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ABSTRACT This paper proposes a hybrid approach combining Recurrent Neural Network (RNN) and
polynomial regression methods for time-domain modeling of nonlinear circuits. The proposed hybrid
RNN-polynomial regression (HRPR) method merges RNN and polynomial regression which leads to a
significant reduction in training time while providing speedup in simulation compared to both conventional
RNN and existing models in simulation tools without sacrificing accuracy. The proposed HRPR method
comprises two steps: First, an RNN structure is generated, and then, the output of the RNN is combined
with external input(s) of the circuit to perform a regression. Applying this method causes part of the training
process to be done by polynomial regression which is simpler than training an RNN. Also, the RNN used
in the HRPR method has a simpler structure than a single conventional RNN used for modeling the same
component. To verify the validity of the proposed method, modeling and comparisons of three nonlinear
examples are presented in this paper.

INDEX TERMS Computer-aided design (CAD), recurrent neural network, polynomial regression, nonlinear

components modeling, simulation.

I. INTRODUCTION

With the increasing complexity of systems exploiting non-
linear circuits and components, control and macromodeling
them with high accuracy remains an important concern and
active research area [1], [2], [3], [4], [51, [6], [7], [8], [9], [10],
[11], [12]. Macromodeling is an approach for creating effi-
cient circuit models that reduces the amount of information
required to handle them. In other words, a macromodel can be
viewed as a compact abstraction of a circuit. With macromod-
eling, only information necessary to calculate some desired
output variables is retained, while the rest of the data can
be suppressed [1]. Several macromodeling approaches have
been used in the literature, such as inertial delayed Elmore
delay (DED) [1], Trajectory PieceWise (TPW) method [13],
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Recursive Vector Fitting (RVF) [14], and the Neuro-Space
Mapping approach [15].

With the development of new technologies, existing mod-
els may become insufficiently accurate. Thus, existing mod-
els may need to be modified or improved [16], [17]. However,
developing a new equivalent circuit model, which usually
requires manual trial-and-error efforts, is a time-consuming
procedure. As an alternative approach, artificial neural net-
works (ANNs) have been introduced in the literature for
nonlinear device control and modeling and have contributed
to the evolution of computer-aided design (CAD) of cir-
cuits and systems [2], [18], [19], [20], [21], [22], [23], [24],
[25], [26], [27] ANN-based CAD methods have led to a
notable improvement in efficiency and speed of modeling.
Optimization and simulation of circuits and components have
been frequently used for modeling of nonlinear circuits and
systems [28], [29], [30], [31]. ANNs can learn input-output
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relationships. Trained model can be used in circuit simula-
tors to provide quick and accurate responses [32]. They can
be developed from external signals of the original circuit
without implementing its internal details. This capability is
very useful for modeling a new device or circuit when its
analytical representation is not available, or when a detailed
model is too computationally expensive to evaluate [32].
Several time-dependent neural networks such as dynamic
neural networks (DNNs) [33], time-delay neural networks
(TDNNSs) [34], echo state network [35], Long Short-Term
Memory (LSTM) [36], recurrent neural networks (RNNs)
[32], [37], [38], [39], [40], [41], [42], [43], [44], [45] and
state-space dynamic neural network [29], [46], and recently
batch normalized recurrent neural network [47] have been
proposed in the literature in order to obtain high-performance
models for nonlinear circuits and components. Also, there
are other modeling methods such as fractional order methods
which rely on solving differential equations. Fractional order
methods use fewer parameters, reduce complexity, and are
simpler but neural network use more parameters and more
complex to train but lead to more accuracy. Also, using
differential equations for system identification results in more
sensitivity to noisy data where discrete-time RNNs do not
have that challenge. Also, models based on fractional orders
usually can be used for steady-state response of circuits
but the RNN-based model can capture both transient and
steady-state behavior of nonlinear circuits accurately [48],
(491, [501, [51]

Among all these methods, RNNs are broadly used for
macromodeling the time-domain response of nonlinear
circuits. Their capability is notably due to the universal
approximation aspect of RNNs, which can be trained to learn
and approximate virtually any sophisticated input-output
relationship [38]. RNNs have many parameters that can be
trained. Also, recursive training through multiple steps and
layers makes RNN training a time-consuming technique.

