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ABSTRACT Mimicking the biological visual attentionmechanism to discriminate visually appealing regions
in natural scenes has been a hot research topic in recent years. However, designing computational models
with self-driven capability for open world scenarios remains a challenging task which deserves to be further
studied. In this paper, we propose an unsupervised learning approach to detect salient objects from images
by fully exploiting the multi-context semantic information of the scenes. Specifically, a self-driven model
combing the idea of discriminative metric learning and structured sparse constraint is designed to find an
optimal semantic mapping space for robust scene specific saliency prediction from complex environments.
Meanwhile, a heuristic alternating optimization algorithm is developed to remove the ambiguity in the coarse
geometric prior to generate a fine-grained discriminative model for saliency. On the basis of this, multi-
context visual scenes are jointly modeled and fused to capture the image hierarchical structures for high-
quality saliency map generation. Finally, we conduct experiments to verify the effectiveness of the proposed
approach on four saliency benchmark datasets and compare it with 18 state-of-the-art saliency detection
methods. Both qualitative saliency map and quantitative numerical index results indicate that our method
has superior detection performance than the other counterparts under diversified scenes. Also, the proposed
approach is applied to model wide synthetic aperture radar images for rapid target detection and promising
results are obtained.

INDEX TERMS Heuristic alternating optimization, salient object detection (SOD), SAR target detection,
unsupervised learning.

I. INTRODUCTION
Visual attention is an intelligent behavior of primates, which
can help to handle massive visual streams under limited
brain processing and storage capacity. It is based on the
rationality that reducing the redundancy of visual scenes
will not influence our understanding and may improve the
visual perception efficiency. For decades, researchers from
cognitive science, neurobiology and computer science have
devoted to explore its underlying mechanism and many
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theories are proposed for this goal [1], [2], [3]. Despite the
great efforts made, there is still a lot more to discover on
how this intelligent behavior comes into being. It is generally
believed there is a saliency map in the visual pathway, which
directs our attention to the most conspicuous region in the
scene. Meanwhile, visual attention works both in a top-
down task driven and bottom-up scene stimulated manner.
Ever since the pioneer work of Itti et al. [4], there has been
an increasing interest in predicting this saliency map with
computer algorithms [5], [6], [7]. Also, the advancement of
saliency modeling technique has benefited a wide range of
scientific and engineering fields, such as industrial defect
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detection [8], remote sensing interpretation [9], multi-media
applications [10], etc.

Till now, researchers from computer science have resorted
to different ways to mimic the visual attention mechanism.
The study on visual saliency modeling can be classified
into two major categories, i.e., eye fixation prediction [11]
and salient object detection [12]. The former is based on
fixation points acquired by eye-tracking devices for gaze
prediction, while the latter is based on object annotations for
regions of interest detection. They provide different views
to study the modeling of this visual cognition process with
specific ground-truth data. In this paper, we will mainly
focus on developing robust learning algorithm to detect
salient objects from complex scenes. Extensive works can
be found in the literature to address this problem [13],
[14], [15], but the performance in open world scenarios still
needs further improvement. It is usually difficult to learn a
universal model from limited prior knowledge suitable for
diversified situations. Therefore, it is a meaningful research
topic to develop scene adaptive saliency models with better
generalization capability.

Prior knowledge plays a vital role in saliency modeling by
providing inspiration sources to tackle this highly ill-posed
problem. A comprehensive literature review shows most
existing saliency methods get their modeling inspirations
either from cognitive rules or supervision data. Cognitive
rules provide biological basis for researchers to follow for
saliency model design. Also, supervision data can be used
to learn saliency prediction model for new scenes. Prior
knowledge adds momentum in formulating computationally
plausible models and meanwhile constrains the model
adaptive capacity in varying environment. However, as direct
and reliable modeling basis, the multi-context visual
information of the scene under evaluation has not yet been
fully studied for scene driven saliency learning (Fig. 1).

FIGURE 1. Schematic diagram of different ways of saliency modeling
process.

Cognitive rules are primary source of inspirations for
early saliency detection models. Inspired by neural structure
in superior colliculus, a central-surround contrast operator
is proposed to mimic the biological vision for saliency
generation [4]. A psychological model is designed in [16]
to exploit global distance and color information of the scene
for saliency estimation. Also, the photographic preferences
and scene layout are used to provide location and structure

priors for salient object detection [17], [18], [19]. Later
on, supervision data is more widely used to build learning
based saliency models. A saliency optimization model is
proposed by Zhu et al. to combine existing saliency measures
to obtain improved detection performance [20]. From the
regression perspective, a random forest model is designed
by Jiang et al. to learn from multi-view features to saliency
scores [21]. Meanwhile, the strong learning capability of
deep neural network is explored to build end-to-end models
for saliency prediction [22], [23], [24]. A comprehensive
review on recent advances in CNN-based encoder-decoder
networks for salient object detection is made in [25], which
provides both empirical study and method investigation in
this direction.

