a model based image
denoising method which ably combines the multiple residual
Wasserstein constraints and image prior regularization. The
key idea of MRWM is to reduce the difference between the
estimated residual histograms and the reference Gaussian
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noise histogram through the multiple residual Wasserstein
distance.

D. CONTRIBUTION
The contributions of this paper can be summarized as follows:
(1) A novel unified framework of multiple residual Wasser-
stein drivenmodel (MRWM) is proposed. The framework can
effectively combine the multiple residual Wasserstein distri-
bution approximation with the existing image priors to per-
form image denoising. (2) A specific MRWM is constructed
to combine multiple residualWasserstein distance and classic
image total variation prior to improve the quality of denoised
images. (3) The proposed alternate iterative algorithm of
histogram matching and Chambolle dual projection has the
characteristics of fewer parameters and easy implementation,
and achieves excellent image denoising performance.

The rest of this paper is structured as follows. Section II
introduces the basics of Wasserstein distance. Section III
presents the unified framework of multiple residual Wasser-
stein driven model. Section IV proposes a specific multiple
residual Wasserstein driven model. In Section V, we show
the model solution process and algorithm design. Numer-
ical experimental results are given in Section VI. Finally,
Section VII concludes this paper.

II. PRELIMINARIES ON WASSERSTEIN DISTANCE
The Wasserstein distance originated from the optimal trans-
port theory is an effective tool to measure the difference
between two histograms. The Wasserstein distance can be
defined as the least cost which must be paid to convert one
histogram to another. For the two known probability distribu-
tions p and qwhich are defined on the real number field R, the
Wasserstein distance of p and q is expressed as the solution
to the Monge problem [48]:

W (p, q) = inf
φ

∫
∞

−∞

(x − φ(x))2p(x)dx, (2)

where the random variable x follows the distribution p, while
another variable φ(x) obeys the distribution q. The infimum
in above Eq. (2) is for all the determined functions φ : R 7→ R
which map any random variable x to the variable φ(x). It can
be seen that the Wasserstein distance is a statistical metric
between two known probability distributions, and will go to
zero if and only if p and q are the same distribution.
For a probability distribution p on R, its cumulative dis-

tribution function can be defined as Fp(x) =
∫ x
−∞

p(τ )dτ ,
where F is called the histogram equalization transform [49].
Moreover, the percentile function of this probability distri-
bution p is expressed as F−1p (t) = inf{x ∈ R : Fp(x) >
t}. In the comprehensive introduction part of the optimal
transport theory [48], a fundamental conclusion is that the
optimal φ in the problem (2) has the explicit closed-form
solution:

φp→q(x) = F−1q (Fp(x)). (3)

SinceMonge problem (2) is actually an expected value, the
Wasserstein distance can be further expressed as

W (p, q) = inf
φ

E(x − φ(x))2. (4)

By treating x = (x1, x2, · · · , xn)T as n independent sam-
ples stemed from the distribution p, and representing his-
togram hq as the discrete approximation of the distribution q,
the equivalent discrete definition of the Wasserstein distance
can be introduced as follows:

Ŵ (p, q) = Ŵ (hx , hq) = min
φ̂

1
n

n∑
i=1

(xi − ξi)2, (5)

where the function φ̂ converts xi to ξi = φ̂(xi), such that the
transformed samples ξ = (ξ1, ξ2, · · · , ξn)T can satisfy the
histogram hq. Similar to the continuous case above, the opti-
mal φ̂ for Eq. (5) also acquires a closed-form solution [48]:

ξi = φ̂hx→hq (xi) = F−1hq (Fhx (xi)), (6)

where the cumulative distribution function Fhx and the per-
centile function F−1hq are derived from the histograms hx and
hq respectively.
If x is an image, then φ̂ is a histogram matching oper-

ator which can be applied to moving object detection and
image contrast enhancement. For a known image x =
(x1, x2, · · · , xn)T , φ̂ ensures that the output sample ξ =
(ξ1, ξ2, · · · , ξn)T can match the given histogram hq. Eqs. (5)
and (6) constitute the theoretical basis of the proposed image
denoising model in this paper.

III. THE UNIFIED FRAMEWORK OF MULTIPLE RESIDUAL
WASSERSTEIN DRIVEN MODEL
Instead of regularizing only image prior information in most
image restoration models, the proposed model is designed
to mainly regularize residual images nµ = yµ − x, (µ =
1, 2, · · · ,M ), i. e., the differences between the noisy obser-
vations and the potential clean image.

We know that for each noisy sample image, its residual
yµ − x should theoretically obey the Gaussian distribu-
tion. We make full use of the Wasserstein distance distribu-
tion approximation effect to make each residual histogram
hyµ−x , (µ = 1, 2, · · · ,M ) as close as possible to the ref-
erence Gaussian noise histogram (ground truth) hg. Based
on these, we propose the following unified framework of
multiple residual Wasserstein driven model (MRWM) for
image denoising:

argmin
x

R(x)+
M∑
µ=1

βµ
2 Ŵ (hyµ−x , hg), (7)

where the first term R(x) represents prior knowledge about
the original clean image x. Ŵ (hyµ−x , hg) is the Wasserstein
distance between hyµ−x and hg. Here βµ is the Wasserstein
scale parameter.
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FIGURE 1. The stability analysis of the reference Gaussian noise histogram is carried out in terms of pixel size and noise level. From the
first to third rows, they are randomly generated histograms of Gaussian noise with pixel sizes of 512× 512, 256× 256, 128× 128,
respectively. In the histograms of the first two columns, the middle two ones, and the last two ones, the corresponding Gaussian noise
standard deviations are 25, 50, and 100, respectively. It can be found that the stability of the noise histogram is mainly affected by the
pixel size rather than the noise level.

