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ABSTRACT We propose a joint training scheme of an any-to-one voice conversion (VC) system with
LPCNet to improve the speech naturalness, speaker similarity, and intelligibility of the converted speech.
Recent advancements in neural-based vocoders, such as LPCNet, have enabled the production of more
natural and clear speech. However, other components in typical VC systems are often designed indepen-
dently, such as the conversion model. Hence, separate training strategies are used for each component
that is not in direct correlation to the training objective of the vocoder preventing exploitation of the full
potential of LPCNet. This problem is addressed by proposing a jointly trained conversionmodel and LPCNet.
To accurately capture the linguistic contents of the given utterance, we use speaker-independent (SI) features
derived from an automatic speech recognition (ASR) model trained using a mixed-language speech corpus.
Subsequently, a conversion model maps the SI features to the acoustic representations used as input features
to LPCNet. The possibility to synthesize cross-language speech using the proposed approach is also explored
in this paper. Experimental results show that the proposed model can achieve real-time VC, unlocking the
full potential of LPCNet and outperforming the state of the art.

INDEX TERMS Automatic speech recognition, conversion model, joint training, neural vocoder, voice
conversion.

I. INTRODUCTION
Voice conversion (VC) is a technique for converting par-
alinguistic information of a source speaker’s speech without
changing the linguistic content. The objective of the VC
system is to learn a mapping function from the source to the
target speech. For a given utterance from the source speaker,
the standard VC pipeline decomposes the speech signals
into feature vectors, and the mapping module changes them
towards the target speaker. Time-domain speech waveforms
are then reconstructed using a vocoder [1], [2]. There are
many applications that can benefit from VC research such
as personalized text-to-speech synthesis systems, voice dub-
bing, and speaking-aid devices [3].
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Statistical approaches to VC such as Gaussian Mixture
Model (GMM)-based mapping have been among the suc-
cessful methods in the past [4], [5], [6]. These methods for
VC generally require a training set containing parallel data,
where speech of the same linguistic content is available from
both the source and the target speakers to learn the spectral
mapping. However, it is not always possible to record the
audio of the same sentences from different speakers. In recent
years, neural network methods with more powerful regres-
sion capabilities have become popular means to solve the
conversion problem. In particular, VC research with non-
parallel training data has benefited greatly from deep learning
techniques where a mapping function can be learned effec-
tively [7], [8], [9]. For example, [7] proposed a sequence-to-
sequence (Seq2Seq) VC in order to distangle the linguistic
representations and the speaker identity components. The
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model learns linguistic representations from acoustic fea-
tures using the output of a text encoder as the reference.
Thus, the training process requires phoneme transcriptions
from audio samples. At the conversion time, a Seq2Seq
decoder is employed to reconstruct the acoustic features using
the target speaker representation. Moreover, techniques that
do not require transcriptions such as CyleGAN-VC [10],
StarGAN-VC [11], and VAW-GAN [12] have incorporated
generative adversarial networks that improve voice quality
and similarity to the target speaker when a large amount of
speech data is employed.

One of the popular research directions towards non-parallel
VC is the use of linguistic-related features derived from the
automatic speech recognition (ASR) model, such as bottle-
neck features or Phonetic Posteriorgrams (PPGs) [13], [14],
[15], [16], [17], [18]. In these approaches, the ASR module
trained for phoneme classification is used to extract speech
embeddings as intermediate phonetic representations [13],
[19], [20]. Typically, features derived from the ASR system
trained by using a large multi-speaker corpus is considered to
be speaker-independent (SI). In this framework, a conversion
model is typically employed to convert PPGs extracted from
the source speech into spectral features of the target speaker.
Also, the transcriptions from audios are not necessary in order
to train the conversion model. Finally, a vocoder is used to
synthesize the speech waveforms of the target speaker from
the converted features [21], [22].

One main drawback of a VC system that uses intermedi-
ate representations, such as the spectral features (i.e., Mel-
cepstrum), is the separate training process involved when
building the neural networks for the conversion process.
The vocoders are usually designed independently where the
majority of the neural vocoders use Mel-cepstrum computed
from short-time Fourier transform (STFT) as input. This
causes artifacts to be produced in the converted speech, as the
conversion model and the vocoder are two separate modules.
Although a traditional parametric vocoder can be used, the
quality of the synthesized speech is lower compared to the
neural vocoder. One of the most successful implementa-
tions of a neural vocoder is WaveNet [23]. WaveNet is an
autoregressive (AR) generative model that can produce high-
fidelity audio. The AR structure improves the continuity of
the generated waveform. However, it is too slow for real-time
synthesis because it generates the waveform sampling points
one by one. As an alternative toWaveNet, theWaveRNN [24]
has been proposed to match the quality of the WaveNet
model. The WaveRNN model uses a sparse gated recurrent
unit (GRU) layer instead of the dilated causal convolutions
used in WaveNet.

