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ABSTRACT Phrase-level sentiment intensity prediction is difficult due to the inclusion of linguistic
modifiers (e.g., negators, degree adverbs, and modals) potentially resulting in an intensity shift or polarity
reversal for the modified words. This study develops a graph-based Chinese parser based on the deep biaffine
attention model to obtain dependency structures and relations. These obtained dependency features are then
used in our proposed Weighted-sum Tree GRU network to predict phrase-level sentiment intensity in the
valence-arousal dimensions. Dependency parsing results using the Sinica Treebank indicate that our graph-
based model outperforms transition-based methods such asMLP and stack-LSTMwith identical findings for
English dependency parsing. Experimental results on the Chinese EmoBank indicate that our Weighted-sum
Tree GRU network model outperforms other transformer-based neural networks such as BERT, ALBERT,
XLNET and ELECTRA, reflecting the effectiveness of linguistic dependencies in phrase-level sentiment
intensity predication tasks. In addition, our proposed model requires fewer parameters and less inference
time for quantitative analysis, making the proposed model is relatively lightweight and efficient.

INDEX TERMS Dependency parsing, dimensional sentiment analysis, affective computing, deep learning.

I. INTRODUCTION
Sentiment analysis involves the use of linguistic processing
to differentiate the positive and negative emotional content
of utterances, as well as their emotional strength values [1],
[2], [3]. Continuous real-valued sentiment scores, called
‘intensity’, providemore fine-grained emotional information.
SemEval-2016 Task 7 focused on determining the sentiment
intensity of English and Arabic utterances [4]. Various par-
ticipating teams achieved promising results using different
methods includes random forest [5], pointwise mutual infor-
mation [6], Gaussian regression [7] and linear regression
with manual rules [8]. A shared task on dimensional sen-
timent analysis for Chinese phrases was also organized at
IJCNLP-2017 [9]. Affective states were represented in the
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valence-arousal space [10]. The valence represents the degree
of pleasant and unpleasant (i.e., positive and negative) feel-
ings, while the arousal represents the degree of excitement
and calm. Deep learning-based neural computing approaches
such as ensemble Long Short-Term Memory models [11],
boosted neural networks [12] and feed-forward neural net-
works [13] were used to predict the sentiment intensity of
Chinese multi-word phrases.

Linguistic modifiers such as negators (e.g., not, never),
degree adverbs (e.g., very, totally, slightly) and modals (e.g.,
would, could) are commonly used in opinion expressions,
and play an important role in recognizing sentiment intensity
[14]. For example, in Chinese ‘‘ ’’ (totally not
agree) and ‘‘ ’’ (not totally agree) convey dif-
ferent meanings. The former is composed of a degree adverb
‘‘ ’’ (totally), a negator ‘‘ ’’ (not) and a verb ‘‘ ’’
(degree), meaning that the speaker totally disagrees with the
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subject, while the latter features the same modifiers in a
different order, meaning that the speaker does not completely
disagree, but rather partially agrees. Phrase-level sentiment
intensity prediction is difficult because linguistic modifiers
may lead to an intensity shift or polarity reversal for the words
they modify [15].

However, Chinese syntactic parsing to obtain linguistic
dependency information is rarely addressed, motivating us
to develop a Chinese dependency parser to extract depen-
dency structures and relation features between words for
phrase-level sentiment analysis. In addition, Chinese phrases
may have the same dependency parsing results such as the
previous examples ‘‘ ’’ (totally not agree) and
‘‘ ’’ (not totally agree), but expressing differ-
ent meanings with almost opposite affective states. Hence,
we propose aWeighted-sum Tree Gated Recurrent Unit (Tree
GRU) network to tackle the same ordering problem, origi-
nating from different sentences with the same dependency
structure, for phrase-level sentiment intensity prediction in
valence-arousal dimensions.

The main contributions are summarized as follows.