The Eq. (7) above is an organic combination of image prior
regularization and multiple residual Wasserstein distance
constraints. Popular R(x) includes the probability models of
image patches [13], [50], the heavy-tail distribution models
in the gradient domain [51], [52], and the low-dimensional
manifold prior models in most of the natural images [1],
[31]. One can see that the existing image priors can be easily
embedded into the framework (7) for image denoising.

IV. A SPECIFIC MULTIPLE RESIDUAL
WASSERSTEIN DRIVEN MODEL
A. THE PROPOSED MRWM
Without loss of generality, in this paper, we choose the classic
image total variation (TV) prior regularization and triple
residual Wasserstein distance constrains (M = 3) to expound
the effectiveness of the proposed MRWM framework. There-
fore wemainly focus on the following specific multiple resid-
ual Wasserstein driven model (MRWM) for image denoising:

argmin
x
‖∇x‖1 +

β1

2
Ŵ (hy1−x , hg)

+
β2

2
Ŵ (hy2−x , hg)+

β3

2
Ŵ (hy3−x , hg), (8)

where ∇x denotes the discrete gradient of the clean image,
and ‖∇x‖1 represents the sum of the length of the gradient
vector at each point.

In model (8), Wasserstein distance drives the estimated
residual histogram to approximate the reference residual his-
togram, thus improving the residual estimation performance.
The dual combination of Wasserstein multiple residual dis-
tribution approximation and image TV prior can improve the
performance of image restoration. Subsequently, the stability

of the reference Gaussian noise histogram hg is analyzed.
After that, we carry out the solution of the MRWM and the
corresponding numerical experiments.

B. THE STABILITY ANALYSIS OF THE REFERENCE
GAUSSIAN NOISE HISTOGRAM
Here, we analyze the stability of the reference Gaussian
noise histogram hg from the visual and numerical perspec-
tives, respectively. Firstly, due to space factor, we present
only 18 randomly generated Gaussian noise histograms in
Figure 1. Concretely, the histograms shown in the three rows
are derived from Gaussian noises which pixel sizes are 512×
512, 256 × 256 and 128 × 128,respectively. The histograms
in the first two columns, the middle two ones, and the last
two ones, correspond to Gaussian noises with σ = 25, σ =
50, σ = 100, respectively. It can be found from Figure 1 that
the first two rows of histograms have better stability, while
the third row histograms are less stable. This implies that the
stability of the reference Gaussian noise histogram is mainly
affected by the size of the noise (image) pixels, rather than
the noise level. In fact, the larger histogram contains more
random sampling points, which helps to improve the stability
of the histogram.

Then, the stability of reference noise histogram is analyzed
numerically. Figure 2 presents the histograms of ten randomly
generated Gaussian noises (512 × 512), which are all zero
mean and σ = 25. The experimental results show that the
average mean and standard deviation in the 10 histograms are
-0.0035 and 25.0020, respectively. Meanwhile, the variance
of this ten standard deviations is 2.6966 × 10−4. Based on
the above discussion, it can be concluded that the reference
Gaussian noise histogram hg in the model (8) is stable.
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FIGURE 2. Ten randomly generated Gaussian noise histograms (512× 512) with zero mean and σ = 25.

V. THE SOLUTION OF THE MULTIPLE RESIDUAL
WASSERSTEIN DRIVEN MODEL
A. THE SOLUTION OF THE MRWM
The basic idea of solving the proposed MRWM (8) is to
transform the problem with auxiliary variables and then carry
out alternate iteration of variables.

First, three auxiliary variables ξ1, ξ2, ξ3 are introduced, and
the problem (8) is split into

argmin
x,ξ1,ξ2,ξ3

‖∇x‖1 +
β1

2
‖ξ1 − (y1 − x)‖22

+
β2

2
‖ξ2 − (y2 − x)‖22 +

β3

2
‖ξ3 − (y3 − x)‖22

s.t.hξ1 = hg, hξ2 = hg, hξ3 = hg. (9)

Next, By fixing x and ξ1, ξ2, ξ3 (all three are fixed at
the same time) respectively, the minimization problem (9)
is solved. Specifically, when x in (9) is fixed, the following
optimization problem need to be solved

argmin
ξ1,ξ2,ξ3

β1

2
‖ξ1 − (y1 − x)‖22 +

β2

2
‖ξ2 − (y2 − x)‖22

+
β2

2
‖ξ3 − (y3 − x)‖22 ,

s.t.hξ1 = hg, hξ2 = hg, hξ3 = hg. (10)

The minimum point ξ1, ξ2, ξ3 in (10) can be obtained by
the histogram matching operation below,

(ξ1)i = φ̂hy1−x→hg ((y1 − x)i), (11)

(ξ2)i = φ̂hy2−x→hg ((y2 − x)i), (12)

(ξ3)i = φ̂hy3−x→hg ((y3 − x)i), (13)

where the subscript i is the i − th component. Here the
histogram matching operator φ̂ can make the histograms of
the outputs ξ1, ξ2, ξ3 conform to the reference Gaussian noise
histogram hg.
On the other hand, when the variables ξ1, ξ2, ξ3 are fixed,

Eq. (9) changes to

argmin
x
‖∇x‖1 +

β1

2
‖ξ1 − (y1 − x)‖22

+
β2

2
‖ξ2 − (y2 − x)‖22 +

β3

2
‖ξ3 − (y3 − x)‖22 . (14)

One can see that the last three quadratic terms in Eq. (14)
can be combined into one term. So Eq. (14) reduces to

argmin
x
‖∇x‖1 +

β1 + β2 + β3

2
·

∥∥∥∥β1(y1 − ξ1)+ β2(y2 − ξ2)+ β3(y3 − ξ3)β1 + β2 + β3
− x

∥∥∥∥2
2
. (15)

For simplicity of notation, let θ = β1 + β2 + β3, and

z =
β1(y1 − ξ1)+ β2(y2 − ξ2)+ β3(y3 − ξ3)

β1 + β2 + β3
.