In this paper, a method that combines RNN with polyno-
mial regression has been introduced to solve these issues. For
the first time in modeling nonlinear circuits and components,
regression units are added on top of the RNN to perform
as a part of the model training. This hybrid method results
in a significant reduction in the number of parameters com-
pared to the conventional RNN method. The reason is that
the RNN which is used prior to the regression units, has a
smaller structure compared to the one (without regression)
which is required for modeling the same circuits with suitable
accuracy. The goal of regression is to predict the values of
one or more continuous target variables given the values
of a multi- dimensional vector x of input variables [52].
There are several types of regression methods, such as linear
regression and polynomial regression. Regression has been
used in different areas and applications, such as face recogni-
tion [53], price forecasting [54], decoding muscle activation
pattern [55], and estimation of human affective states [56].
Our proposed hybrid method presented in this paper uses
polynomial regression as part of the training process. Thus,
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the training time for modeling nonlinear components is sig-
nificantly reduced. This reduction in training time is in such
a way that the model obtained from the proposed method is
trained multiple times faster than the conventional methods.
Other than reducing training time, this method reduces test
time (evaluation of response) compared to conventional RNN
and existing circuit simulation tools [57]. This is due to using
fewer number of parameters in the proposed method. Indeed,
some of the inputs of the adopted regressions can be obtained
from simple RNNs containing few parameters, as compared
to conventional RNN methods which contain many param-
eters to be trained. Therefore, the method proposed in this
paper can outperform the conventional RNN technique in
both speed and accuracy.

This paper is organized as follows: the conventional RNN
structure and its use for macromodel development are pre-
sented in section II. The proposed HRPR method is presented
in section III. Validation of this method using three examples
is reported in section IV. Finally, conclusions drawn from this
research are presented in section V.

Il. PREREQUISITE

A. FORMULATION OF CIRCUIT DYNAMICS

Consider N,, Ny, and Np, the number of input signals, output
signals, and circuit parameters of a nonlinear component,
respectively. Also lety = [y1...yn,], # = [ug...uyn,] and
P = [p1...pn,] be the outputs, time varying inputs and
circuit parameters, respectively. In the rest of the paper, the
input signals of the circuit are waveforms that have different
values at each time, meaning that they are vectors of differ-
ent real values. On the other hand, circuit parameters, such
as capacitance, have constant values and are not changed
through time. Also, the outputs of a circuit are vectors of
signals that are generated based on the input signals at each
time and parameters of the circuit. The characteristics of the
original nonlinear circuit can be described in a nonlinear state
space form as (1) where £ and v are nonlinear functions,

X(1) = £X (1), u(1), P, 1)
¥ = v(X(@), u(1), 1) (1)

X = [Xi ...XNS]T is the vector of state variables, and Ny
is the number of states [41]. In the case where the non-
linear circuit is complex (comprising numerous nonlinear
components), the original nonlinear equations in (1) will be
computationally complex to solve. Thus, a reduced complex-
ity model that is easier to solve than the original complex
equations is needed. It can be obtained by converting the
original complex set of equations to a discrete-time set of
equations with a specific sampling rate as follows [42]:

) =G AT, w@* T @M, P)
(@)

where k indicates the time index in the discrete-time domain,
1% is k™ time step, My, and M,, are the number of delay steps
of y and u, respectively, and f is a set of nonlinear functions.
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FIGURE 1. Conventional recurrent neural network structure with many
hidden layers.

M, and M, also correspond to the number of delays for the
output and input signals, respectively.

B. RECURRENT NEURAL NETWORKS (RNNs)

In this section, the RNN structure with global feedback from
the output to the input (without local feedback for each
hidden neuron) is presented. This has been widely used in

macromodeling of nonlinear components and circuits [32],
(371, [38], [39], [40], [42].

C. RNN STRUCTURE

Figure 1 demonstrates the structure of a conventional recur-
rent neural network. Let dy, and d,, be the number of buffers
for output y and input u, respectively.

In Figure 1 the first layer of the RNN includes the delayed
output signals y which are returned from the output of the
RNN, the delayed input signals u, and the time-invariant
circuit parameters P. The last layer includes the time-varying
output signal y which can be formulated for the i neuron at
k™ time step as follows:

N
Yty =gy + i i=1,... Ny 3)
J=1

where v;; is the weight between i neuron of the output layer

and jM neuron of the last hidden layer. The vector of the
weights between the last hidden layer and the output layer,
and the bias of neurons in the output layer are defined as v =
[vi...vnJand p = [u1 ... py, ], respectively. Also, Zj(tk) =
a(goj(tk))' where o is the sigmoid activation function, z; is the
output of the jM hidden neuron of the last hidden layer, and
<pj(tk ) and N, are the weighted summation of the outputs of the
layer before the last hidden layer and the number of hidden
neurons of the last hidden layer, respectively.