(1) Developing a Chinese Dependency Parser for Syntactic
Structure Analysis

We develop a graph-based Chinese dependency parser
based on the deep biaffine attention model [16] to obtain
linguistic structures and relations between words. The Sinica
Treebank [17] was used to evaluate dependency parsing
results, indicating that our graph-based model outperforms
transition-based methods such as MLP [18] and stack-
LSTM [19] with identical findings for English dependency
parsing.

(2) Exploring Linguistic Dependency Features for Chinese
Phrase-level Sentiment Intensity Prediction

We propose a Weighted-sum Tree GRU network to lever-
age linguistic dependency features for phrase-level senti-
ment intensity prediction in the valence-arousal dimensions.
Chinese Valence-Arousal Phrases (CVAP) from the Chinese
EmoBank corpus [20] were used to evaluate performance.
In experiments, our Weighted-sum Tree GRU neural net-
work with linguistic dependency information outperformed
other transformer-based neural networks (i.e., BERT [21],
RoBERTa [22] and MacBERT [23], ALBERT [24], XLNet
[25], and ELECTRA [26]), in the two-dimensional valence-
arousal space, confirming the effectiveness of exploited lin-
guistic dependency features. In addition, our proposed model
contains fewer parameters and requires less inference time
for quantitative analysis, so our proposed model is relatively
lightweight and efficient.

The rest of this paper is organized as follows.
Section 2 reviews related studies for phrase-level senti-
ment intensity predication. Section 3 describes our proposed
network architecture for valence-arousal rating prediction.
Section 4 describes experiments and discusses experimental
results for model performance evaluation. Conclusions are
drawn in Section 5.

II. RELATED WORK
This section describes existing methods for sentiment
intensity prediction for multi-word phrases, including
heuristic-based [27], [28], [29], [30], [31], [32], [33], [34]
and learning-based [5], [6], [7], [8], [11], [12], [13], [15],
[35], [36] methods.

A. HEURISTIC-BASED METHODS
Heuristic-basedmethods use human-estimated or experience-
determined weights to capture the intensity of the modifier’s
influence on the affective strength for the modified word.
Heuristic methods can be further categorized as switch [27],
[28], [29], [30] and shift models [27], [28], [29], [30], [31],
[32], [33], [34].

Both switch and shift models are used to constrain the
negation [27], [28], [29], [30]. A contextual shift approach
was proposed to predict positive and negative sentiment
for each term [27], [28], incorporating an optional SVM
algorithm to learn and classify the sentiment shifts com-
posed of bi-gram and uni-gram features to obtain better
classification performance. A rule-based model was used
to detect the intensity of emotions in informal English
[29], which was improved using an unsupervised version of
SentiStrength 2 [30].

Linguistic features are identified based on semantic rules
and use a linear offset model to classify sentiment [31]. The
Semantic Orientation CALculator (SO-CAL) is applied to the
polarity classification task [32], assigning a positive or neg-
ative label to a text to capture textual opinions related to the
main topic. A linguistic modifiers-based model was proposed
to improve emotion classification by designing negation,
intensifiers and modalities that may change the emotional
meaning of the text [33]. The Valence Aware Dictionary for
sEntiment Reasoning (VADER) uses a rule-based model that
constructs gold-standard lists through lexicon features [34].

B. LEARNING-BASED METHODS
The learning-based methods use machine learning [5], [6],
[7], [8], [35], [36] and deep learning [11], [12], [13], [15]
techniques for sentiment intensity prediction.

Machine learning approaches focus on the use of data
and algorithms to train models to predict sentiment scores.
Random forest [5] was used as a pairwise strategy to predict
the sentiment intensity scores. Point-wise mutual information
[6] was used to check for similarity between words and pro-
totypical sets, where words with high similarity were incor-
porated into the emotional lexicon. Adaptive boosting [36]
was used to combine multiple weak classifiers into a single
strong classifier. The Gaussian regressionmodel [7], [35] was
used to compute sentiment intensity scores by incorporating
multiple features including direct search results, Word2Vec
search, rule-based search, and 5-level Stanford sentiment
classifier output [37]. A linear regression model [8] was used
to analyze the data noise that affected sentiment intensity
prediction performance.
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FIGURE 1. Proposed network architecture for phrase-level sentiment intensity prediction.