Thus, Eq. (15) is simplified to

x̂ = argmin
x
‖∇x‖1 +

θ

2
‖z− x‖22 . (16)

It can be found that the above Eq. (16) is obviously a TV-L2
problem, which can be solved by the noted Chambolle duality
projection algorithm [53]. In consequence, the solution of
Eq. (16) is stated as follows

x̂ = z−
divp
θ
, (17)

where the vector p can be obtained by the following fixed
point iteration method: initializing p = 0 and iterating

p =
p+ τ∇(divp− θz)
1+ τ |∇(divp− θz)|

, (18)

with τ ≤ 1/8 to ensure convergence, and readers can refer
to [53] for more details here.

B. ALGORITHM DESIGN
To solve the proposed multiple residual Wasserstein-driven
model, we design the above-mentioned optimization solution
method, which can be summarized as Algorithm 1.

In essence, the algorithm is an alternate iterative imple-
mentation of histogram matching operation and Chambolle
duality projection algorithm. Histogram matching makes the
output residual more consistent with Gaussian distribution
from the perspective of probability distribution, while Cham-
bolle duality projection makes the output image more close
to the original image. It can be seen that the algorithm is a
process of implementing dual effects on residual distribution
and output image.

VI. NUMERICAL EXPERIMENTS
In this section, the experimental parameters are first
described. Then the experimental results on 12 test images
and dataset BSD68 [54] are presented successively. Finally,
the implementation efficiency of the experiment is analyzed.

A. PARAMETRIC DESCRIPTION
In the proposedMRWM (8), there are three model parameters
β1, β2 and β3. Considering that the status of the three noisy
images is equal in the restoration process, we take three of
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Algorithm 1 Multiple Residual Wasserstein Driven Model
(MRWM) for Image Denoising

1. Initialize: k = 1, x = eye(size(y1)).
2. Iterate on k = 1, 2, · · · , J .
3. Update ξ1, ξ2, ξ3 by the histogram matching
operations:

(ξ1)i = φ̂hy1−x→hg ((y1 − x)i),

(ξ2)i = φ̂hy2−x→hg ((y2 − x)i),

(ξ3)i = φ̂hy3−x→hg ((y3 − x)i).
4. Update θ :

θ = β1 + β2 + β3.
5. Update z:

z =
β1(y1 − ξ1)+ β2(y2 − ξ2)+ β3(y3 − ξ3)

β1 + β2 + β3
.

6. Fixed-point iteration: initializing p = 0 and iterating

p =
p+ τ∇(divp− θz)
1+ τ |∇(divp− θz)|

.

7. Implement Chambolle’s duality projection:

x̂ = z−
divp
θ
.

8. k ← k + 1

the same parameters, namely β1 = β2 = β3. It is known that
most model-based image restoration methods contain several
model parameters. Finding optimal parameters by manual
tuning is a daunting task. In fact, the MRWM has only one
parameter, which makes the experiment easy to implement.

The general theory of setting regularization parameters in
image restoration is to ensure that the solution obtained by the
model satisfies the discrepancy principle. Specifically, adjust-
ing the optimal parameter pursues to make the variances of
the output residuals yµ − x, (µ = 1, 2, 3) equal to the noise
variance σ 2 as much as possible. In the specific experiment
process, we take the test image ‘‘plane’’ as an example to
illustrate the change curve of PSNR with βi(i = 1, 2, 3).
The curve are shown in the Figure 3. Combined with some
experimental experience, we finally determine the optimal
parameters βi = 0.82, (i = 1, 2, 3).

FIGURE 3. The graph of PSNR with βi (i = 1,2,3) in MRWM. It can be
seen that the optimal model parameters β1 = β2 = β3 = 0.82.

The initial iteration input x in Algorithm 1 is selected
as the identity matrix of the same size as the noisy image.
In experiments, we set the iteration number J=300. In fixed
point iteration, the parameter τ = 1/8, which can achieve
convergence.

We employ the 12 test images shown in Figure 4 and
the commonly used test dataset BSD68 [54] to illustrate the
effectiveness of the MRWM. In the experiments, the images
to be processed contain Gaussian noise with σ = 25. The
experimental hardware platform is dual-core CPU (1.80 GHz
and 2.30 GHz), 64.0 GB RAM. The operating system is Win-
dows 10.0, and the software environment is Matlab R2017b.

B. EXPERIMENTAL RESULTS ON 12 TEST IMAGES
The experimental results on the 12 test images shown in
Figure 4 consist of two parts: the comparison of multi-sample
and single-sample experiments; the comparison of MRWM
with several representative denoising methods.

Firstly, Table 1 displays the denoising result comparison of
MRWM-1 (i.e. β1 = 0.82, β2 = β3 = 0 in (8)), MRWM-2
(i.e. β1 = β2 = 0.82, β3 = 0 in (8)), and MRWM-3
(i.e. β1 = β2 = β3 = 0.82 in (8)). In order to investi-
gate the case of denoising four images (namely µ = 4 in
Eq. (1)), we also add the corresponding experimental result
MRWM-4 in Table 1. Figure 5 shows the PSNR and SSIM
statistical figures of the three methods MRWM-1, MRWM-2
and MRWM-3. It can be seen that as the image sample
number increases, PSNR and SSIM of the recovered images
are significantly increased. In addition, Figure 6 illustrates
the visual comparison of local magnification. It can be seen
that increasing the number of image samples can significantly
improve the visual performance of the restored image. These
show that the proposed multiple residual histogram approx-
imation by the Wasserstein distance is effective in image
denoising.