Recently, an efficient neural vocoder based on WaveRNN,
called LPCNet is introduced [25]. LPCNet exploits linear
predictive coding (LPC) to model the vocal tract response
and applies linear prediction techniques to WaveRNN, which
reduces the complexity of generating the raw speech wave-
form. LPCNet can synthesize higher quality speech than
WaveRNN for the same network size. Furthermore, LPCNet

inference has been implemented to run faster than real-time
on a single CPU core with the use of efficient vectorization.
Since it was proposed, LPCNet has been one of the popular
choices for the speech synthesis task. Therefore, many tech-
niques have been proposed to accelerate the inference speed
of LPCNet [26], [27], [28]. High-fidelity neural vocoders
based on the use of generative adversarial networks (GANs)
have also attracted great interest due to their lightweight
architectures and fast speech generation [29], [30], [31].
However, these vocoders can be difficult to train and may
produce audible artifacts such as pitch error and periodicity
artifacts due to their non-AR structures [32].

In this paper, we propose a jointly trained conversion
model and LPCNet vocoder for any-to-one VC, to convert
an arbitrary speaker’s voice, including speakers who were
unseen during the training, to the voice of a known speaker.
We show that the proposed joint training scheme can achieve
high-quality conversion in terms of speech naturalness and
speaker similarity of the converted speech. We also explore
whether the proposed framework can synthesize speech in a
specific language that the target speaker does not speak [33].
The latter task is possible since the SI features derived
from ASR trained using a mixed-language speech corpus
can be assumed to be language independent [34]. The rest
of the paper is organized as follows. Section II discusses
related work. Section III presents the proposed method, fol-
lowed by experiments in Section IV. We present and dis-
cuss the results in Section V, and conclude the study in
Section VI.

II. RELATED WORK
A recent work in any-to-one VC is an auto-regressive
voice conversion (ARVC), a technique based on sequence-
to-sequence (Seq2Seq) VC [7], [8], [9] that translates the
PPGs to acoustic features [16]. In Seq2Seq VC, the encoder-
decoder architecture is typically used to learn mapping
between a source and target feature sequences, which are
often of different lengths by capturing and using the long-
range dependencies. The system in [16], [17], and [18] con-
tains a CBHG (1-D convolution bank + highway network +
bidirectional GRU) module [35] as an encoder that consists
of a bank of 1-D convolutional filters, followed by highway
networks and a bidirectional gated GRU. For the decoder,
it contains an attention layer, a long short-term memory
(LSTM) and a pre-net. The encoder-decoder model translates
the PPGs to acoustic features. LPCNet is used as a vocoder,
which is trained independently. It is not possible to use PPGs
alone as the conditional features to LPCNet since LPCNet
requires linear predictive coefficients to be computed explic-
itly from acoustic features during inference [36]. While the
techniques in [16], [17], and [18] can achieve high quality
converted speech, our goal is not to report one-to-one perfor-
mance comparison with those approaches, but rather focus
on unlocking the potential of LPCNet for VC. By conducting
subjective and objective voice quality tests of our proposed
approach and through comparison with relevant baseline
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systems, we have established that our proposed approach
provides state-of-the-art voice conversion quality.

Our approach is similar to a jointly trained conversion
model and WaveNet proposed in [37]. However, the tech-
nique in [37] is a more complicated conversion framework
because of the use of WaveNet. For example, the conversion
model proposed in [37] takes PPG features, voiced/unvoiced
flag (VUV), and log fundamental frequency (F0) as inputs,
predicts Mel-spectrograms as the target features, and outputs
the bottleneck features. The PPGs are then concatenated
with the bottleneck features and need to be upsampled to
match the time resolution of the speech waveform as input
to the WaveNet in the training stage. These additional steps
in [37] of predicting Mel-spectrograms and outputting bot-
tleneck features, and the upsampling procedure afterwards
would not be necessary to perform the speech conversion in
the proposed framework. Moreover, in our method, we use
speaker embeddings extracted from the speaker encoder
network trained for classifying many speakers as auxiliary
features to better capture the characteristics of the target
speakers. LPCNet offers significant advantage in terms of
model complexity. Compared to LPCNet, WaveNet is a sig-
nificantly more complex model (i.e., more neurons). Thus,
it typically needs a larger amount of training data to achieve
high-quality speech.