Deep learning techniques can be used in a variety of
ways, including modifying the architecture of neural net-
works or integrating multiple neural network models. The
Part-Of-Speech (POS) embedding and word cluster was fed
into the dense Long Short-Term Memory (LSTM) network
architecture [11], to undergo 100 training iterations using
different hyper-parameters and training data to improve gen-
eralization and reduce data noise. A boosted neural network
model [12] was used to improve the accuracy of misinter-
preted data. A multi-layered feed-forward neural network
[13] was proposed to include the types of known modifier
words, valence-arousal value of headwords, and the dis-
tributional semantics of both kinds of words for valence-
arousal intensity prediction. A pipelined neural network
model composed of two neural networks (NN) models was
proposed to predict phrase-level sentiment intensity [15],
in which the first NN model was used to combine the
re-weighting mechanism in the hidden layer, and the second
NN model considered not only individual but also group
weights.

In summary, we follow the research development of
neural networks-based deep learning methods since neu-
ral computing techniques usually achieve promising results.
In this paper, we propose a Weighted-sum Tree GRU net-
work to fully use of exploited dependency features, obtained
by our developed Chinese dependency parser, for phrase-
level sentiment intensity prediction in the valence-arousal
dimensions.

III. CHINESE PHRASE-LEVEL SENTIMENT INTENSITY
PREDICTION
Figure 1 shows our proposed network architecture for Chi-
nese phrase-level sentiment intensity prediction, comprised
of two main parts: 1) graph-based dependency parsing; and
2) a Weighted-sum Tree GRU network.

A. GRAPH-BASED DEPENDENCY PARSING
We use the graph-based deep biaffine attention model [16]
for Chinese dependency parsing. At the embedding layer,
the concatenation of a pretrained skip-gram word embedding
and a trainable Part-of-Speech (POS) embedding is used
as the representation for each word. The recurrent output
vector from the following Bidirectional Long Short-Term
Memory (BiLSTM) layers then serves as the contextualized
word representation for dependency parsing. We then reduce
the dimensionality of the recurrent output vector using the
Multi-Layer Perceptron (MLP) layers to strip away irrel-
evant information. Finally, the scores of all the directed
arcs between every pair of words are calculated using the
biaffine transformation. The cross-entropy loss function is
used to calculate the loss at training time, while at testing
time the optimal parsing tree is searched using the Maximum
Spanning Tree algorithm. Our network architecture uses two
deep biaffine attention models with common embeddings and
BiLSTM layers are used to obtain dependency arc and type.
The objective is to predict the probabilities of all modified
words in a sentence. After training the deep biaffine attention
model, we can obtain the probability matrix of all arcs and the
corresponding dependency matrix. The obtained dependency
tree structure and relations will be used respectively as the
input order and features in the following Weighted-sum Tree
GRU network.

B. WEIGHTED-SUM TREE GRU NETWORK
Considering the use of dependency relations of words and the
syntactic information of the dependency tree in our model,
we adopt the tree-structured Recurrent Neural Networks
(RNNs) [38]. The benefit of the tree-structured RNN over
the standard RNN is its capability to compute the hidden
states of multiple children from their hidden states. The order
of input features to the tree-structured RNN follows the tree
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FIGURE 2. Left-right order in our proposed model.

structure of the dependency parsing results (dependency tree
and dependency relation). Then, the hidden states of the
direct syntactic children of the ROOT nodes are passed to the
following feed-forward network to predict VA scores from 1
(highly negative or clam) to 9 (highly positive or excitable).