Then, Table 2 shows the experimental results of
MRWM and five representative Gaussian denoising meth-
ods BM3D [18], NCSR [20], GHP [21], WNNM [22],
W-LDMM [31]. Fiugre 7 gives the average PSNR and SSIM
curves of these six methods acting on 12 test images. One
can see that MRWM is superior to the competing methods in
terms of average PSNR and SSIM.

We know that the denoising effect of the classic TV-L2 is
not as good as that of BM3D.However, from the experimental
results in this paper, it can be found that the denoising effect
of MRWM is better than that of the above representative
denoising methods. In addition, in the specific experimental
process, we also found that the effect of total variation is
limited. This is because total variation is only a regularization
of the image itself. For the problem of estimating the original
image from multiple noisy images, multiple residual Wasser-
stein distance constraints can play a more important role.

In addition, the enlarged partial details of some images
are shown in Figure 8 and Figure 9. As can be seen in
Figure 8, compared to the original image, the fine particles
around the starfish obtained by BM3D, NCSR, GHP,WNNM
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FIGURE 4. Twelve test images for Gaussian denoising. From left to right and top to bottom, they are labeled 1 to 12,
respectively.

TABLE 1. Gaussian denoising PSNR (dB) and SSIM comparison for MRWM-1, MRWM-2, MRWM-3 and MRWM-4 on the 12 test images shown in Figure 4.

FIGURE 5. PSNR and SSIM result statistical figures of three denoising methods MRWM-1, MRWM-2 and MRWM-3 on 12 test
images.

and W-LDMM are polished. However, the proposed MRWM
can better preserve these details, which make the denoised
images look more natural and visually pleasing. We can
also find from Figure 9 that the competitive methods tend
to over-smooth image edges. In contrast, MRWM retains
sharper edge information, which is an important image detail
feature.

The proposed MRWM is a denoising method, which
mainly deals with gray images. However, with the help of
YUV color space [55], [56], MRWM for color image denois-
ing is also feasible. The basic idea is to first construct YUV
color space by utilizing RGB three channels of noisy color

image, and then employ MRWM in this paper to denoise Y
component to obtain Y ′ component. Further, Y ′ component
is merged with the original UV components to obtain Y ′UV
space. Finally, the Y ′UV space is transferred back to RGB
channels to get the restored image. Figure 10 shows two
examples of color image denoising using this idea.

We utilize the two metrics EP and TP in [57] and [58]
to evaluate the edge preservation and texture preservation
of the denoised images respectively. Specifically, the edge
preservation metric of the m − th region of interest (ROI)
in an image is defined as (19), shown at the bottom of the
next page, where Im and I ′m are the corresponding matrices
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FIGURE 6. Denoising visual comparison of MRWM-1, MRWM-2 and MRWM-3. One can see that MRWM-3 can yield the best visual effect.

TABLE 2. PSNR (dB) and SSIM comparison between MRWM and five competitive methods on the 12 test images shown in Figure 4. The highest index
values have been bolded.

of the m − th ROI in the original image and the denoised
image respectively. 1 denotes a Laplacian operator. In fact,
1I is a highpass filtered form of I . 1I is acquired by a
3 × 3 pixel approximation of the Laplacian operator. I is
the empirical mean of I . 0 represents the correlation within
ROI:

0(I1, I2) =
∑

(i,j)∈ROI

I1(i, j)I2(i, j). (20)

Thus, the edge preservation on the M selected ROIs is
expressed as

EP =
1
M

M∑
m=1

EPm. (21)

One can find that EP has a larger value when the edge in ROI
is sharp. On the other hand, texture preservation (TP) in a ROI
is defined as

TPm =
σ 2
m

(σ ′m)
2

√
µori

µden
(22)

where σ 2
m and (σ ′m)

2 are the variance of the m − th ROI in
the original image and the denoised image respectively. µori
andµden are the corresponding mean values. Then the texture
preservation over the M selected ROIs can be obtained

TP =
1
M

M∑
m=1

TPm. (23)

It can be found that the larger the TP value, the better the
texture preservation of the restored image.

Figure 11 shows regions of interest (ROI) of three images
used for the evaluation of our EP and TP. Table 3 presents
EP and TP evaluation results of three methods MRWM-1,
MRWM-2 and MRWM-3 on three images Monarch, Cam-
eraman and Starfish. It can be shown that in the proposed
MRWM, the increase of the residual Wasserstein regular-
ization term can effectively improve the performance of the
restored images in edge and texture preservation.

Finally, we compare the proposed MRWM and multiple
image denoising method t-SVD [59]. The 12 test images

EPm =
0(1I ′m −1I ′m,1Im −1Im)√

0(1I ′m −1I ′m,1I ′m −1I ′m)0(1Im −1Im,1Im −1Im)
, (19)
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FIGURE 7. Average PSNR and SSIM curves of six denoising methods BM3D, NCSR, GHP, WNNM, W-LDMM and MRWM.

FIGURE 8. Local visual magnification comparison for six image denoising methods. It can be found that the proposed
MRWM can recover more image detail information, which makes the image look more natural.