D. ERROR CALCULATION

The error function of the RNN, needed in the proposed
method, is described here. Let y(t) be the predicted output of
the RNN model and y(t) be the target value. Suppose the train-

127998

P (___‘Trained RNN

,/.] N
RNN_ O (") " Polynomial _

Regression (i)

) RNN_O (ti) i
v (t)
/—’ HRPR

FIGURE 2. Structure of the models produced by the proposed HRPR
method.
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ing data be represented by input-output signals (w4 (t), ¥, (1)),
Ty <t < Thd = 1....Ny, where (uy(t), §,(t)) are d
input-output signals, N,, is the number of input-output signals
and [T, T>] is the input excitation interval.

To employ a gradient-based optimization technique for
training the RNN, we need the derivative of the error function
with respect to the parameters of the structure. For the k" time
index in 4™ training signal uy ((tk), Ya (tk )), the training error
is defined as:

Ny
Ea) =3 3 Pyat) — 5 0
i=1

where N, is the number of output signals. Let ¢ show the
parameters of the RNN containing weights between layers
and the bias of neurons in different layers. To compute
dyy (t%)/dr, the following procedure can be executed: Con-
sider x, as a™ neuron of the input layer. For k = 1 assume
dy, (1" /dy = 8y, (t5)/dy, then dy,, (t*)/d for k >1 can
be obtained by the histories of dj,, (tk )/dr as below [32],
[33], [37]:

dyia(*)  9yia(th)

L, Ny
~ Iyja(t®)  dyja(t*)
3|

dy L OX[j4(m—1)N,]
L _|airk=a )
Y k — 1, otherwise

where X[j1(m—1)n,] and yjd(tk_’") are equal. The recurrent
backpropagation consists of two parts. In the first part partial
derivative dy;q(t*) / oy is obtained by normal back prop-
agation through the feedforward neural network (FFNN)
between the input and output layers. In the second part,
ad yjd(tk ) / 0X[j+(@m—1)N,] is computed by further back propagat-
ing to the input layer and can be written as:
vty i dya(t*) s,
OXljtm—DN,]
Forj=1....Ny;

dzy  dX[jt(m—1)N,]
m=1....dy (6)

Now the derivative dy;q(t*)/dy is stored to be used as
history for computing the derivative at (k + 1) time step.

lil. THE PROPOSED HYBRID METHOD
The proposed hybrid RNN-polynomial regression (HRPR)
method combines recurrent neural network and polynomial

VOLUME 10, 2022



A. Faraji et al.: Hybrid Approach Based on RNN for Macromodeling of Nonlinear Electronic Circuits

IEEE Access

regression models. The polynomial models use outputs of
the RNN at their inputs. These two parts of the models
developed with the HRPR method have separate structures
and full training should be done in such a way that training of
RNN should be performed before training of the polynomial
models.

A. HYBRID RNN-POLYNOMIAL REGRESSION (HRPR)

In this section, the structure of the models produced by the
proposed HRPR method is presented in detail. The means
of combining RNN and the polynomial regression model is
explained in section III.B. Figure 2 indicates the structure of
the proposed hybrid method which consists of two parts: the
first part is a trained conventional RNN structure that receives
the input signal(s) and circuit parameters of electronic com-
ponent and generates the output signals partly used as inputs
of the next part. The second part consists of polynomial
regressions receiving the output of the RNN, circuit param-
eters, and the input(s) of the electronic component simulta-
neously as their inputs in order to generate the final output.
As shown in Figure 2, each time step in the proposed method
has its own polynomial regression unit. Assume there are S
time steps in each waveform. In Figure 2 u(t’), yarpr(t),
RNN_O(f) (i = 1...5), and P are input and output signals
of electronic component at time step i, output of RNN at
time step i, and circuit parameters, respectively. In this way,
each external input signal at the i time step and circuit
parameters, are first passed through the RNN to generate its
outputs at the same time step, and then, the generated output
along with external inputs and circuit parameter are given
to their corresponding polynomial regression unit (i unit).
Finally, the output of the model is obtained by S polynomial
regression units.

