
Received 10 November 2022, accepted 24 November 2022, date of publication 1 December 2022,
date of current version 6 December 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3225914

Unsupervised Segmentation of Human
Manipulation Movements Into Building Blocks
LISA GUTZEIT 1 AND FRANK KIRCHNER1,2
1Robotics Research Group, University of Bremen, 28359 Bremen, Germany
2Robotics Innovation Center, DFKI, 28359 Bremen, Germany

Corresponding author: Lisa Gutzeit (Lisa.Gutzeit@uni-bremen.de)

This work was supported by the German Federal Ministry for Economic Affairs and Energy (BMWi) under Grant FKZ 50 RA 1703
and Grant 50 RA 2023.

This work involved human subjects or animals in its research. Approval of all ethical and experimental procedures and protocols was
granted by the Ethics Committee of the University of Bremen, and performed in line with the Declaration of Helsinki.

ABSTRACT During the last years, new approaches were proposed in which robotic behavior is generated
by imitating human movement examples. This process can be sustainably simplified by an automatic
detection of the movement sequences which should be imitated. For this, automated approaches for human
movement segmentation are needed to avoid time-intensive manual data analysis. Suitable examples for
imitation learning are building block movements, which are basic movements that can be combined to
solve different tasks. Recently, we introduced the velocity-based Multiple Change-point Inference (vMCI)
algorithm, which automatically segments human demonstrations of manipulation movements into sequences
with a bell-shaped velocity of the hand which is said to be a characteristic feature of manipulation building
blocks. In this paper, the velocity of the hand as well as other features of human manipulation movements
recorded with a marker-based motion tracking system are evaluated with respect to their suitability to detect
segment boundaries of manipulation building blocks. Additionally, we perform a more intensive evaluation
of vMCI compared to the original publication by evaluating the algorithm on different manipulation
movement demonstrations recorded from several subjects and comparing the approach to other state-of-
the-art segmentation algorithms. The results support the assumption that the velocity of the hand is one
of the main features to detect segment boundaries in human manipulation movements and that the vMCI
algorithm can detect these segment borders online and unsupervised, also in movement recordings with a
noisy velocity.

INDEX TERMS Human movement analysis, movement segmentation, unsupervised segmentation, time
series segmentation.

I. INTRODUCTION
To realize a natural and intuitive interaction between humans
and robotic systems, the human behavior needs to be analyzed
and understood tomake a precise reaction of the system possi-
ble. For this, methods are needed to identify the current move-
ment as well as the intentions of the human. Suchmethods are
also of high interest in learning from demonstration (LfD)
applications in which human movement demonstrations are
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directly used to generate robotic behavior in an intuitive way
that does not require expert knowledge [1]. If a mapping
from human body positions to the robotic system is avail-
able, the demonstrations for LfD can directly be obtained
from human movement data, recorded for example, by using
marker-based motion tracking systems [2]. By segmenting
the recorded data, the movements of interest can be identi-
fied. Human movement segmentation is a challenging prob-
lem because in naturally performed behavior, the variations
in the execution of the same behavior can be big, even if
it is performed by the same person. By using automated
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segmentation approaches, which can handle inter-subject as
well as intra-subject variations, this process can be sustain-
ably simplified and accelerated.

In LfD, most state-of-the-art methods are monolithic
approaches in which one movement is learned that covers the
whole demonstration. This can be time consuming and for
complex behavior it even can be impossible. In humans, com-
plex behavior is learned incrementally by first learning simple
building blocks which are combined to complex behavior [3].
Graybiel refers to this principle as chunking of action reper-
toires [4]. If this is transferred to behavior learning in robotic
systems, i.e., movement building blocks are learned which
can be combined to execute various behaviors, more complex
robotic movements can be learned more effectively and the
learned building blocks movements can be recombined to
taskswhichwere not directly demonstrated by the human. For
this, movement building blocks must be identified, which are
central movement identities in different, but similar motions.

Although the generation of human arm movement it not
fully understood, several studies indicate that human move-
ment is generated based on a small number of building blocks,
often referred to as motor primitives [5]. These primitives are
described in the literature from the neuronal, kinematic and
dynamic perspective [6]. On the behavioral level, which can
be observed and recorded, e.g., by usingmotion tracking, reg-
ularities in the movement execution of the hand were inves-
tigated in several studies. In different experiments, a bell-
shaped hand velocity was observed in point-to-point as well
has curved hand motions [7], [8], indicating the relevance of
this feature for human armmotions. For this reason, we define
building blocks in this work as central elements in human
manipulation movements consisting of goal-directed hand
movements, which are characterized by a bell-shaped veloc-
ity profile of the hand.