III. PROPOSED METHOD
The proposed VC framework consists of three main compo-
nents: (1) Linguistic content extractor, (2) Conversion model,
and (3) LPCNet vocoder. We use the frame-level SI linguistic
features as the input. The conversion model maps these fea-
tures into acoustic features. Finally, the LPCNet transforms
the predicted acoustic features into speech waveforms.

A. LINGUISTIC CONTENT EXTRACTOR
An ASR model is used for the linguistic content extrac-
tion. The acoustic model for the ASR employs LSTMs
which are trained by using the frame-level cross entropy
criterion. The LSTMs structure is used to address the van-
ishing gradient problem encountered when training deep
neural networks (DNNs) [38]. The model is trained from
ObEN’s 1 one thousand hour mixed-language corpus (includ-
ing English and Mandarin) using 42-dimensional features
(39-dimensional MFCC plus pitch features). The acoustic
features are extracted from 16 kHz speech waveforms with
a 25 ms frame length.

The model is trained to estimate posterior probabilities
of roughly 5K tied-state (senone) targets. The model uses a
three-layer LSTM architecture with 512 units in each layer.
The output of the LSTM layer is connected to a fully con-
nected (bottleneck) layer. The output of the bottleneck layer
is connected to a fully connected layer to predict the frame-
level labels. The Kaldi toolkit [39] is used to obtain the state
alignments from the GMM/HMM system for training the

1http://www.oben.me

FIGURE 1. At run-time conversion, the SI features and F0 are extracted
from the source speech. A linear transformation is applied on F0 to match
the statistics of the target speaker. These features along with the speaker
embeddings are inputted into the unified network to generate the
converted speech.

LSTMs. The outputs from the bottleneck layer are utilized as
the frame-level linguistic features.We consider the features to
be speaker-independent when they are derived from the ASR
system trained by using a large multi-speaker corpus.

B. CONVERSION MODEL
The conversion model is constructed using stacked bidirec-
tional LSTMs (BiLSTMs) [40]. We connect the output of
the BiLSTM layer with a residual network to predict the
Bark-scale frequency cepstral coefficient (BFCC) features,
pitch period, and pitch correlation parameters. The primary
task of the conversion model is feature-mapping, which is
to minimize the distance between the predicted and ground-
truth of the target speaker’s acoustic features. In our experi-
ments, we use mean squared error (MSE) loss as the objective
function to optimize the parameters of the network.

C. LPCNet VOCODER
We use the LPCNet [25] to synthesize high-quality speech.
LPCNet is an efficient vocoder based on WaveRNN [24]
with two key components: the frame rate network and the
sample rate network. The input acoustic features for LPCNet
comprise the 18-dimensional BFCCs, one dimensional pitch
period, and one dimensional pitch correlation for a sam-
pling frequency of 16 kHz. The frame rate network extracts
embedded representations from the input acoustic features.
The sample rate network consists of two gated recurrent units
(GRUA and GRUB) and one dual fully connected layer, fol-
lowed by a softmax layer to model the probability distribution
of the excitation signal et . In order to generate the audio
sample st , et is sampled from this distribution and combined
with the prediction pt from the LPC filter [25].

D. MODEL TRAINING
First, we train both the conversion model and the LPCNet
vocoder independently. In this phase, we initialize the param-
eters of the two networks since the random weight initializa-
tion is unlikely to be effective due to the size of the network.
In the second step, a joint network is built by concatenating
a conversion model and the LPCNet. The conversion model
tries to reconstruct the acoustic features which are inputted
to the LPCNet. In the jointly trained system, the LPCNet
parameters are learned together with the conversion model
parameters through back-propagation. The unified network is

VOLUME 11, 2023 134031



I. Himawan et al.: Jointly Trained Conversion Model With LPCNet for Any-to-One VC Using SI Linguistic Features

FIGURE 2. Testing results on two male target speakers on naturalness and similarity between the proposed method and (a) baseline
system 1 (B1), (b) baseline system 2 (B2), and (c) baseline system 3 (B3). The error bars represent 95% confidence intervals.