TABLE 3. Edge preservation (EP) and texture preservation (TP) evaluation
of three methods on three images.

shown in Figure 4 are still employed for denoising compar-
ison. Table 4 shows the results of corresponding Gaussian
denoising experiments, including PSNR and SSIM index
values. It can be found from Table 4 that in terms of PSNR,

MRWM is superior to t-SVD on 12 images, and both meth-
ods have their own advantages in SSIM. But for the aver-
age values of the two metrics, MRWM outperforms t-SVD.
Meanwhile, Figure 12 shows the enlarged local results of the
two methods on test image 3. It can be found from Figure 12
that t-SVD tends to blur the edge details of the image, while
the proposed MRWM can better recover the texture informa-
tion of the image. Therefore, MRWM based on image prior
regularization and multiple residual distribution constraints is
effective in image denoising.

C. EXPERIMENTAL RESULTS ON THE DATASET BSD68
To show the denoising capacity of the proposed MRWM,
on the basis of the original BM3D [18] and WNNM [22],
we further employ three state-of-the-art methods, includ-
ing the recent ATVBH [23], deep learning based methods
DnCNN [36] and FFDNet [39]. Moreover, we use Berkeley
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FIGURE 9. Local visual magnification comparison for six image denoising methods. One can see that MRWM has some
advantages in preserving image detail features.

FIGURE 10. Examples of MRWM denoising on color images ‘‘Butterfly’’ and ‘‘Starfish’’ containing
Gaussian noise with σ = 25.

segmentation dataset (BSD68) [54] to test the Gaussian
denoising performance of MRWM. The dataset BSD68 con-
taining 68 natural images is widely utilized for the evaluation
of Gaussian denoising methods. Table 5 shows the average
PSNR and SSIM results of the six denoising methods on the
dataset BSD68.

From Table 5, one can see that regarding the average
PSNR and SSIM on BSD68, MRWM surpasses ATVBH by
a large margin, and significantly outperforms BM3D and
WNNM. According to the literature [60], [61], few denoising

methods can exceed BM3D by more than 0.3dB on average.
In contrast, the proposed MRWM outperforms BM3D by
about 0.6dB for the average PSNR acting on the 68 images
in BSD68. It should be mentioned that this gap (0.6dB) is
very close to the PSNR bound (0.7dB) estimated over BM3D
in [61].

It can also be found from Table 5 that the denoising
effect of MRWM is slightly inferior to the deep learning
based methods DnCNN and FFDNet. In fact, this is a com-
mon shortcoming of current model based denoising methods.
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FIGURE 11. Three regions of interest (ROI) of the images used for evaluation of edge preservation (EP)
and texture preservation (TP).

TABLE 4. PSNR (dB) and SSIM comparison for our MRWM and t-SVD [59] on the 12 test images shown in Figure 4. The higher index values have been
bolded.

FIGURE 12. Local visual magnification comparison for the proposed MRWM and t-SVD [59]. One can see that t-SVD tends
to blur the edge details of the image, while MRWM can restore the richer texture information.

TABLE 5. The average PSNR (dB) and SSIM of six denoising methods for noise level σ = 25 on the dataset BSD68 [54].

However, our experimental results show that MRWM out-
performs DnCNN and FFDNet numerically and visually on
some images of BSD68. Here, three examples of specific
images are listed for discussion. Figure 13 illustrates the
visual results of the six methods on the image ‘‘test001’’
in BSD68. It can be seen that ATVBH, BM3D, WNNM,
DnCNN and FFDNet tend to polish the detailed texture on the
original image. However, the proposed MRWM can recover
more realistic texture information on the stone sculptures.

Figures 14-15 show the visual comparison results of the
six methods on images ‘‘test008’’ and ‘‘test021’’ in BSD68
respectively. As can be seen from Figure 14, the tiger tail

recovered by ATVBH, BM3D, WNNM, DnCNN and FFD-
Net is partially lost, while MRWM can better present the
complete tiger tail. It can be found from Figure 15 that there
are some white spots in the local part of the original image.
ATVBH, BM3D, WNNM, DnCNN and FFDNet can only
recover very few white point information, while MRWM
can recover sufficient white point details, which is more
consistent with the real characteristics of the image.

The above quantitative and qualitative evaluations on
the dataset BSD68 confirm that the proposed MRWM can
not only effectively remove noise, but also restore the
detailed texture features of images. The Gaussian denoising
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FIGURE 13. Local visual magnification comparison of the image ‘‘test001’’ from the BSD68. One can see that MRWM can
restore more realistic texture details of the original image.

FIGURE 14. Local visual magnification comparison of the image ‘‘test008’’ from the BSD68. It can be seen that MRWM
can present the tiger’s tail more completely.

performance obtained by MRWM is attributed to the com-
bined effect of multiple residual Wasserstein distribution
approximation and image prior regularization.

D. IMPLEMENTATION EFFICIENCY
In image denoising, in addition to the quality of image
restoration, the implementation efficiency of denoising
method also needs to be considered. Although deep learning
based methods such as DnCNN and FFDNet require a short

time in the testing phase, they often take a lot of time to
train the required neural network. Moreover, such training
generally has to rely on the GPU to complete. Here, an image
of size 481 × 321 in BSD68 is taken as an example to illus-
trate the operating efficiency of the model based denoising
methods. The running time of our MRWM (16s) is longer
than that of BM3D (3s), but less than that of ATVBH (26s)
and WNNM (601s). It should be noted that BM3D mainly
implements image restoration through C language. Overall,
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FIGURE 15. Local visual magnification comparison of the image ‘‘test021’’ from the BSD68. It should be noted that
MRWM can recover more abundant white dot information in the image.

MRWM is still competitive in the implementation efficiency
of image denoising.