FIGURE 2. Implementation flowchart of the proposed salient object
detection method.

Both cognitive rules and supervision data provide external
knowledge for saliency detection model design. However,
external knowledge usually leads to universal rule or data
driven models that are not scene specific and adaptive.
To gain better generalization capability, multi-context visual
information of the observed scene needs to be fully
utilized for scene driven saliency modeling. Inspired by
this, in this paper we propose an unsupervised model to
learn discriminative metric space from multi-context visual
scene for joint salient object detection. The implementation
flowchart of the proposedmethod is shown in Fig. 2. Different
from rule or data driven methods, our model is learned
directly from the observed scene and does not rely on
artificial design and outside scenes. Specifically, a compound
optimization model based on structured constraints is
designed for simultaneous saliency label disambiguation
and metric learning. The semantic correlation among visual
patterns is modeled to learn discriminative saliency detector
fromweakly labelled data. Meanwhile, a heuristic alternating
optimization algorithm is proposed to iteratively search for
the optimal solution of the non-convex problem. Through
this scene driven unsupervised learning process, high-quality
saliency maps can be generated for diversified scenes. The
primary motivation of our work is to develop a scene driven
unsupervised salient object detection method applicable to
complex open world scenarios.
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FIGURE 3. General pipeline of the proposed salient object detection method.

The main contributions of this paper are summarized
as follows. First, we propose a novel scene driven
unsupervised learning paradigm to combine multi-context
visual semantics for adaptive saliency detection from
diversified scenes. Secondly, a structured sparse constraint
based joint optimization model is established to learn
discriminative metric space for saliency estimation. Thirdly,
we design a heuristic alternating optimization algorithm
to efficiently search for the optimal saliency metric space
from the above model. In general, we contribute a novel
unsupervised saliency learning framework to fully exploit
the test scene information for robust salient object detection
from diversified open world scenes. The rest of this paper
is organized as follows. In Section II, we will introduce
the proposed unsupervised discriminative metric learning
model and heuristic alternating optimization algorithm in
detail. Experimental results and performance evaluation on
benchmark datasets as well as model application study will
be given in Section III. Finally, we will briefly conclude this
paper in Section IV.

II. PROPOSED METHOD
Our saliency detection method is mainly inspired by the
following observations. First, existing methods are mostly
driven by external rule or data, which ignore the use of
internal scene information in model design. To achieve more
adaptive modeling capability, a scene driven unsupervised
discriminative metric learning model is proposed for saliency
detection. Secondly, to avoid the modeling bias caused
by insufficient visual semantic correlation, a structured
sparse constraint based multi-context fusion scheme is
developed for thorough scene analysis. General pipeline of
the proposed salient object detection method is illustrated
in Fig. 3. As can be seen, the proposed method is mainly
composed of three components, i.e., hierarchical instance bag
(HIB) construction, discriminative metric learning (DML)
model deduction, and multi-context fusion (MCF) scheme
design. In the following subsections, we will give detailed
descriptions of these components.

A. UNSUPERVISED DISCRIMINATIVE METRIC LEARNING
(DML) MODEL
Deriving semantic perception results directly from the
observed visual scenes conforms to the basic biological

cognition rules. Existing methods mostly depend on external
rule or data for model design, which however are not
customized for each individual scene and thus not well
adapted to changing environment. Concerning the observed
internal scene, its semantic information is seldomly studied
for unsupervised saliencymodeling. In this paper, we propose
a discriminative metric learning method to build closer
connection between the observed scene and its specific
saliency model.

Given a test color image I ∈ <
m×n×3, we first

over-segment it into several uniform superpixel regions
{s1, s2, · · · , sk} using LSC algorithm [26]. Since color space
transform can provide feature representation closer to human
visual system (HVS), the RGB, Lab andHSV color spaces are
connected in cascade manner for superpixel description. The
average feature values of the pixels inside each superpixel are
assigned as the superpixel feature values. In this way, we can
build a superpixel feature matrix Fs = [fs1, fs2, · · · , fsk ] ∈
<
8×k with each column being an 8-dimensional feature

vector spanned by R, G, B, L, a, b, H and S color channels.
The basic idea is to learn a discriminative metric model

from structured visual scenes for accurate saliency prediction
of superpixel regions. This problem can be mathematically
expressed as the following form

ssi ∝ 8I (fsi), (1)

where, fsi ∈ <8×1 is the feature vector of the i-th superpixel
region and its corresponding saliency value is denoted by
ssi. 8I is the scene driven saliency model learned from
the test image I . Previous methods whose saliency models
are independent of the test image, mostly adopt cognitive
rules or supervision data as their modeling driven force.
They usually result in fixed detection models with limited
adaptive capacity for changing scenarios. To promote the
model adaptability, a joint discriminative metric learning
framework is proposed in this paper, which has the following
expression form