An example of the characteristic velocity profiles in human
arm movements can be seen in in Fig. 1, which shows a
motion capture setup in which a stick is moved through a step
pattern. In the first movement recording, the stick is moved
fast through the pattern. At the corners, the participant natu-
rally slowed down the movement, which automatically sepa-
rates the demonstration into single point-to-point movements.
Each of these movements shows a bell-shaped curve in the
absolute velocity of the hand. In the second demonstration,
where the participant was introduced to hit the boundaries
as seldom as possible, the absolute velocity of the hand is
noisier, but still bell-shaped curves can be observed.With this
information, we aim to segment human manipulation move-
ments into movement building blocks with a bell-shaped
velocity profile.

To detect these building blocks automatically, we present
the probabilistic and unsupervised segmentation method
velocity-based Multiple Change-point Inference (vMCI). To
our knowledge, vMCI is the first unsupervised behavior
segmentation algorithm, which includes the characteristic
velocity pattern into the segmentation process to detect build-
ing blocks in manipulation movements. We introduced this

FIGURE 1. Example of bell-shaped velocity pattern in human
point-to-point movements. The subjects were instructed to move a stick
though a step pattern, starting at the lower right, going to the upper right
and backwards. The absolute velocity of the hand is visualized on the
right side. The positions of the corners are marked as green dots in the
left image and green dashed lines on the right side respectively. The
turning point of movement is indicated in red. The movement was
performed fast (right top) and precisely, i.e., with the intention to not hit
the boundaries. In both cases, bell-shaped curves can be observed in the
velocity of the hand for single point-to-point movements.

approach already in a previous publication [9], in which the
vMCI algorithm was compared to the Multiple Change-point
Inference (MCI) algorithm [10], on the basis of which
vMCI was developed, as well as to a segmentation method
called beta-process autoregressive Hidden Markov Mod-
els (BPARHMM) [11] and a method based on local min-
ima (locMin). The results showed that vMCI is robust
against noise, has a reduced influence of the selected hyper-
parameters, and can handle variations in movement execution
more efficiently than MCI, BPARHMM, and locMin. How-
ever, in [9] vMCI was only evaluated on artificial data and
a small real dataset consisting of 3 movement examples of
one subject of the point-to-point movements of the step setup
depicted in Fig. 1.

In this work, we present several data sets recorded using a
marker-based motion tracking system which captures marker
position with high precision and resolution where also small
variation in the movement can be detected. The datasets
contain simple point-to-point movements as well as more
complex demonstrations of throwing and pick-and-place
movements. For each movement, demonstrations of at least
3 subjects were recorded in order to cover inter-subject
as well as intra-subject variations. We first compare dif-
ferent movement features including the absolute velocity
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of the hand with respect to their suitability to character-
ize movement building blocks in point-to-point and pick-
and-place movements. Afterwards, we evaluate the vMCI
algorithm on the three datasets and compare it to MCI,
BPARHMM, locMin, and a more recent probabilistic seg-
mentation approach called ProbS [12]. These evaluations
are an extension compared to the experiments performed
in our previous publication to bigger datasets. With them
the performance of vMCI on different manipulation datasets
can be determined in comparison to other state-of-the-art
segmentation approaches.

This paper is structured as follows: First, a short overview
about related work is given, which is followed by the presen-
tation of the vMCI algorithm in section III. The process of
data generation, including data acquisition and the generation
of labeled ground truth is described in section IV. Afterwards,
the experiments regarding the feature analysis and the evalua-
tion of vMCI in comparison to other approaches are presented
(section V and VI). At the end, we discuss our work and give
a conclusion.