B. POLYNOMIAL REGRESSION
1) POLYNOMIAL REGRESSION IN A LINEAR MODEL
As mentioned in section III. A, the second part of the proposed
HRPR method consists of polynomial regressions. Notewor-
thy to mention that in machine learning area, polynomial
regression can be used in a linear model as discussed in [52].
Let us first explain the linear model concept as defined in [52]
in the following paragraphs.

The simplest linear model for regression involves a linear
combination of the input variables:

D+1
y(x, w) =wo + Z WiX; (7)

j=1
where D is the sum of the number of input signals and circuit
parameters of the nonlinear component to be modeled and
x = (x1...xp+1) is the vector of input variables. This is
often simply known as linear regression. The main property
of this model is that it is a linear function of the regression
parameters, wy, ..., wp+1. It is also, a linear function of
the input variables x;, and this causes the model to have
significant limitations. Thus, we extend the class of linear
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models by considering linear combinations of fixed nonlinear
functions of the input variables:

D+1
Y06, w) =wo + Y wigi(x) ®)

J=1

where ¢ is known as basis-function and D is the number of
basis-functions. Indeed, the basis-functions enable the model
to entangle a function of the input instead of the input itself
in order to increase the ability of the model in capturing more
complex relationships between input and output. By denoting
the maximum value of the index j by D+ 1, the total number
of regression parameters in this model will be D + 2 and the
parameter Wy corresponds to any fixed offset in the data and
is called bias [52].

Now we can use any nonlinear function as basis-function
in (8). As an example, for an input vector x = (x1, x2)T, if we
set {1(x) = x1 and ¢2(x) = x», a polynomial regression with
degree 1 is formed as bellow:

y(x, w) = wo + wixg +waxz 9

Also, to form multivariable polynomial regression of higher
degrees, for example with degree 2, we can set basis-
functions as below:

g1(x) = x1

H(x) = x2

Ge) = (x)?

o) = (x2)?

{5(x) = X100 (10)

Consequently, a linear model of the polynomial regression
with degree 2 based on (8) is constructed as below:

Y, w) = wo + wixy + waxa + wa(x1)?
+ wa(x2)? + wsx1x2 (11)

We can see in (11) that a polynomial regression can be used
in linear models where the output is linear in terms of w[52].
In fact, we can have both linear and nonlinear polynomial
regression models. In this paper, the linear polynomial regres-
sion model has been used in the proposed method.

2) POLYNOMIAL REGRESSION IN THE PROPOSED METHOD
To use polynomial regression in each time step of the HRPR
method same as Figure 2, the equation (8) is rewritten as
below:
D+1
yurer(t) = yprox, wh = wh + Y wig)  (12)
Jj=1
where ypg(;) is the output of i polynomial regression unit
and x' = [RNN_O(t"), P,u()]" in which ¢ should be
defined accordingly to form a polynomial regression with the
desired degree. Also wi=[w... wpl is a vector containing
parameters of the polynomial regression where D, which is
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FIGURE 3. Training Stages of the Proposed HRPR Method.

the number of terms in the constructed polynomial regres-
sion, depends on the degree of the polynomial. For example,
in (12), if polynomial regression with degree 1 is used, D will
be 3 and if polynomial with degree 2 is used, D will be 10.

C. ORDINARY LEAST SQUARE (OLS)
In section III.LB the polynomial regression which can be
used in a linear model was introduced. Iterative optimization
methods such as stochastic gradient descent (SGD) can be
used to find the parameters of the linear model. Other than
iterative methods, there are closed-form methods that do
not require parameters such as learning rate and number of
epochs used in the iterative form. In this section, the Ordinary
Least Square (OLS) is introduced. It is one of the well-known
closed-form solutions in linear model estimation used in the
literature [58], [59].

Assume there exists n number of samples for solving a
polynomial regression. For simplicity consider a polynomial
regression with degree 1 as below:

yerG)®, W) = wh +wixl + -+ w§)+1x}§+1 (13)
We can put all together in the form of ¥* = [y}, 5, ..., ;1"
where y; (j = 1...n) is target output of ™ sample in /"
time step, and coefficients at time step i can be written
as Wi = [w"l, cee wiD +1]T (bias is ignored for simplicity).