(w∗, b∗) = argmax
w,b

1
||w||2

s.t. lsi︸︷︷︸
unknown
label

×(w · fsi︸︷︷︸
known
feature

+b) ≥ 1,

i = 1, 2, · · · , k (2)
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where, w ∈ <8×1 and b are the normal vector and intercept
of the discriminative metric hyperplane, and lsi ∈ {−1,+1}
is the saliency label of the i-th superpixel region which is not
known in advance. After the optimal hyperplane variables w∗

and b∗ are learned from the test scene, we can predict the
saliency label lsi and saliency value ssi of the i-th superpixel
region as follows lsi = sign(w∗ · fsi + b∗)

ssi =
w∗ · fsi + b∗

||w∗||2
,

i = 1, 2, · · · , k (3)

Since the saliency label information is unknown, the above
optimization problem is intractable in practice. To guarantee
unique solution to best favor saliency modeling, we enforce
structured sparse constraints to the superpixel saliency label
vector Ls = [ls1, ls2, · · · , lsk ] ∈ {−1,+1}1×k . We divide
all the superpixels into different groups according to their
spatial positions in the image. Superpixel regions that are in
touch with the image boundaries are respectively grouped
into four instance sets, which we refer to as top bag Bt ,
bottom bag Bb, left bag Bl and right bag Br . For those
that have no touch with the image boundaries, they are
grouped into one instance set named as center bag Bc. Each
instance bag carries specific visual semantic elements that
are closely related to the image geometry. For salient object
detection, saliency labels of the instance bags show structured
sparse characteristic, which is explored for adaptive model
design.

For description convenience, we denote the saliency label
vectors of the instance bags by Lst ,Lsb,Lsl,Lsr and Lsc
respectively. Since superpixel instances in the four bags
Bt ,Bb,Bl and Br are mostly non-salient, saliency label
vectors of these bags Lst ,Lsb,Lsl and Lsr should be expected
to be sparse enough. Also, the center bag Bc covers nearly
all the visual elements of salient objects and therefore its
saliency label vector Lsc should contain at least one positive
element. In this paper, the above structured sparse constraints
on the saliency label vectors are embedded into the learning
framework in (3) to form a computationally feasible model as
follows.

(w∗, b∗) = argmax
w,b

1
||w||2

− λ
∑

i∈{t,b,l,r}

||Lsi + 1||0

s.t. lsi︸︷︷︸
unknown
label

×(w · fsi︸︷︷︸
known
feature

+b) ≥ 1,

i = 1, 2, · · · , k ||Lsc + 1||0 ≥ 1 (4)

where, λ is the weighting coefficient used to balance between
the two optimization objectives and 1 is an all one vector used
to convert from label domain to sparse domain. The second
term in the objective function seeks to minimize the zero
norm of converted saliency label vectors of the four boundary
bags, and the second constraint condition enforces the zero
norm of the converted saliency label vector of the center bag
to be greater than or equal to 1. The rationality behind the use

of the two zero norms comes from the intrinsic distribution
property of salient objects in the image. In practice, the four
boundary bags seldomly cover salient objects and thus their
saliency label vectors should be sparse enough. Meanwhile,
the center bag basically covers all the salient objects and
thus the sparsity of its saliency label vector should at least
be 1. The two zero norms are specifically designed to describe
the above structured sparse characteristic and they together
provide loose but universal guidance for the optimization.
By introducing the two zero norms, we aim to add slack label
learning momentum to the optimization model for adaptive
saliency detection.

Since the saliency label vector lsi, i = 1, 2, · · · , k is
an intermediate variable, it is further expressed by the
two optimization variables w and b via sign function.
Correspondingly, we introduce a new equality constraint into
the model as follows.

(w∗, b∗) = argmax
w,b

1
||w||2

− λ
∑

i∈{t,b,l,r}

||Lsi + 1||0

s.t. lsi × (w · fsi + b) ≥ 1,

i = 1, 2, · · · , k

||Lsc + 1||0 ≥ 1

lsi = sign(w · fsi + b),

i = 1, 2, · · · , k (5)

By reorganizing the above model, we can obtain the standard
constrained optimization problem in the following.