VII. CONCLUSION
Different from most model-based image denoising meth-
ods, which focus primarily on exploiting the physical prior
information existing in the image itself, the core of the
MRWM proposed in this paper is to mine the efficacy of
the multiple residual distribution approximation of degraded
images. The effective combination of the Wasserstein dis-
tance driven residual estimation and the image total vari-
ation prior contributes to the improvement of the image
denoising effect. For this realistic and meaningful problem,
the proposed MRWM algorithm is simple, but its image
denoising performance is better. The multiple residual dis-
tribution approximation provides new ideas for the develop-
ment of other image restoration tasks such as deblurring and
inpainting.

A limitation of MRWM is that it cannot be directly applied
to the removal of non-additive noise, such as multiplica-
tive Poisson noise. The removal of non-additive noise has
always been of interest and value. One strategy is to trans-
form the degraded image into one with additive white Gaus-
sian noise, and then make full use of MRWM for image
restoration.

REFERENCES

[1] S. Osher, Z. Shi, and W. Zhu, ‘‘Low dimensional manifold model for
image processing,’’ SIAM J. Imag. Sci., vol. 10, no. 4, pp. 1669–1690,
Oct. 2017.

[2] X. Cao, X. Fu, C. Xu, and D. Meng, ‘‘Deep spatial–spectral global rea-
soning network for hyperspectral image denoising,’’ IEEE Trans. Geosci.
Remote Sens., vol. 60, 2021, Art. no. 5504714.

[3] R. He, X. Feng, X. Zhu, H. Huang, and B. Wei, ‘‘RWRM: Residual
Wasserstein regularization model for image restoration,’’ Inverse Problems
Imag., vol. 15, no. 6, pp. 1307–1332, Dec. 2021.

[4] C. Zhao, X. Feng, X. Jia, R. He, and C. Xu, ‘‘Root-transformation based
multiplicative denoising model and its statistical analysis,’’ Neurocomput-
ing, vol. 275, pp. 2666–2680, Jan. 2018.

[5] K. Zhang, W. Zuo, S. Gu, and L. Zhang, ‘‘Learning deep CNN denoiser
prior for image restoration,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jul. 2017, pp. 3929–3938.

[6] X. Jia, S. Liu, X. Feng, and L. Zhang, ‘‘FOCNet: A fractional
optimal control network for image denoising,’’ in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 6054–6063.

[7] Q. Ding, H. Ji, H. Gao, and X. Zhang, ‘‘Learnable multi-scale Fourier
interpolation for sparse view CT image reconstruction,’’ in Proc. Int. Conf.
Med. Image Comput. Comput.-Assist. Intervent (MICCAI), Sep. 2021,
pp. 286–295.

[8] R. He, X. Feng, C. Zhao, H. Chen, X. Zhu, and C. Xu, ‘‘Image restoration
based on adaptive dual-domain filtering,’’Math. Problems Eng., vol. 2018,
pp. 1–17, Oct. 2018.

[9] S. H. Chan, X. Wang, and O. A. Elgendy, ‘‘Plug-and-play admm for image
restoration: Fixed-point convergence and applications,’’ IEEE Trans. Com-
put. Imag., vol. 3, no. 1, pp. 84–98, Jan. 2017.

[10] Q. Ding, H. Ji, Y. Quan, and X. Zhang, ‘‘A dataset-free deep learning
method for low-dose CT image reconstruction,’’ 2022, arXiv:2205.00463.

VOLUME 10, 2022 127409



R.-Q. He et al.: MRWM: A Multiple Residual Wasserstein Driven Model for Image Denoising

[11] H.-M. Zhang and B. Dong, ‘‘A review on deep learning in medical image
reconstruction,’’ J. Oper. Res. Soc. China, vol. 8, pp. 311–340, Jan. 2020.

[12] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, ‘‘Non-local
sparse models for image restoration,’’ in Proc. IEEE Int. Conf. Comput.
Vis. (ICCV), Sep. 2009, pp. 2272–2279.

[13] M. Elad and M. Aharon, ‘‘Image denoising via sparse and redundant
representations over learned dictionaries,’’ IEEE Trans. Image Process.,
vol. 15, no. 12, pp. 3736–3745, Dec. 2006.

[14] F. Fan, Y. Ma, C. Li, X. Mei, J. Huang, and J. Ma, ‘‘Hyperspectral image
denoising with superpixel segmentation and low-rank representation,’’ Inf.
Sci., vols. 397–398, pp. 48–68, Aug. 2017.

[15] J. Spiegelberg, J. C. Idrobo, A. Herklotz, T. Z. Ward, W. Zhou, and J. Rusz,
‘‘Local low rank denoising for enhanced atomic resolution imaging,’’
Ultramicroscopy, vol. 187, pp. 34–42, Apr. 2018.

[16] H. Liu, R. Xiong, D. Liu, S. Ma, F. Wu, and W. Gao, ‘‘Image denoising
via low rank regularization exploiting intra and inter patch correlation,’’
IEEE Trans. Circuits Syst. Video Technol., vol. 28, no. 12, pp. 3321–3332,
Dec. 2018.

[17] Q. Ge, X. Jing, F. Wu, Z. Wei, L. Xiao, W. Shao, D. Yue, and H. Li,
‘‘Structure-based low-rank model with graph nuclear norm regulariza-
tion for noise removal,’’ IEEE Trans. Image Process., vol. 26, no. 7,
pp. 3098–3112, Jul. 2017.

[18] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, ‘‘Image denoising by
sparse 3-D transform-domain collaborative filtering,’’ IEEE Trans. Image
Process., vol. 16, no. 8, pp. 2080–2095, Aug. 2007.