FIGURE 3. Testing results on two female target speakers on naturalness and similarity between the proposed method and (a) baseline
system 1 (B1), (b) baseline system 2 (B2), and (c) baseline system 3 (B3). The error bars represent 95% confidence intervals.

trained using a weighted combination of a LPCNet loss and
the acoustic features reconstruction loss, with a total loss,

Ltotal = LLPCNet + βLreconstruction, (1)

where the reconstruction loss is computed using the MSE
between the predicted and the ground-truth acoustic features.
β defines the weight of the reconstruction loss.

IV. EXPERIMENTS
A. EXPERIMENTAL SETUP
We use both public and our proprietary datasets for VC exper-
iments. One female English speaker is taken from [43]. The
other three speakers (a male English speaker, a male Man-
darin speaker, and a female Mandarin speaker) are obtained
from the studio recordings by voice actors, originally sam-
pled at 48 kHz. The VC tasks often assume that there is
limited data from the target speaker. However, the neural
vocoders typically employ a large amount of training data to
achieve high-quality synthesized speech. Therefore, we use
four speakers as target speakers in our experiments: Two
English speakers (a male and a female) with 2 hours of
data and two Mandarin speakers (a male and a female) with
1 hour of data. We build four VC systems, one for each target
speaker. To evaluate the proposed system, we sample 20 ran-
dom speakers (10 males and 10 females) from the VCTK
corpus [41] as source English speakers. For source Mandarin
speakers, 20 random speakers (10 males and 10 females)

with neutral utterances from the CSLT-ESDB corpus [42] are
selected.

B. IMPLEMENTATION DETAILS AND INFERENCE SPEED
The input of the conversion model is a sequence of SI fea-
tures. We also use speaker embeddings as auxiliary features
to better represent different aspects of speaker characteristics.
This is not detrimental to the performance of any-to-one VC
systems. The speaker embeddings are extracted from a deep
neural network (DNN) trained to classify many speakers [44].
The RAPT algorithm [45] is used to extract the F0. The
conversion model is constructed using a stacked four-layer
BiLSTM with 256 hidden units for each layer. Dropout is set
to 0.2. The network is trained using the Adam optimizer with
a learning rate of 1× 10−3.

The LPCNet operates at 16 kHz sampling rate and a
frame rate network that processes 10 ms frames (160 sam-
ples). We use 18 Bark-scale frequency cepstral coefficients
with 10 ms shift size and 320 window size. We set GRUA
with 256 units and GRUB with 16 units. Other network
parameters follow the original LPCNet implementation.
The LPCNet is trained for 140 epochs and 120 epochs
for English speaker and Mandarin speaker models, respec-
tively. The batch size is 32, and a learning rate is set
to 1× 10−3.

For the unified network training, a pre-trained conversion
model is concatenated with a pre-trained LPCNet. In this
second stage of training, we reduce the learning rate to
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FIGURE 4. Spectrogram of the converted speech from (a) the proposed system, (b) the B1 system, (c) the B3 system.

TABLE 1. Mean opinion score (MOS) results with 95% confidence intervals.

TABLE 2. Average cosine similarity values.

5 × 10−4. The β is set empirically (i.e., 0.001). To generate
converted speech, we extract the SI features and F0 from
the source speech. We apply linear transformation on F0 to
match the statistics of the target speaker. To compute the
speaker embeddings for the target speakers, we select an
utterance that is long enough in the training data as a reference
utterance. These features along with the speaker embeddings
are inputted into the unified network. This process is shown
in Fig. 1.

We measure the synthesis of 16 kHz speech waveform
on a laptop device with an Intel Core i7-8550U 1.80 GHz
CPU. At run-time conversion, the whole source sequence is
used as input that we wish to convert to another person’s
voice. For the whole system, we obtain 0.64 real-time factor
(RTF), that is the time (in seconds) to synthesize a one
second waveform. This measurement yields 0.09, 0.1, and
0.45 RTFs for feature extraction, acoustic features recon-
struction, and LPCNet synthesis, respectively. Hence, the
proposed method can perform voice conversion faster than
real-time.