(w∗, b∗) = argmin
w,b

1
2
||w||22 + λ

∑
i∈{t,b,l,r}

||Lsi + 1||0

s.t. 1− Ls� (wT × Fs+ b× 1) ≤ 0

1− ||Lsc + 1||0 ≤ 0

Ls− sign(wT × Fs+ b× 1) = 0 (6)

where, � is element-wise Hadamard product and 0 is an all
zero vector. As can be seen, the major merit of this model
is the design of a discriminative metric learning paradigm
that matches perfectly with the practical problem. The sparse
patterns inside the test image are thoroughly explored for
scene driven unsupervised salient object detection. Different
from rule or data driven models, our saliency model is
learned directly from the test image and can keep dynamic
adjusting to the diversified scenes. Therefore, it possesses
more reliability and flexibility in modeling saliency from
open world scenarios. From a mathematical perspective,
this is a discrete multi-objective constrained optimization
problem with hidden variables, which cannot be effectively
solved with traditional numerical methods. In this paper,
we propose an efficient heuristic alternating optimization
algorithm to find the optimal solution of the above problem
for reliable saliency estimation. Detailed descriptions of
the proposed optimization algorithm will be given in the
following subsection.
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B. EFFICIENT HEURISTIC ALTERNATING OPTIMIZATION
(HAO) ALGORITHM
Given the superpixel feature matrix Fs, we aim to learn
the optimal hyperplane variables w and b with the above
constrained optimization model for scene driven saliency
detection. The superpixel saliency label vector Ls is a hidden
variable that depends on the optimization variables w and b.
Its sub-vectors Lst ,Lsb,Lsl,Lsr and Lsc together apply
zero norm based structured sparse constraints to the model.
As a unique design of our model, different subsets of the
hidden variable are respectively introduced into the objective
function and constraint conditions, making it a relatively
complex optimization problem in practice. In this paper,
we propose a heuristic alternating optimization algorithm to
find the optimal solution of the above problem in an efficient
manner.

We first adopt idea from the sequential unconstrained
minimization technique (SUMT) to convert the standard
constrained optimization problem into equivalent
unconstrained form. A penalty function P(w, b) based on
exterior point method (EPM) is accordingly designed as
follows.

P(w, b) = ||max[0, 1− Ls� (wT × Fs+ b× 1)]||22
+ [max(0, 1− ||Lsc + 1||0)]2

+ ||Ls− sign(wT × Fs+ b× 1)||22 (7)

where, max(x, y) is a function that takes the maximum
of x and y as its output. The above function can assign
positive penalty values to infeasible solutions, while applies
no penalty to any feasible solution. By adding the penalty
function to the primal objective function, we can obtain the
following augmented objective function F(w, b, η).

F(w, b, η)

= f (w, b)+ ηP(w, b)

=
1
2
||w||22 + λ

∑
i∈{t,b,l,r}

||Lsi + 1||0

+ η
{
||max[0, 1− Ls� (wT × Fs+ b× 1)]||22

+ [max(0, 1− ||Lsc + 1||0)]2

+ ||Ls− sign(wT × Fs+ b× 1)||22
}

(8)

where, f (w, b) is the primal objective function and η is the
penalty factor that increases gradually along with iterations.
Till now, we derive the unconstrained optimization objective
function, which can facilitate the succeeding optimization
algorithm design process. However, the augmented objective
function is relatively complex in its mathematic expression
form, which involves the dynamic nonlinear interactions
among the scene features andmodel variables. It is intractable
to find the optimal solution of this unconstrained optimization
problem simply with traditional methods. Here, we propose
a heuristic alternating optimization algorithm to combine the
idea of exterior point method and swarm intelligence theory
for efficient optimal solution search.

Following the exterior point method, we gradually increase
the penalty factor along with the iterations to enforce the
solution to move towards feasible region. Accordingly,
the nonlinear augmented objective function will change
dynamically during the iterations. As a representative swarm
intelligence algorithm, particle swarm optimization (PSO) is
proved to be quite suitable for parallel solution search in
dynamic environment [27]. Therefore, it is embedded into the
overall iteration process to search for the optimal solution
in a successive manner. Discriminative metric hyperplane
variables w and b are concatenated and encoded as the swarm
particle position. A group of particles work collaboratively
to search for the position with best fitness function value.
Meanwhile, the obtained optimal solution from the previous
step is used as initial solution of the next step, making the
search process to converge quickly. This heuristic search
process will terminate until the final stop criterion is
reached. Pseudo code of the proposed heuristic alternating
optimization algorithm is summarized in Algorithm 1.

Algorithm 1 Pseudo Code of the Heuristic Alternating
Optimization Algorithm

Input: Superpixel feature matrix Fs ∈ <8×k , weighting
coefficient λ, swarm particle number N , inertia factor ω,
acceleration coefficients c1 and c2, termination error ε.
Output: Optimal discriminative metric hyperplane variables
w∗ ∈ <8×1 and b∗.
Initialization: Penalty factor η, swarm particle velocity
V ∈ <9×N , swarm particle position P ∈ <9×N , particle
personal best Pbest ∈ <9×N , particle global best Gbest ∈
<
9×1, fitness vector Fit ∈ <N×1, and number of iterations

t = 1.
1: do
2: for i = 1: 1: N
3: Calculate fitness value F(P(1 : 8, i),P(9, i), η) with (8).
4: if ( F(P(1 : 8, i),P(9, i), η) < Fit(i)) % update Pbest
5: Pbest (:, i) = P(:, i);Fit(i) = F(P(1 : 8, i),P(9, i), η)
6: end
7: end
8: Temp = Gbest %store current Gbest in temporary variable
9: Find i∗ = min

i∈[1,N ]
Fit(i) and set Gbest = Pbest (:, i∗).