Different sentences with various degrees of sentiment
intensity may share the same dependency tree structure,
producing identical features and thus resulting in incor-
rect VA prediction. To solve this problem, we propose a
Weighted-sum Tree GRU network, where the state of a com-
ponent node state (h) is produced based on the multiple hid-
den states (hk ) of its children. To model the influence of the
different left-right order of the dependents, different weight
matrices (U (r)

k for the reset gate: rk ; U
(h)
k for the candidate

hidden state: ĥ; U (z)
k for the update gate: z) will be learned

for the input hidden states (hk ) of the different left-right
order (k). Different sets of weight matrices are used when
inputting hidden states into the node state of the headword.
The discussion of a headword accounts for the left-right order
of the dependency words. Figure 2 shows the left-right order
of the sentence ‘‘ ’’(We very welcome
your visit). We set a window size as 2 to minimize the number
of weight matrices. For instance, ‘‘ ’’ (we) is the left-2
dependent (k= -2) and ‘‘ ’’ (visit) is the right-2 dependent
(k = 2) of their headword ‘‘ ’’ (welcome). For the depen-
dent words with a left-right order greater than N , the leftmost
Left-N weight matrices (U (r)

−N ,U
(h)
−N ,U

(z)
−N ) or the rightmost

Right-N weight matrices (U (r)
N ,U (h)

N ,U (z)
N ) will be used.

Figure 3 shows the pseudocode of our proposed net-
work architecture. The dependency features and the window
index are fed into the node_forward function as the input
to calculate the hidden state h, reset gate r and update gate
z. The transition equations are described in detail as fol-
lows. The component node state h is a linear interpolation
between the previous hidden state h̃; and the candidate hidden
state ĥ, as shown in Eq. (1), where the update gate z decides
how much the unit updates its previous hidden state, and
it is computed by Eq. (2). The previous hidden state is the
summation of all the input hidden states shown in Eq. (3).
The candidate hidden state is then computed by Eq. (4), where
the reset gate r is computed as Eq. (5). When calculating the
candidate hidden state, the previous hidden state (hk ) state
is ignored if the corresponding reset gate (rk ) is close to 0.

FIGURE 3. Pseudocode for weighted-sum tree GRU network.

Finally, the predicted valence and arousal values are outputted
after passing through the MLP.

Compared with the child-sum Tree GRU network [39],
our proposed network imports the past hk information of
various lower-level nodes when computing the node state h
of the headword. However, the previous hidden-layer states
of all modifiers for this headword are treated using the same
parameters. Therefore, the child-sum Tree GRU model [39]
cannot simulate the ordering of the target word in a sentence,
mainly because different sentences sometimes generate iden-
tical dependency tree structures. Figure 4 uses the two phrases
‘‘ ’’ (totally not agree) and ‘‘ ’’ (not
totally agree) as examples, expressing different meanings
with almost opposite affective states, but having the same
dependency parsing result. Hence, these two phrases have the
same valence-arousal rating prediction in the child-sum Tree
GRU framework. Our proposed Weighted-sum Tree GRU
network for the sentiment intensity task can handle the same
ordering problem. We use a set of weight matrices to reflect
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FIGURE 4. Different sentences with the same dependency tree.

the modifier hidden state information. These weight matrices
are learned using the Tree GRU neural network to extract
the related reset gate, candidate hidden state and update gate
features of the input phrases, allowing the proposed method
to handle different sentences with the same dependency
structure.

IV. EXPERIMENTS FOR PERFORMANCE EVALUATION
A. DATASETS
Sinica Treebank [17] was divided into twomutually exclusive
datasets to evaluate dependency parsing performance. The
training set includes 56,957 sentences with a total of 337,174
words. The test set includes 690 sentences with 5,160 words.

The Chinese Valence-Arousal Phrases (CVAP) set from
the Chinese EmoBank [20] was used to evaluate sentiment
intensity prediction performance. A total of 52 modifiers
(including 4 negators, 42 degree adverbs, and 6 modals)
were combined with the affective words in the Chinese
Valence-Arousal Words (CVAW) set [40] to form multi-word
phrases. VA ratings were annotated through crowdsourc-
ing with each phrase randomly assigned to 10 annotators.
Both the valence and arousal dimensions use a nine-degree
scale. A value of 1 on the valence and arousal dimen-
sions respectively denotes extremely high-negative and low-
arousal sentiment, while a 9 denotes extremely high-positive
and high-arousal sentiment, and 5 denotes a neutral and
medium-arousal statement. Outlier ratings were identified
and excluded from the calculation of the average VA ratings
for each phrase. Finally, a total of 2,998 Chinese phrases were
constructed in the CVAP. We randomly distributed in groups
of 5 for cross-validation evaluation.