C. BASELINE SYSTEMS
We implement three systems for the baseline comparison.
The first baseline system (B1) uses an independently trained
conversion model and LPCNet [17]. The second baseline
system (B2) uses LPCNet fine-tuned using outputs of the con-
version model. In this case, only the parameters of LPCNet
model are updated during training.We use a different vocoder
for the third baseline system (B3). The vocoder is based on
MelGAN [29]. The generator follows MelGAN architecture
but we increase the receptive field by deepening the ResStack
layers. Each ResStack has 4 layers with dilation 1, 3, 9 and
27 with kernel-size 3. We also add additional discriminators,
a discriminator on the Mel-spectrogram and an ensemble of
random window discriminators (RWD) used in GAN-TTS
[46]. An esemble of RWD combines outputs from 5 uncon-
ditional and 5 conditional discriminators which operate on
randomly sub-sampled portions of the real or generatedwave-
forms. There are five window sizes (i.e., 240, 480, 960,
1920, 3600 samples) obtained by downsampling the input
raw waveform to a constant temporal dimension. This GAN
vocoder is selected since our goal is to synthesize speech
in real-time. For the B3 system, we pre-train the vocoder
with a multi-speaker corpus and then fine-tune the model
towards the target speaker. We directly input the SI features
to a vocoder for inference.

D. TEST PROCEDURES
We conduct speech naturalness and speaker similarity
for subjective evaluations. The Amazon Mechanical Turk
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TABLE 3. P-values produced by binomial test.

platform is used to perform the listening tests. Each utterance
is assessed by ten random human workers, and each worker
can answer at most five hits in a single experiment.

We perform an AB preference test to evaluate the nat-
uralness of the converted speech. In the AB test, pairs of
samples, consisting of converted speech obtained by the pro-
posed approach and baseline, are presented to the listeners in
random order. The listeners are asked to judge which sounded
more natural (A or B) or choose no preference. In the speaker
similarity ABX test, a real speech from the target speaker is
played first, followed by each converted utterance from the
two systems we would like to evaluate, played in random
order. The listeners are asked to judge which utterance is
closer in speaker identity to the target speaker’s speech or to
choose no preference when they could not tell the difference.

In addition, we also conduct mean opinion score (MOS)
study. For the naturalness test, a real speech sample from the
target speaker and the four conversion methods (proposed,
B1, B2, and B3) are played one at a time in random order,
and the listener is asked to give a 5-scale opinion score
(1 for the completely unnatural speech and 5 for the com-
pletely natural speech). In the speaker similarity MOS test,
a real speech utterance from the target speaker is played first
as a reference, and then each of the converted speech from
the four conversion models are played in random order. The
listener is asked to give a 5-scale opinion score whether the
speech is produced by the same speaker in a reference clip
(1 for unlikely produced by the same speaker and 5 for the
definitely produced by the same speaker). The participants
can replay the audio clips before submitting their scores.

To measure the speech intelligibility of the converted
speech, we use an off-the-self ASR system 2 and measure
the word error rate (WER) for English sentences and the
character error rate (CER) for Mandarin.

V. RESULTS
The subjective evaluation results of pairwise system com-
parison for the target male English speakers are illustrated
in Fig. 2. Overall, we can see in Fig. 2(a), Fig. 2(b), and
Fig. 2(c) that the proposed approach outperforms the baseline
systems in terms of naturalness and speaker similarity of the
converted speech. However, the B3 system is preferred over
the proposed system in terms of similarity. Similar trends are
observed for the female speakers in Fig. 3. We find that the
proposed system performs better than the baseline systems,

2https://github.com/watson-developer-cloud/speech-to-text-nodejs

TABLE 4. Word error rate (WER) (%) of the converted speech for English
speakers and Character error rate (CER) (%) for Mandarin speakers.

except for the B3 system in terms of speaker similarity.
Table 1 shows MOS with 95% confidence intervals. The
same performance trends are observed using MOS test to the
subjective results in Fig. 2 and Fig. 3, in which the proposed
approach has higher naturalness and similarity scores than B1
and B2.