%update Gbest
10: for i = 1: 1: N %update particle velocity and position
11: V (:, i) = ω×V (:, i)+c1× rand(1)× [Pbest (:, i)−P(:, i)]

+c2 × rand(1)× [Gbest − P(:, i)]
12: P(:, i) = P(:, i)+ V (:, i)
13: end
14: t = t + 1;η =

√
t × η % increase penalty factor

15: while (||Gbest − Temp||2 ≥ ε)

As can be seen, the proposed scene driven unsupervised
learning approach models saliency detection as a constrained
multi-objective optimization problem. Its heterogeneous
mathematical expression form provides a complete and
adaptive framework for robust saliency modeling from
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diversified visual scenes. However, the existence of the
complex zero norm terms of the hidden variables makes
this optimization problem quite challenging in practice. It is
intractable to simply use traditional optimization techniques
to find the optimal solution in acceptable time. Since the
proposed heuristic alternating optimization algorithm has no
restriction on the objective function and constraint conditions,
it is capable of handling this complex nonlinear optimization
problemwith great ease. The iterative approximation strategy
together with the velocity-displacement model can guarantee
a fast global convergence of the optimization algorithm.
Therefore, we can expect to obtain satisfactory discriminative
metric hyperplane variables for efficient saliency prediction
according to (3).

Till now, we accomplish the design of scene driven
unsupervised saliency learning model under single semantic
context. As is the case, the semantic perception result of
a visual element is greatly influenced by its surrounding
hierarchical scene layouts. In the following, we will extend
our model to fuse multi-context modeling results for more
comprehensive saliency detection. Details of the proposed
joint multi-context saliency fusion scheme will be discussed
in the next subsection.

C. JOINT MULTI-CONTEXT FUSION (MCF) SCHEME AND
IMPLEMENTATION DETAILS
It is widely acknowledged that saliency is the competitive
outcome of visual elements under multiple observation
scales. Inspired by this, we design a saliency fusion scheme
to combine multi-context modeling results for high-quality
saliency map generation. Using LSC algorithm, we over-
segment the test image from multiple semantic levels to
capture the hierarchical scene structures. Saliency learning
results from multiple visual contexts are fused for fine-
grained saliency estimation. Specifically, the final saliency
map S ∈ <m×n of the test image is estimated as follows.

Sr,c =

l∑
j=1

kj∑
i=1

ssji × exp
[
−
||fpr,c−fs

j
i||

2
2

2σ 2

]
×2

(
pr,c ∈ s

j
i

)
l∑
j=1

kj∑
i=1

exp
[
−
||fpr,c−fs

j
i||

2
2

2σ 2

]
×2

(
pr,c ∈ s

j
i

)
(9)

where, Sr,c is the saliency value in the r-th row and c-th
column. pr,c is the pixel in the r-th row and c-th column
and fpr,c ∈ <8×1 is its feature vector. s

j
iis the i-th superpixel

region in the j-th semantic level, and its feature vector and
saliency value are respectively denoted by fsji ∈ <

8×1 and ssji.
The number of semantic levels is written as l and kj represents
the number of superpixel regions in the j-th semantic level.
Also, exp[·] is the exponential function where σ acts as
a smoothing parameter, and 2(·) is an indicator function
which outputs 1 if the condition in the brackets is satisfied,
otherwise 0.

The hierarchical scene structures require that its
saliency modeling be better discussed in multiple semantic

contexts. By performing multi-layer abstraction to the test
image, we can obtain different levels of visual semantic
representation for joint saliency learning. For each semantic
level, we use the proposed discriminative metric learning
model to produce its attention map. The multi-context
saliency modeling results are combined through the designed
saliency fusion scheme for pixel-wise accurate saliency map
estimation. Specifically, the saliency of a spatial position
is evaluated under multiple visual semantic contexts and is
estimated based on its feature similarity to the hierarchical
superpixel regions it resides in. Therefore, we can expect
to get high-quality saliency maps with more reliability and
higher accuracy as will be seen later.