B. SETTINGS
Embedding training was performed using the following cor-
pora: Chinese Gigaword (Ver. 2.0),1 Sinica Corpus (Version
4.0),2 Chinese Information Retrieval Benchmark (Version
3.03),3 Taiwan Panorama Magazine,4 Microphone Speech
Database (TCC300),5 and Chinese Wikipedia.6 We used an
automatic system [41] to obtain the segmented words and
their corresponding part-of-speech tags to train Word2Vec
vectors [42].

All experiments were implemented using PyTorch. The
hyper-parameters of our proposed Weighted-sum Tree GRU
network were set up as follows: batch size 256; word vec-
tor dimension 250; POS vector dimension 50; parameter
dimension of dependency features was 100; memory size of
Weighed-sum Tree GRU was 256; hidden state of MLP was
512; Adagrad was used as the optimizer; and the number
of epochs was restricted to 50. We use BERT,7 RoBERTa,8

MacBERT,9 ALBERT,10 XLNet,11 and ELECTRA12 to com-
pare the performance of sentiment intensity prediction with
the following hyper-parameters: batch size 64; average pool-
ing style; the pre-trained models with 12-layer, 768-hidden
and 12-heads; the optimizer is AdamW; and the number of
epochs was 20.

C. METRICS
Two metrics were used to evaluate paring results: 1) Unla-
beled Attachment Score (UAS), the proportion of tokens that
are assigned the correct head, and 2) Labeled Attachment
Score (LAS), the proportion of tokens that are assigned both
the correct head and the correct dependency relation label.

The sentiment intensity predication performance is evalu-
ated by examining the difference between machine-predicted
ratings and human-annotated ratings using two metrics to
independently evaluate the valence and arousal predictions:
Mean Absolute Error (MAE) and Pearson Correlation Coef-
ficient (PCC), defined as Eq. (1) and (2).

MAE =
1
N

n∑
i=1

|ai − pi| (1)

PCC =
1

n− 1

n∑
i=1

(
ai − µA
σA

)(
pi − µP
σA

) (2)

where ai ∈ A and pi ∈ P respectively denote the i-th actual
value and predicted value, n is the number of test samples,µA

1 https://catalog.ldc.upenn.edu/LDC2005T14
2http://www.aclclp.org.tw/use_asbc.php
3http://www.aclclp.org.tw/use_cir.php
4https://www.taiwan-panorama.com/
5 http://www.aclclp.org.tw/use_mat.php#tcc300edu
6https://zh.wikipedia.org/wiki
7Multilingual BERT: https://github.com/google-research/bert
8RoBERTa: https://huggingface.co/hfl/chinese-roberta-wwm-ext
9 MacBERT: https://huggingface.co/hfl/chinese-macbert-base
10Chinese ALBERT: https://github.com/google-research/albert
11XLNet: https://huggingface.co/hfl/chinese-xlnet-base
12ELECTRA: https://huggingface.co/hfl/chinese-electra-base-discrimi-

nator
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TABLE 1. Results of dependency parsing.

and σA respectively represent the mean value and the standard
deviation of A, while µP and σp respectively represent the
mean value and the standard deviation of p. the mae measures
the error rate and the pcc measures the linear correlation
between the actual values and the predicted values. A lower
MAE and a higher pcc indicate more accurate prediction
performance.