Also, let n samples at i time step be noted as:
Xi Xi Xi
112 - - *ip41
i i
X — X21%22 - - - ¥2py1 (14)
i i
Xn1Xn2 -+ - Xup+1

where each row of X' is devoted to one sample. Now we
should find parameters of W* such that the following objective

128000

Start

\ 4

Training data generation by circuit simulator

Training the RNN|

Generating new ftraining data containing RNN
outputs and original training data from circuit

simulator

Determining degree of polynomial regression|

'

Train the final HRPR model

v

End
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method.

function is minimized:
W = argminJ(Wi) (15)
Wi
where J(W') is the objective function defined as:

n |D+1 2

JWh = 303wy k| = Wi -y
k=1 |j=1

2

(16)

Due to the fact that power of two of a matrix is equal to
multiplication of the transpose of that with itself, J(W') can
be expanded to:

JWiy = (X"W" - Y")T X'W — Y
= @)Y — (¥ X'W
—wHTxH v+ owh xh xiwi a7
Finally, gradients can be calculated as (18), shown at the

bottom of the next page, in order to find optimal W, the
gradients should be set to zero. Therefore,

2T X 4 2WHT (XX = 0
o )X = (Wi (XX
= XYY = (X)TXiIW
W= ((Xi)TXi)_l xHTy!
(19)
where ((X)TX i)_] demonstrates the inverse of matrix

((Xi)TXi)_l. Using (19), parameters of the linear model
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are found based on inputs and outputs of the training data.
It means that parameters are learned directly without per-
forming many epochs and the model is ready to be used for
test data.

Therefore, because of the closed-form nature of the OLS
method, it is much faster than iterative methods and setting
free parameters such as iteration number and learning rate is
not required.

D. DETERMINING THE POLYNOMIAL DEGREE IN HRPR

The OLS formulas introduced in section III.C are based
on equation (13) which is a polynomial regression with
degree 1. Polynomial regression with higher degrees can
also be used in the OLS method. This is because, as dis-
cussed earlier in section III.B, polynomial regression with
higher degrees can be also linear in terms of W' coeffi-
cients. To use polynomial regression with higher degrees in
OLS, matrix of n samples similar to equation (14) should
be created based on polynomial regression which is rep-
resented in equation (20) (ignoring bias for simplicity) for
polynomial of degree 2 and D = 1, and then replaced
in equation (16) and corresponding coefficients will be the

. . .17 ~
vector of W' = [w’l e, W[i) ] , where D is the number of

variables in each row of (20). The rest of the procedure is sim-
ilar for polynomial regressions with degrees 1 and 2 in HRPR.
For polynomial regression with degree 1, we use equations
(14)-(19) and if polynomial with degree 2 is used, the same
equations are needed, except equation (14) which should be
replaced with (20). Each row in the matrix of equation (20)
corresponds to one training data for i polynomial regression
model where x}’;ﬂ and x,"n2 are the output of RNN and the
external input of circuit at i time step respectively for m™
training data.

i i T N2 (v 2 I 40

Xpp Xpp (77 ()7 XX,
Xi=|: (20)

)Ci xi (xl' )2 (xi )2 xi xi

nl "n2 “'nl n2 nl*n2

E. TRAINING OF THE RNN WITH THE PROPOSED

HRPR METHOD

As shown in Figure 3 training of the proposed method is done
in two stages: In the first stage, the training waveforms are
obtained using circuit simulation tool and an RNN is trained
using these waveforms.

In second stage, as shown in Figure 3, outputs obtained
from trained RNN in addition to the input(s) of nonlin-
ear component in each time step and circuit parameters,
are concatenated to form the training data for the poly-
nomial regression in the same time step. Therefore, for

each time step, a specific regressor is trained according
to equation (19). Suppose we have n training waveforms,
each containing § time steps. After training the RNN using
these training waveforms, the equation (13) can be rewritten
as (21).

YerIM()(-) = Wi + WiRNN_O(t") + whidh

o Wh Uy, 1<i<S (2D
where RNN_O(t) is the output of RNN at time step i based
on equation (3) and u’z, el u’D 4 are circuit parameters and
input signals of nonlinear component all in time step i,
respectively, and Wé, cee "‘2) 1 are parameters of polynomial

regression unit at time step i". Noteworthy to mention that
the RNN structure used in the proposed method has consid-
erably fewer parameters compared to the conventional RNN
structure for modeling the same component. The flowchart in
Figure 4 demonstrates the training procedure of the proposed
HRPR method.