In the experiments, the weighting coefficient λ is fixed
to be 0.1 and the initial value of the penalty factor η is
chosen to be 1. Also, the swarm particle number N , inertia
factor ω, acceleration coefficients c1 and c2, and termination
error ε in PSO are set to 36, 1, 2, 2 and 0.001 respectively.
Note that the parameter tuning of PSO is performed based
on empirical guidance as well as problem characteristics
so as to balance between search efficiency and solution
quality. Concerning the initialization of the swarm particle
states, we adopt random function to generate legal vectors
for swarm particle velocity V and position P, as well as
particle personal best Pbest and global bestGbest . Meanwhile,
to make the iteration process start properly, all the elements
in the fitness vector Fit are initialized to be positive infinity.
Finally, the number of semantic levels l is designed to be
3 and correspondingly the number of superpixel regions
k1, k2 and k3 are respectively set to 100, 200 and 400.
Besides, to get satisfactory saliency fusion effect, we set the
smoothing parameter σ to 10. In practice, we implement
the proposed method with MATLAB and the code is run
on a HP Z8 G4 workstation with 8 core CPU of 1.70 GHz,
64 GB RAM, and 64 bits Windows 10 operating system.
It is also worth mentioning that a specific group of optimal
hyperplane variables will be acquired for each test image
during the scene driven unsupervised learning process.

III. EXPERIMENTAL RESULTS AND DISCUSSIONS
A. EXPERIMENTAL SETUP
In this section, the proposed saliency model (referred to as
DML) is tested on four classical saliency benchmark datasets
(PASCAL-S [28], ECSSD [29], DUT-OMRON [30] and
THUS-10000 [16]) along with 18 state-of-the-art saliency
detection methods, which are respectively denoted as BMS
[31], CA [32], CB [33], CGVS [34], DSR [35], FCB [36],
GMR [30], GR [37], HS [29], LMLC [38], LPS [39], MBS+
[40], MC [41], MNP [42], RC [16], SF [43], ST [44]
and WF [45]. For fair performance evaluation, we use the
source codes released by the original authors to produce
the corresponding saliency maps during the experiments.
Detailed parameters involved in the 18 saliency detection
methods can be found in their corresponding source codes
and we use the default parameter settings provided by
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the original authors for saliency map generation. In terms
of the evaluation metrics, both qualitative and quantitative
results are obtained for comprehensive detection performance
analysis.

As an intuitive way to show the modeling effect,
saliency map is used to provide qualitative results for
detection performance evaluation by comparing its closeness
with the corresponding ground-truth map. In general, the
closer the saliency map is to the ground-truth map, the
better the saliency detection performance will be. Saliency
map is a subjective evaluation standard and quantitative
numerical indexes are also needed for objective performance
comparison. In this paper, precision-recall (PR) curve and
F-measure curve are both used for this purpose. Precision and
recall are two complementary metrics, which are respectively
defined to measure the accuracy and completeness of the
saliency detection results. Precision is the ratio between the
correctly detected and actually detected foreground regions,
and recall is the ratio between the correctly detected and
manually labelled foreground regions. To provide a unified
evaluation standard, F-measure is proposed as a composite
index, which is the harmonic mean of precision and recall.

Fβ =
(1+ β2)× Precision× Recall
β2 × Precision+ Recall

(10)

where, β2 = 0.3 is used to give more emphasis on precision
than recall as suggested in [46]. For an 8-bits grayscale
saliency map, we use a threshold ranging from 0 to 255 to
binarize it. By comparing the successively segmented binary
mapswith the corresponding ground-truthmap, we can derive
256 groups of precision, recall and Fβ values. After plotting
the 256 precision and recall point pairs on a 2-D plane, we can
obtain the PR curve of the saliency map for performance
analysis. Similarly, we can draw the F-measure curve of the
saliency map using the 256 calculated Fβ values.

It is worth mentioning that the proposed heuristic
alternating optimization algorithm has some randomness
due to the initialization and update of the swarm particle
states. To give fair performance evaluation of our method,
we run our code on each test image for ten independent
times, and all the results are averaged to get the final
saliencymap. Through this, wewish to avoid the performance
evaluation bias caused by the possible instability of our
detection results. In what follows, we will give the
saliency map results as well as numerical evaluation
indexes of the saliency methods on the benchmark datasets
for comprehensive detection performance analysis and
comparison.

B. PERFORMANCE EVALUATION RESULTS
The self-driven learning capability in open world scenarios
is a significant difference for various saliency models. It is
therefore necessary to verify the model performance in
diversified complex scenes. The four saliency benchmark
datasets used in this paper cover rich visual scenes with
challenging situations and thus are well suited for this

requirement. PASCAL-S dataset contains 850 images and
their carefully labelled ground-truth maps with multi-level
saliency annotations. Also, ECSSD dataset is composed of
1,000 low contrast images and their binary fore/back-ground
masks. The 5,168 images in DUT-OMRON dataset cover
wide range of natural scenes with complex spatial layouts.
Also called as MSRA10K, THUS-10000 is a large salient
object detection dataset (contains 10,000 images) with pixel-
level labeling. Below we will show the testing results of the
saliency methods on the above datasets for comprehensive
modeling performance evaluation.