D. DEPENDENCY PARSING RESULTS
In the first set of experiments, two transition-based methods
were used to compare performance as follows:
• MLP (Multi-layer Perceptron) [18]

An MLP-based fast parser is proposed to obtain dependency
parsing results. The input features, including words, POS tags
and arc labels are merged and then all feature parameters
are summed by linear transformation. Finally, the softmax
function is used to make the classification decision.
• Stack-LSTM (Stack Long Short-Term Memory) [19]

A transition-based RNN is proposed to follow the Stanford
parser’s features from the partial parsing trees, combining
the partial dependency tree into the highest two layers of the
stack. In addition to words, the dependency tree also contains
actions and labels. Therefore, if the properties are different,
the labels and words are trained by composition, then the
stack is updated by a linear transformation.

Table 1 shows the dependency parsing results. The graph-
based method (our adopted Deep Biaffine Attention model)
outperforms theMLP [18] and Stack-LSTM [19], with identi-
cal findings for English dependency parsing [43]. In our expe-
rience, when conducting transition-based methods, words in
a sentence are put into the stack from left-to-right. How-
ever, sentences can have complicated and non-linear syntactic
structures. The graph-based method calculates the weights of
all possible edges from word to word and searches for the
optimal solution using graph theories, which is more suitable
for Chinese syntactic structure.

E. SENTIMENT INTENSITY PREDICTION RESULT
In the second set of experiments, the following transformer-
based models were compared to demonstrate their perfor-
mance for phrase-level sentiment intensity prediction.
• BERT (Bidirectional encoder Representations for trans-
formers) [21]

BERT uses an encoder architecture with an attention mecha-
nism to construct a transformer-based neural network archi-
tecture, providing state-of-the-art results in a wide variety
of natural language processing tasks. BERT was pre-trained

on two tasks: 1) Masked Language Models (MLM): a fixed
ratio of tokens was masked to train BERT and the model
then predicts the original value of the masked words based
on the context; 2) Next Sentence Prediction (NSP): BERT
was trained to predict whether the following sentence was
probable or not based on the previous sentence. Through pre-
training, BERT learns contextual embeddings for representa-
tions from large-scale data sets. After pre-training, BERT can
be fine-tuned on smaller data sets to optimize its performance
on specific tasks.
• RoBERTa (a Robust optimized BERT pre-training
approach) [22]

RoBERTa is a replication study of BERT pre-training that
carefully measures the impact of key parameters and training
data size. The model modifications include removing next
sentence predictions, dynamically changing the masking pat-
tern applied to the training data, and training in large batches.
• MacBERT (MLM as correction BERT) [23]
MacBERT revisits the Chinese pre-trained language model

series and improves upon RoBERTa, particularly the masking
strategy that adopts MLM as correction (Mac). This Mac
pre-training task was proposed to alleviate the inconsistency
problem of pre-training to downstream tasks.
• ALBERT (A Lite BERT) [24]
ALBERT was proposed to improve the training and results

of the BERT architecture using three different techniques:
factorization of the embedding matrix, cross-layer parameter
sharing, and inter-sentence coherence prediction.
• XLNet [25]
XLNet was proposed as a generalized autoregressive pre-

training method that 1) enables learning of bidirectional con-
texts by maximizing the likelihood over all permutations
of the factorization order; and 2) overcomes the limitations
of BERT in neglecting dependencies between the masked
positions. In addition, XLNet integrates the Transformer-XL
mechanism into pretraining, which allows for the input of
longer texts and reduces a pretrain-to-finetune discrepancy.
• ELECTRA (Efficiently Learning an Encoder that Clas-
sifies Token Replacements) [26]

A new pre-training task called replaced token detection
was proposed as an alternative to masking the input in BERT.
ELECTRA consists of two parts: 1) generator: some tokens
were replaced with plausible samples from a small generator
network; and 2) discriminator: it predicts whether each token
in the input was replaced by a generator or not.