IV. NUMERICAL RESULTS

A. TRANSMISSION-GATE CIRCUIT

The first example to verify the validity of the proposed
method is the Transmission-Gate (TG) component shown in
Figure 5. Training and test waveforms were generated using
the SPICE circuit simulator. A set of signals were generated
as training data by varying rise/fall times from 50ps to 60ps
with steps of 2ps and load capacitance of 20-24fF with steps
of 2fF.

Some other signals with rise/fall times of 51ps to 57ps
with steps of 2ps and load capacitance of 20.5, 21, 23, and
23.5 fF were generated as test waveforms which were not
used in the training procedure. Table 1 shows the comparison
of the training and the test errors/times using the proposed
HRPR, conventional RNN, and LSTM [36] methods for
modeling TG circuit. The results prove that the proposed
hybrid method achieves good enough accuracy in much less
training time compared to the conventional RNN and LSTM
methods.

Also, the test time of the proposed HRPR-based model is
less than conventional RNN-based and LSTM-based models.
The comparison of output test signals obtained using the pro-
posed method, the RNN-based model, and Transistor- level
models are shown in Figure 6. Also, Table 2 represents the
simulation (test) time speedup of the transistor-level and the
proposed HRPR-based. As it can be seen from the table,
the model obtained from the proposed technique for TG
component is considerably faster than the existing model in
circuit simulators.

Y 9 ((Yi)Tyi _ (Yi)TXiWi _ (Wi)T(Xi)Tyi 4 (Wi)T(Xi)Txiwi)

awi
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TABLE 1. Comparison between a conventional RNN, LSTM, and the RNN at the core of models derived with the proposed HRPR method when modeling

transmission-gate.

Model type Structure Number Training Testing Training Test time
of error error time speedup
parameters
Conventional RNN-based Hidden Neurons=15, Layer=2, Delay=4 416 1.86x10° 14.4%10° 3655s 1(reference)
RNN at the core of models Hidden Neurons=20, Layer=1, Delay=2, 145 6.69x10° 7.22x10° 50s 2.4
derived with the HRPR- Degree of Polynomial Regression=1
method
LSTM Cells=6, Layer=2 535 2.5%10 7.3x107 3550s 0.77

—
20/1 TVT

1=50n w=1u | M2
VDD

1=50n w=500n
Vin Vout

10/1 LL .o
wo| v

FIGURE 5. Schematic of TG circuit.
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= 00 0.2 04 0.6 0.8 1.0
o Time (ns)

FIGURE 6. Comparison of the outputs (test data) generated by proposed
HRPR-based, RNN-based, and transistor-level models for
transmission-gate component.

TABLE 2. Comparison of CPU time speedup for the HRPR-based and
transistor-level models of the transmission gate device.

Model type CPU Time (ms)
HRPR-based 39
Transistor-Level 280

B. FREQUENCY DOUBLER DEVICE

The schematic of a frequency doubler has been shown in
Figure 7. A set of signals were generated as training wave-
forms by varying frequency from 2 kHz to 2.1 kHz with steps
of 0.02 kHz and amplitudes of 0.09, 0.1 and 0.11 Volts. Some
other signals with frequencies of 2.01, 2.03, and 2.05 kHz
and amplitudes of 0.092, 0.094, 0.098, 0.106, and 0.108 Volts
were generated as test data. Table 3 shows the comparison
of training and test errors/times using the proposed HRPR,
the conventional RNN, and LSTM methods for modeling
frequency doubler component. As it can be seen in this
table, polynomial regression with degree 1 is not capable of
achieving the desired accuracy in training/test procedures but
polynomial regression with degree 2, due to having more
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FIGURE 7. Schematic of the frequency doubler used in this paper.

complex structure, can perform better on both training and
test processes.

The comparison of output test signals obtained using
the proposed HRPR-based, RNN-based, and transistor-
level models are shown in Figure 8. Table 4 shows
the speedup comparison among the transistor-level, the
proposed HRPR-based, and LSTM-based models for fre-
quency doubler.

As can be seen from Tables 3 and 4 the proposed hybrid
modeling method demonstrates significantly less training
time in comparison with the conventional RNN and LSTM
methods. Also, the final obtained HRPR-based model of
frequency doubler not only shows considerable speedup
compared to the transistor-level model but is also faster to
compute than the model obtained using conventional RNN
and LSTM technique.