Fig. 4 shows some typical saliency maps of the top-ten
performing methods (CGVS, DSR, GMR, HS, MBS+, MC,
RC, ST, WF and DML) on the four benchmark datasets.
As can be observed from the results, our method is able to
produce high-quality saliency maps better than that of the
other counterparts, when in face of multiple, variable-size,
occluded and cropped objects as well as low image contrast
and structural details. The saliency generation mechanism in
open world scenarios is such complex that models based on
specific rules or limited data will lack robustness in practice.
For example, the sheep in the second image are not entirely
found by most methods for their over-simplified assumptions
like the focusness prior. Also, the camouflaged submarine
in the fifth image is only partially detected from the ocean
by some methods due to the low fore and back-ground
contrast. Meanwhile, the cropped motorcyclist in the seventh
image is not integrally highlighted in some saliency maps
for their over-reliance on boundary prior. Free from external
rules or data, our model can learn adaptive discriminative
metric space from diversified test scenes for unsupervised
salient object detection. The semantic separable condition
and structured sparse property are tightly coupled together for
concise and complete learning model and algorithm design.
Our method provides a more general form for representing
and integrating the heterogeneous saliency information and
thus is more suitable for the problem.

Meanwhile, the average PR and F-measure curves of all
the saliency methods on the four benchmark datasets are
respectively drawn in Figs. 5 and 6 for objective performance
evaluation. As can be seen from Fig. 5, the PR curves
of DML keep lying in the most upper right corner of the
plots, indicating the superiority of our saliency detection
method. Up to now, the saliency modeling performance is
becoming saturated on relatively simple datasets, but still
needs great improvement in complex scene datasets. As a
result of this, the modeling capability in open world scenarios
is a major basis for detection performance evaluation. It can
be observed from the PR curves that the advantage of our
method over the other counterparts on the simple THUS-
10000 dataset is not too obvious. But when it comes to
the more complex PASCAL-S and ECSSD datasets, this
performance advantage gets further enlarged. In terms of the
challenging DUT-OMRON dataset, our method outperforms
the other counterparts to a large extent owing to its stronger
modeling capability in open world scenarios. Also, similar
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FIGURE 4. Some saliency maps produced by the top-ten performing methods on the four benchmark datasets. Each column from (a) to (l) is respectively
the input images, saliency maps of CGVS, DSR, GMR, HS, MBS+, MC, RC, ST, WF and DML, and the ground truths. Every two rows from top to bottom
correspond to sample images from PASCAL-S, ECSSD, DUT-OMRON and THUS-10000 dataset.

FIGURE 5. Average PR curves of all the saliency methods on the four benchmark datasets. For sake of observation convenience, PR curves of the
18 comparison methods are shown in two separate subplots and the PR curve of our method is shown in both subplots.

results can be observed from the F-measure curves in
Fig. 6. Since our method works in a scene driven mode,
it can learn a specific model for each test image by fully
exploring the visual semantic information inside. Compared
with external rule or data driven methods, it can provide a
more general paradigm for adaptive saliency modeling in
dynamic environment. Therefore, our method is better at
capturing the complex saliency generation mechanism from
diversified natural scenes.

To validate the performance stability of our method
across different datasets, we run Friedman test on the four
benchmark datasets with precision, recall and F-measure as
the evaluation indexes. The obtained test statistic for our
method is 5.8, which is smaller than the critical test value
7.4 looked up under significance level 0.05. This means that
there is no obvious performance difference of our method on
the four benchmark datasets, which confirms the robustness
of our method across different types of datasets. Finally,
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FIGURE 6. Average F-measure curves of all the saliency methods on the four benchmark datasets. For sake of observation convenience, F-measure
curves of the 18 comparison methods are shown in two separate subplots and the F-measure curve of our method is shown in both subplots.

concerning the modeling efficiency, the proposed heuristic
alternating optimization algorithm can converge to a stable
solution after a few rounds of iterations. The time complexity
of each individual iteration process is O(2N + N log2 N ),
which mainly depends on the swarm particle number N
and meanwhile shows approximately linear relationship
with it. Also, it is worth noting that this dynamic search
process can be further parallelized to greatly reduce the
computational complexity. In this regard, our model has the
potential to facilitate real-time saliency related applications in
practice.