Table 2 shows the results of sentiment intensity prediction
on multi-word phrases. Our proposed Weighted-sum Tree
GRU model outperforms the BERT [21], RoBERTa [22] and
MacBERT [23], ALBERT [24], XLNet [25], and ELECTRA
[26] models in both the valence and arousal dimensions, and
equals the BERT result in Valence PCC. This indicates that
the dependency paring can capture the modifier relationships
between words, which helps enhance sentiment intensity pre-
diction performance.
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TABLE 2. Results of sentiment intensity prediction.

TABLE 3. Results of case study phrases.

We also conducted a quantitative analysis to compare
model size and inference time required. On a server using
Nvidia GeForce RTX 2080 Ti GPUs with the same set-
tings, the different transformer-based models require approx-
imately 105M parameters and 640ms of inference time, while
our proposed Weighted-sum Tree GRU model is relatively
lightweight compared to the BERT-like transformer models,
requiring only 43.8% of the number of parameters and 56.6%
of the inference time, and does not require large amounts of
data for pre-training.

In summary, our proposedWeighted-sum Tree GRUmodel
is simple, but is effective and efficient in phrase-level sen-
timent intensity prediction due to the full use of linguistic
dependency features for predicting sentiment intensity.

F. CASE STUDY
Table 3 shows the dependency parsing results of some phrases
used for the case study and their valence-arousal rating
predictions using the previously compared models. In the
phrase ‘‘ ’’(should be quite suitable), the modal
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‘‘ ’’ (should be) modifies the headword ‘‘ ’’ (suitable)
with a deontic relation, which indicates the speaker’s attitude
towards whether an event is true or not. In addition, the degree
adverb ‘‘ ’’ (quite) plays a semantic role to emphasize the
statement. By obtaining these dependency features correctly,
our Weighted-sum Tree GRU model predicts valence and
arousal ratings respectively of 6.032 and 4.301, which are
close to the human-annotated ratings of 6.375 and 4.333.
In the phrase ‘‘ ’’ (very sensitive), the degree adverb
‘‘ ’’ (very) is a behavioral relation used to modify the
headword ‘‘ ’’(sensitive), which indicates how quickly
the speaker reacts to an external stimulus. Our proposed
Weighted-sumTreeGRUmodel respectively predicts valence
and arousal ratings of 3.826 and 6.225, which are the nearest
to the human-annotated ratings of 3.813 and 6.375.Moreover,
we can identify two phrases ‘‘ ’’ (really not like)
and ‘‘ ’’ (not really like) as having different mean-
ings, despite having identical dependencymodifiers. Our pro-
posed Weighted-sum Tree GRU model can properly process
the same modifiers in different orders, but with the same
dependency structure. For the phrase‘‘ ’’ (human-
annotatedVA ratings are 2.111 and 6.714), ourmodel predicts
a valence of 2.432 and an arousal of 6.888. For the phrase
‘‘ ’’ (VA ratings are 3.944 and 4.929), our model
predicts very similar respective valence and arousal ratings
of 3.943 and 4.975.

V. CONCLUSION
We propose a Weighted-sum Tree GRU network for phrase-
level sentiment intensity prediction, making the following
contributions:

(1) We develop a Chinese dependency parser based on the
graph-based deep biaffine attention model to obtain depen-
dency tree and relational information. Experimental results
on the Sinica Treebank indicate that our graph-based model
achieved a UAS of 92.9% and a LAS of 88.5%, which out-
performs transition-based methods with identical findings for
English dependency parsing.

(2) We propose a Weighted-sum Tree GRU model to
include exploited dependency features for predicting Chinese
phrase-level sentiment intensity in valence-arousal dimen-
sions. Experimental results on the Chinese EmoBank indicate
that our Weighted-sum Tree GRU model achieved an MAE
of 0.392 and a PCC of 0.936 in the valence dimension and
an MAE of 0.399 and a PCC of 0.915 in the arousal dimen-
sion, which outperforms several transformer-based models.
Quantitative analysis also confirms that our model is rela-
tively lightweight and efficient compared against BERT-like
transformers, especially without the need of large amounts of
data for pre-training.

Future work will exploit other semantic features and
develop advanced models to further improve performance.
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