C. CMOS INVERTER

The schematic of a CMOS inverter used in this paper is shown
in Figure 9. A set of signals was generated as training data
by varying the rise/fall times from 1.6ps to 2.6ps with steps
of 0.2ps and amplitudes of 0.9V, 1V, and 1.1V. Some other
signals with rise/fall times of 1.9ps to 2.5ps with step0.2ps
and amplitudes of 0.92, 0.94, 0.95, 0.96, 0.98, 0.102, and
0.108 Volt were generated as test data.

Also, comparison of training and test errors and times using
HRPR, conventional RNN, and LSTM methods for modeling
a CMOS inverter is shown in Table 5. As can be seen from
the table, the proposed HRPR method is remarkably faster
to train compared to conventional RNN and LSTM models.
Also, the final model of the CMOS inverter obtained from
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TABLE 3. Comparison between conventional RNN, LSTM, and the proposed HRPR method for modeling frequency doubler.

Model type Structure Number of Train error Test error Train time Test time
parameters speedup
RNN-based Hidden Neurons=15, Layer=2, 421 5.26%10 9.54x107° 7148s 1(reference)
Delay=5
RNN at the core | Hidden Neurons=20, Layer=1, 124 17x10° 19.1x10°° 1069.5s 3.11
of models Delay=2, Degree of
derived with the Polynomial Regression=1
HRPR-method
RNN at the core | Hidden Neurons=20, Layer=1, 127 7.32x10° 7.92x10° 1070s 3.1
of models Delay=2, Degree of
derived with the Polynomial Regression=2
HRPR-method
LSTM Cells=7, Layer=2 680 6.2x10° 8.1x10° 5410s 0.56
B VDD
g 52 20/1
=39 ’—1 I=50n w=1u
g 26 == VDD
;}P N Proposed HRPR method ) M2
= 13 ‘Q — Transistor-level Vin Vout
20 < | = Conventional RNN method M1
= 00 0.2 0.4 0.6 0.8 1.0
o Time (ms) @‘D
FIGURE 8. Comparison of the outputs (test data) generated by proposed }—‘I:SOH w=500n
HRPR-based, RNN-based, and Transistor-level models for frequency 10/1 7
doubler component.
FIGURE 9. Schematic of CMOS inverter device.
TABLE 4. CPU time speedup comparison between the HRPR-based, and
transistor-level models of the frequency doubler.
—
Model type CPU Time (ms) st L2
HRPR-based 41 Té il T W e Proposed HRPR
Transistor-Level 418 5 0.5 y method
@ o — Transistor-level
; ; = — Conventional
the HRPR techqlque is much faster to comput.e than the Bo04 RNN method |
one obtained using the RNN and LSTM techniques. The 5 00 0.05 0.10 0.15 020 0.25
© Time (ns)

output test signals of the proposed HRPR-based, RNN-based,
and Transistor-level models are shown in Figure 10. These
results show that the proposed HRPR-based model bet-
ter matches the transistor-level model than the RNN-based
model. Table 6 also demonstrated the speedup achieved using
the transistor-level and the proposed HRPR- based models for
the CMOS inverter component. The results in this table show
considerable CPU time improvement for the HRPR-based
model in comparison with the transistor-level model.

As it was seen in all three examples, models produced
by the HRPR method outperform the conventional straight
RNN models in terms of both accuracy and speed. Indeed,
according to equation (21), regression units of stage 2 fine-
tune the incoming outputs from RNN of stage 1, resulting
in better accuracy. The presented results demonstrate that
the proposed method needs considerably less training time
compared to the conventional RNN and LSTM methods in
order to model the same circuits without losing accuracy.
Also, as RNN of stage 1 contains considerably a smaller
number of parameters compared to the conventional RNN
and LSTM, a great speedup has been achieved. It means that
using the proposed method for modeling nonlinear circuits
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FIGURE 10. Comparison of the outputs (test data) generated by the
proposed HRPR-based, RNN-based, and Transistor-level models for a
CMOS inverter.

leads to a faster model which generates the output in a shorter
time.