For some edge computing devices with less computing
resources, our method still has potentials to guarantee the
running efficiency on them. First of all, the search range
of the optimization problem lies in the low-dimensional
space spanned by the hyperplane variables, and thus the
search complexity is relatively low. Secondly, since the
best solution keeps moving towards better direction along
with iterations, the stop criterion can be alternatively
designed as the maximum iteration number so as to balance
between the running efficiency and quality of solution.
Finally, some algorithm hyperparameters, such as the particle
number, termination error, and semantic level, can be further
optimized and tailored to facilitate efficient application in
edge computing devices. Since no extra training is needed,
our model is especially suitable for the problems with limited
or no supervision data available. Below, we will apply our
saliency model to synthetic aperture radar (SAR) images for
fast target detection from wide scenes.

C. APPLICATION TO SAR TARGET DETECTION
With the advancement of SAR imaging techniques, high-
resolution SAR images are collected by carrying platforms
for detailed earth observation. Different from natural images,

SAR images generally have wide ground coverage and sparse
target distribution. Traditional target detection methods
follow the false alarm removal (FAR) idea to search for
targets and are usually daunting and exhaustive. Thus, there
is an urgent need to develop effective computer algorithms
for rapid target detection from wide SAR scenes. As an
intelligent perception mechanism, visual saliency can be
modeled to filter out redundant scene information and direct
the search towards regions of interest (ROIs). Its introduction
into the SAR image analysis will hopefully improve the target
detection performance. Inspired by this, we adapt our saliency
model to fit with the SAR images and develop a saliency
guided target detection approach. Specifically, the Pauli RGB
composition mode is used to generate the color-coded SAR
images from raw polarization data. SAR images covering sea
and land areas are used to verify the model performance in
real world applications.

Shown in Fig. 7(a) is a SAR image collected by
RADARSAT-2 spaceborne imaging platform on May
2008 near Vancouver, Canada. It covers a sea area of 3.2 km
by 6.4 km with 5 ships in the scene. Corner reflection from
the ship can be clearly observed in this image. We perform
saliency modeling to this scene and the corresponding result
is shown in Fig. 7(b). As can be seen, ship regions are
completely highlighted as ROIs along with their corner
reflections and some sea clutters. This bottom-up modeling
result is further filtered by top-down cognitive priors to
produce more accurate ship detection result. Here, we use
Otsu algorithm to binarize the saliency map and impose
morphological processing to get the final detection result
in Fig. 7(c). We can see that all the ships are correctly
detected from the scene and meanwhile few false alarms
exist, indicating a satisfactory ship detection performance of
our model. It is worth mentioning that our saliency model
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FIGURE 7. SAR ship detection results of our saliency model. (a) is the SAR
image collected by RADARSAT-2, (b) is the saliency modeling result, and
(c) is the detected ship targets.

FIGURE 8. SAR tank detection results of our saliency model. (a) is the SAR
image collected by X-SAR, (b) is the saliency modeling result, and (c) is
the detected tank targets.

can adapt to different data forms and possesses application
potentials in diversified scenarios.

Also, the SAR image in Fig. 8(a) is collected by X-SAR
spaceborne imaging platform on Oct. 2014. It covers a
wide range of land areas with 22 tanks in the scene.
Corner reflections from tanks can also be observed in this
image and the background appears more cluttered. The
saliency modeling result of our method on this scene is
shown in Fig. 8(b). As can be seen, despite the corner
reflections and land clutters, the tank regions are more
obviously highlighted in the result. Similarly, we successively
impose Otsu binarization and morphological processing to
the saliency map to get the final detection result in Fig. 8(c).
We can see that all the tanks are correctly detected from
the scene and meanwhile only a few false alarms occur in
the detection result. This further confirms the robust target
detection performance of our model in cluttered environment.
Developing intelligent algorithms for the interpretation of
SAR images is a promising research direction [47] and the
saliency model in this paper is a meaningful attempt towards
this goal.

IV. CONCLUSION
In this paper, we propose an unsupervised discriminative
metric learning model to jointly explore the multi-context
visual semantic separability and structured sparsity property
for robust salient object detection from complex open

world scenes. A novel discrete multi-objective constrained
optimization problem with hidden variables is established
for adaptive scene driven saliency modeling. Meanwhile,
we develop a hybrid intelligent optimization algorithm by
combining the idea of EPM and PSO for efficient optimal
feasible solution search. Extensive experiments on saliency
benchmark datasets demonstrate the superior performance of
our method to other classical saliency detection approaches,
especially in face of complex open world scenarios. Also,
the proposed saliency model is applied to wide SAR image
analysis for rapid target detection from remotely sensed data,
and promising results are obtained in typical ground areas.
Different from existing methods, the proposed model is not
restricted by specific rules or external data and possesses
unsupervised scene driven saliency learning capability.
In summary, we provide a more general and flexible learning
model for boosting the saliency detection performance in
complex open world problems. In the future, it is a valuable
research topic to develop customized unsupervised saliency
learning models to meet the demands of diversified scene
understanding.
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