[19] W. Dong, L. Zhang, and G. Shi, ‘‘Centralized sparse representation
for image restoration,’’ in Proc. Int. Conf. Comput. Vis., Nov. 2011,
pp. 1259–1266.

[20] W. Dong, L. Zhang, G. Shi, and X. Li, ‘‘Nonlocally centralized sparse
representation for image restoration,’’ IEEE Trans. Image Process., vol. 22,
no. 4, pp. 1620–1630, Apr. 2013.

[21] W. Zuo, L. Zhang, C. Song, D. Zhang, and H. Gao, ‘‘Gradient his-
togram estimation and preservation for texture enhanced image denois-
ing,’’ IEEE Trans. Image Process., vol. 23, no. 6, pp. 2459–2472,
Jun. 2014.

[22] S. Gu, Q. Xie, D.Meng,W. Zuo, X. Feng, and L. Zhang, ‘‘Weighted nuclear
normminimization and its applications to low level vision,’’ Int. J. Comput.
Vis., vol. 121, no. 2, pp. 183–208, Jul. 2016.

[23] D. N. H. Thanh, V. B. S. Prasath, L. M. Hieu, and S. Dvoenko, ‘‘An adap-
tive method for image restoration based on high-order total variation
and inverse gradient,’’ Signal, Image Video Process., vol. 14, no. 6,
pp. 1189–1197, Feb. 2020.

[24] H. Liu, J. Zhang, and R. Xiong, ‘‘CAS: Correlation adaptive sparse model-
ing for image denoising,’’ IEEE Trans. Comput. Imag., vol. 7, pp. 638–647,
2021.

[25] N. N. Hien, D. N. H. Thanh, U. Erkan, and J. M. R. S. Tavares, ‘‘Image
noise removal method based on thresholding and regularization tech-
niques,’’ IEEE Access, vol. 10, pp. 71584–71597, 2022.

[26] G. Carlsson, T. Ishkhanov, V. de Silva, and A. Zomorodian, ‘‘On the local
behavior of spaces of natural images,’’ Int. J. Comput. Vis., vol. 76, no. 1,
pp. 1–12, Jun. 2007.

[27] A. B. Lee, K. S. Pedersen, and D. Mumford, ‘‘The nonlinear statistics of
high-contrast patches in natural images,’’ Int. J. Comput. Vis., vol. 54, no. 1,
pp. 83–103, 2003.

[28] G. Peyre, ‘‘A review of adaptive image representations,’’ IEEE J. Sel.
Topics Signal Process., vol. 5, no. 5, pp. 896–911, Sep. 2011.

[29] G. Peyré, ‘‘Manifold models for signals and images,’’ Comput. Vis. Image
Understand., vol. 113, no. 2, pp. 249–260, 2009.

[30] Z. Shi, S. Osher, and W. Zhu, ‘‘Generalization of the weighted nonlocal
Laplacian in low dimensional manifold model,’’ J. Sci. Comput., vol. 75,
no. 2, pp. 638–656, Sep. 2017.

[31] R. He, X. Feng, W. Wang, X. Zhu, and C. Yang, ‘‘W-LDMM: A Wasser-
stein driven low-dimensional manifold model for noisy image restoration,’’
Neurocomputing, vol. 371, pp. 108–123, Jan. 2020.

[32] F. Zhang, N. Cai, J. Wu, G. Cen, H. Wang, and X. Chen, ‘‘Image denoising
method based on a deep convolution neural network,’’ IET Image Process.,
vol. 12, no. 4, pp. 485–493, Apr. 2018.

[33] W. Dong, P.Wang,W. Yin, andG. Shi, ‘‘Denoising prior driven deep neural
network for image restoration,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 41, no. 10, pp. 2305–2318, Oct. 2019.

[34] R. K. Vasudevan and S. Jesse, ‘‘Deep learning as a tool for image denoising
and drift correction,’’Microsc.Microanalysis, vol. 25, no. S2, pp. 190–191,
Aug. 2019.

[35] X. Mao, C. Shen, and Y. Yang, ‘‘Image restoration using very
deep convolutional encoder–decoder networks with symmetric skip
connections,’’ in Proc. Adv. Neural Inf. Process. Syst., Dec. 2016,
pp. 2810–2818.

[36] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, ‘‘Beyond a
Gaussian denoiser: Residual learning of deep CNN for image denois-
ing,’’ IEEE Trans. Image Process., vol. 26, no. 7, pp. 3142–3155,
Jul. 2017.

[37] Y. Tai, J. Yang, X. Liu, andC.Xu, ‘‘MemNet: A persistentmemory network
for image restoration,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, pp. 4539–4547.

[38] P. Liu, H. Zhang, K. Zhang, L. Lin, andW. Zuo, ‘‘Multi-level wavelet-CNN
for image restoration,’’ in Proc. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2018, pp. 773–782.

[39] K. Zhang, W. Zuo, and L. Zhang, ‘‘FFDNet: Toward a fast and flexible
solution for CNN-based image denoising,’’ IEEE Trans. Image Process.,
vol. 27, no. 9, pp. 4608–4622, Sep. 2018.

[40] D. Valsesia, G. Fracastoro, and E. Magli, ‘‘Deep graph-
convolutional image denoising,’’ IEEE Trans. Image Process., vol. 29,
pp. 8226–8237, 2020.

[41] Y. Zhang, K. Li, K. Li, G. Sun, Y. Kong, and Y. Fu, ‘‘Accurate and
fast image denoising via attention guided scaling,’’ IEEE Trans. Image
Process., vol. 30, pp. 6255–6265, 2021.

[42] B. Fu, X. Zhang, L. Wang, Y. Ren, and D. N. H. Thanh, ‘‘Double enhanced
residual network for biological image denoising,’’ Gene Expression Pat-
terns, vol. 45, Sep. 2022, Art. no. 119270.