To analyze speaker similarity of the converted speech
from the B3 system, we compute cosine similarity between
embedding vectors of audio samples and the target speaker
embedding vectors before and after conversion. A pre-trained
neural speaker embedding model from a deep speaker system
is used to extract the embedding vectors .3 It is expected that
the cosine similarity between each pair of embedding vectors
of the same speaker would be higher than for any pair of
vectors of different speakers. We can see from Table 2 that
the cosine similarity values are higher after the conversion
regardless of techniques. However, B3 produces higher scores
compared to the proposed approach except for female speaker
2. One reason is becausewe use amulti-speaker corpus to pre-
train the B3 vocoder. Even though the SI features are assumed
to be speaker independent, they may still contain speaker-
dependent information that can degrade the similarity of the
converted speech. When we do not pre-train the vocoder, for
example, a male speaker 1, we obtain cosine similarity value
of 0.506 that is lower than 0.695. Therefore, to improve the
generalization towards a new speaker which is not part of
the training data, we use dataset with many speakers to pre-
train MelGAN. Another reason for pre-training is to improve
the synthesis quality of the vocoder. In our experiments,
LPCNet has better synthesis quality compared to MelGAN
using 1-2 hours of speech. The reason may be that the past
waveforms are used for auto-regressive structure in LPCNet
in such a way that it reduces the data requirement [47].

We also perform binomial test where the null hypothesis
is that the two categories (proposed vs. baseline) are equally
preferred. The p-values for each experiment are listed in
Table 3. The test results suggest that the proposed technique

3https://github.com/philipperemy/deep-speaker
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is significantly better than B1 and B2 systems in terms of
naturalness (p-values < 0.05), except for proposed vs. B2
for male target speakers for which p-value is 0.0538. This
suggests that it is vital to re-estimate the weights of the
conversionmodel during joint training in order to improve the
quality of the converted speech. Fig. 4 shows improvements
through visualization by comparing the converted speech of
an English male target between the proposed, B1, and B3
systems. We observe that our jointly trained system removes
amplitude artifacts, and for the B1 system, the reconstructed
speech produces artifacts (as shown inside the bounding box
in Fig. 4(b)). For the B3 system, audible artifacts sometimes
appear in the non-speech segments.

As shown in Table 4, the proposed method performs the
best in terms of intelligibility. Although the B3 system (our
modified MelGAN-based vocoder) performs competitive in
terms of subjective measures, it does not perform well in
terms of the intelligibility measure. A better MelGAN model
may generate better voices, however, it can be prone to over-
fitting due to its complex discriminators [48].

A. SYNTHESIZING CROSS-LANGUAGE SPEECH
We further explore the language independent characteristics
of the SI features by synthesizing speech in a language not
spoken by the target speaker. Hence, we convert 20 speakers
from the VCTK to the female Mandarin speaker. We also
convert 20 speakers from the CSLT- ESDB to a male English
speaker. We notice a degradation of 6% absolute WER
when synthesizing English speech using the femaleMandarin
speaker. On the other hand, the 5.7% absolute CER degrada-
tion is measured when synthesizing Mandarin using the male
English speaker. This degradation in the intelligibility sug-
gests that the error produced by the ASR could propagate to
the acoustic modeling process in the later stages. Despite the
degradation in speech intelligibility, the SI features extracted
frommultilingual ASRmodel are able to capture the phonetic
patterns for synthesizing cross-language speech when the
training data contain both the source and target languages.

In our experiments, we notice that using F0 as input
features to automatic speech recognition (ASR) model and
conversionmodel improve the quality of the converted speech
in Mandarin. Since the proposed method depends on using
SI features to convey the linguistic contents from source to
target, the robustness of ASR model has a great influence on
the quality of SI features’ phonetic contents. In the future,
we will investigate the data requirement for Mandarin and
other languages when training ASR system and conversion
model. Speech samples from voice conversion experiments,
including cross-language samples are available online at
https://oben-ssw10.github.io/lpcnet_vc/.

VI. CONCLUSION
In this work, we propose a jointly trained voice conversion
model with LPCNet to convert a given utterance faster than
real-time. The subjective experiments show that the jointly

trained system produces high-quality converted speech in
terms of naturalness and similarity to the target speaker’s
voice when compared to the state of the art. We use four
target speakers with widely different speech characteristics,
and observe speech quality improvement in the converted
voice when compared to the independently trained system.
In particular, the male English speaker’s voice is difficult to
model with many occurrences of vocal fry in the training
sentences, and it benefits greatly from the jointly trained
network. We also demonstrate that the proposed framework
can synthesize speech in a language that the target speaker
does not speak by leveraging a multilingual ASR train-
ing. Future research includes finding a method to effec-
tively disentangle speech content and speaker identity from
utterances.
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