Noteworthy to mention that the proposed method is not
limited to transient simulation of components and circuits.
It can be applied for any time-domain (transient or steady
state) simulations. The limitation here is the availability of
accurate training data, so if we want to use this technique
for periodic steady state analysis, the proposed method has to
be trained for that which means we should generate enough
steady state training data and pass them to the proposed
method to be trained. Since the neural network-based models,
such as the model obtained by the proposed HRPR method,
are data-dependent models, the functionality of the model
directly depends on the generated training data. For example,
if we train the model in a specified range of data, we only
expect the model to work well on testing data inside the
range and for having a suitable model outside of the range,
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TABLE 5. Comparison between a conventional RNN, LSTM, and the proposed HRPR method for modeling a CMOS inverter.

Model type Structure Number of Training Testing Training time Testing time
parameters error error speedup
Conventional RNN-based Hidden Neurons=30, 1351 4.3x10° 14x10° 18535s 1(reference)
Layer=2, Delay=6
RNN at the core of models Hidden Neurons=25, 154 8.9x107° 11.8x107% 205s 6.1
derived with the HRPR- Layer=1, Delay=2, Degree of
method Polynomial Regression=1
LSTM Cells=11, Layer=2 1596 4.9x10° 11.2x10 10200s 0.82

TABLE 6. CPU time speedup comparison between a CMOS inverter model
produced by the HRPR method and a transistor-level model of a CMOS
inverter.

Model type CPU Time (ms)
HRPR-based 44
Transistor-Level 380

TABLE 7. Comparison between the number of training waveforms
required for the HRPR and RNN methods when creating models with
similar accuracy.

Method Number of training Train error Test error
waveforms

RNN 18 1.86x10° 14.4x10°

HRPR 9 4.89x107 12.8x10

TABLE 8. The effect of noisy data on modeling TG circuit using proposed
HRPR method.

Clean  train | Noisy train | Noisy train
and clean test | and noisy test | and clean test
Training | 6.69%x107 8.8x1073 8.8x107
error
Testing 7.22x10°3 11.5x1073 10x10°°
error

we should expand the initial range for generating the training
data.

D. DATA REDUCTION IN MODEL DEVELOPMENT

One of the main concerns in modeling nonlinear components
is the amount of data required for developing an accurate
model as generating data is usually costly. The proposed
HRPR technique not only creates more accurate models but
also requires a smaller number of training data for creating
models with similar accuracy compared to the conventional
RNN method. To show efficiency of the proposed HRPR
method in this case, Transmission Gate example was trained
again with different number of training waveforms and the
results have been shown in Table 7. As it can be seen from
Table 7, the proposed HRPR method requires half of the
number of training waveforms compared to the conventional
RNN for developing model with similar accuracy for this
device.

E. ROBUSTNESS OF THE PRPOSED METHOD AGAINTS
NOISY DATA

Training the model based on the HRPR method can be per-
formed by the training data which have been generated by
simulation software or measurement tools. In the case of
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generating training data by measurement tools, we will likely
encounter noise in the data. So, a set of noisy data have
been generated to train the model based on HRPR method.
The noisy data are generated by applying an additional white
noise (Gaussian noise) to the original waveforms [36], [47].
Table 8 demonstrates the effect of noise on the functionality
of the proposed HRPR method for modeling the TG circuit.
As can be seen in this table, despite slightly degenerating the
accuracy of the HRPR-based model by the appearance of the
noise in the data, an acceptable accuracy is still obtained.
These results demonstrate the robustness of the proposed
HRPR-based model against the noisy data.

V. CONCLUSION

In this paper a hybrid method called HRPR was proposed.
The method combines conventional RNN and polynomial
regression models. HRPR was used for modeling nonlinear
electronic components. Input-output waveforms of the orig-
inal component that were used in the training and testing
procedures were obtained from SPICE circuit simulator. The
new method demonstrated significant reduction in training
time compared to models obtained from the conventional
RNN and LSTM modeling method due to its more efficient
structure and training procedure. Also, it showed consid-
erable speedup in inference (simulation) time compared to
the models obtained from the conventional RNN and LSTM
methods and the transistor-level models in existing circuit
simulation tools. Additionally, the models obtained from the
proposed structure introduce less inference time errors com-
pared to the models obtained from the conventional RNN
structure. Using the proposed HRPR method for modeling
nonlinear components, there is no need to have deep knowl-
edge of details of the internal structure of each component or
device. In addition to these advantages, the proposed hybrid
method required fewer training waveforms compared to the
conventional RNN method to create models with similar
accuracy. Three practical examples were used in this paper
to demonstrate the validity of the proposed macromodeling
approach.
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