[43] D. L. Donoho and J. M. Johnstone, ‘‘Ideal spatial adaptation by wavelet
shrinkage,’’ Biometrika, vol. 81, no. 3, pp. 425–455, 1994.

[44] A. Buades, Y. Lou, J. Morel, and Z. Tang, ‘‘Multi image noise estima-
tion and denoising,’’ HAL, Bengaluru, India, Tech. Rep. hal-00510866,
Aug. 2010.

[45] X. Wang, K. Wu, Y. Zhang, Y. Xiao, and P. Xu, ‘‘A GAN-based denoising
method for Chinese stele and rubbing calligraphic image,’’ Vis. Comput.,
vol. 32, no. 2, pp. 1–12, Feb. 2022.

[46] L. D. Tran, S. M. Nguyen, and M. Arai, ‘‘Gan-based noise model for
denoising real images,’’ in Proc. Asian Conf. Comput. Vis., Nov. 2020,
pp. 1–13.

[47] A. Alsaiari, R. Rustagi, A. Alhakamy, M. M. Thomas, and A. G. Forbes,
‘‘Image denoising using a generative adversarial network,’’ in Proc. IEEE
2nd Int. Conf. Inf. Comput. Technol. (ICICT), Mar. 2019, pp. 126–132.

[48] C. Villani, Optimal Transport: Old and New, vol. 338. Berlin, Germany:
Springer, 2009.

[49] C. Solomon and T. Breckon, Fundamentals of Digital Image Processing:
A Practical Approach With Examples in MATLAB. Hoboken, NJ, USA:
Wiley, 2011.

[50] D. Zoran and Y. Weiss, ‘‘From learning models of natural image patches
to whole image restoration,’’ in Proc. Int. Conf. Comput. Vis., Nov. 2011,
pp. 479–486.

[51] D. Krishnan and R. Fergus, ‘‘Fast image deconvolution using hyperlapla-
cian priors,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 22, Dec. 2009,
pp. 1–9.

[52] S. Park and J. Lim, ‘‘An overview of heavy-tail extensions of multivari-
ate Gaussian distribution and their relations,’’ J. Appl. Statist., vol. 49,
pp. 1–18, Mar. 2022.

[53] A. Chambolle, ‘‘An algorithm for total variation minimization and appli-
cations,’’ J. Math. Imag. Vis., vol. 20, no. 1, pp. 89–97, 2004.

[54] S. Roth and M. J. Black, ‘‘Fields of experts,’’ Int. J. Comput. Vis., vol. 82,
no. 2, pp. 205–229, Apr. 2009.

[55] M. Wu, X. Jin, Q. Jiang, S.-J. Lee, W. Liang, G. Lin, and S. Yao, ‘‘Remote
sensing image colorization using symmetrical multi-scale DCGAN in
YUV color space,’’ Vis. Comput., vol. 37, no. 7, pp. 1707–1729,
Aug. 2020.

[56] A. Zenati, W. Ouarda, and A. M. Alimi, ‘‘A new digital steganography sys-
tem based on hiding online signature within document image data in YUV
color space,’’ Multimedia Tools Appl., vol. 80, no. 12, pp. 18653–18676,
Feb. 2021.

[57] F. Sattar, L. Floreby, G. Salomonsson, and B. Lövström, ‘‘Image enhance-
ment based on a nonlinear multiscale method,’’ IEEE Trans. Image Pro-
cess., vol. 6, no. 6, pp. 888–895, Jun. 1997.

127410 VOLUME 10, 2022



R.-Q. He et al.: MRWM: A Multiple Residual Wasserstein Driven Model for Image Denoising

[58] A. Pizurica, L. Jovanov, B. Huysmans, V. Zlokolica, P. D. Keyser,
F. Dhaenens, andW. Philips, ‘‘Multiresolution denoising for optical coher-
ence tomography: A review and evaluation,’’ Current Med. Imag., vol. 4,
pp. 270–284, Nov. 2008.

[59] Z. Zhang, G. Ely, S. Aeron, N. Hao, and M. Kilmer, ‘‘Novel methods for
multilinear data completion and de-noising based on tensor-SVD,’’ inProc.
IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2014, pp. 3842–3849.

[60] A. Levin and B. Nadler, ‘‘Natural image denoising: Optimality and inher-
ent bounds,’’ in Proc. CVPR, Jun. 2011, pp. 2833–2840.

[61] A. Levin, B. Nadler, F. Durand, and W. T. Freeman, ‘‘Patch complexity,
finite pixel correlations and optimal denoising,’’ in Proc. IEEE Eur. Conf.
Comput. Vis. (ECCV), Oct. 2012, pp. 73–86.

RUI-QIANG HE received the Ph.D. degree in
applied mathematics from the School of Math-
ematics and Statistics, Xidian University, Xi’an,
China, in 2020. He is currently working with
the Mathematics Department, Xinzhou Teach-
ers University, China. His research interests
include inverse problems in image processing and
mathematical models and algorithms for image
processing.

WANG-SEN LAN received the M.S. degree from
the Shanxi University of Finance and Economics,
Taiyuan, China, in 2004. He is currently a Pro-
fessor with the Mathematics Department, Xinzhou
Teachers University, China. His research interests
include data analysis and its application in image
processing.

FANG LIU is currently pursuing the Ph.D. degree
with the School of Science, North University of
China. She is also an Associate Professor with
the Mathematics Department, Xinzhou Teachers
University, China. Her research interests include
image processing, modeling, and simulation of
complex systems.

VOLUME 10, 2022 127411