II. RELATED WORK
For a long time, most approaches to segment time series data
of human movements were supervised and required manual
segmentation of movement examples to generate training
data. An overview is given in [13]. In the last years, several
new approaches were proposed which can be run unsuper-
vised [14], i.e., manual efforts can be reduced and the meth-
ods are also applicable if the behavior segments are not know
in advance. Fod et al. presented a heuristic approach, in which
segment boundaries are detected using the angular velocities
of several degrees of freedom [15]. If these cross zero, the
start of a new movement segment is assumed. Similarly,
segments are identified based on ‘swings’ in the velocity of
joint angle data in [16]. In both approaches, thresholds need
to be defined in advance, which probably must be adapted for
different datasets.

Probabilistic approaches generalize to different movement
executions by integrating movement variations directly into
the model. With a predefined number of segments to be
detected, table tennis demonstrations were segmented using
a belief network in [17]. Kulić et al. automatically segmented
and clustered human motions based on HiddenMarkovMod-
els (HMMs) [18] and a method based on Hilbert space
embedding of distributions is presented in [19]. In both
approaches, full-body human motions are segmented online.

A probabilisticmodel, for which also the implementation is
available online, is presented in [11]. In this method, repeated
building blocks of the same movement are inferred using the
so-called beta process autoregressive HMM (BPARHMM).
Like in our proposedmethod, the segments are represented by
linear regressionmodels (LRMs). TheMultiple Change-point
Inference (MCI) algorithm presented by Fearnhead and Liu
uses Bayesian Inference to detect time points in which the
underlying LRM changes [10]. It was used in [20] to seg-
ment trajectories recorded by maneuvering a robot through

a corridor and is the basis for the segmentation approach
presented in this paper. In [12], a probabilistic segmenta-
tion approach called ProbS is presented, in which segmen-
tation points are inferred using expectation maximization
based on initially over-segmented data. The detected seg-
ments are represented using dynamical movement primitives
(DMPs; [21]), which is a popular representation of movement
demonstrations in LfD. Using this approach, it was possible
to automatically learn primitive movements that are needed to
assemble a chair with a robotic system from human demon-
strations. In the experimental evaluation, ProbS performed
better than BPARHMM on the examined datasets [12]. Other
approaches in the literature are used to detect periodic seg-
ments in videos, such as the P-MUCOS algorithm presented
in [22].

Most of the methods presented in the literature are evalu-
ated on small datasets of single subjects [14]. The approach
presented in this paper is evaluated on multiple datasets, each
containing movement data of different subjects in order that
the ability of the algorithm to generalize can be shown.

III. vMCI-ALGORITHM
The velocity-based Multiple Change-point Inference (vMCI)
is an algorithm which automatically detects the borders of
building blocks with a bell-shaped velocity in human move-
ment data. It is based on theMCI algorithm introduced in [10]
and was first published by us in [9]. An open source imple-
mentation is available online.1 In this section, we repeat the
main concept of vMCI with slightly adapted mathematical
notations.

A. DATA REPRESENTATION
In the vMCI algorithm, it is assumed that a data sequence
y = (y1, . . . , yT ) of length T , with yi = (ypi , y

v
i ) ∈ Rd+dv

being an observation at time point i with position informa-
tion of the observation ypi and its velocity yvi , consists of an
unknown number of segments with a bell-shaped velocity.
The segments are modeled independently of each other with
linear regression models (LRMs). In this manner, they are
represented as a weighted sum of basis functions with added
noise, see the schematic overview in Fig. 2. The position
information of a single segment yi+1:j, starting at time point
i+ 1 and ending at time point j, is represented as:

ypi+1:j =
q∑

k=1

βkφk + ε, (1)

with q basis functions φk , k ∈ {1, . . . , q}, model param-
eters β = (β1, . . . , βq), and independent and identically
distributed Gaussian noise ε with zero mean and variance
6. This model is identical to the data model in the MCI
algorithm [10]. To infer the model from the data, prior distri-
butions are set over the weights and the noise variance. The
parameters β are assumed to be matrix-normal distributed

1Open source implementation can be found here: https://github.com/dfki-
ric/vMCI_segmentation
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FIGURE 2. Schematic presentation of the Hidden Markov Model to detect
segment borders with vMCI. The observable data sequence y , consisting
of position yp and velocity yv , is generated by hidden models m and mv
separately for each segment. Segment borders are detected at positions
where the underlying models change, either to new models or the same
with different parameters.

with zero mean and covariances D and 6 along rows and
columns respectively. To ensure direct calculation of the pos-
terior probability of the data, conjugate priors are assumed.
This results in an inverse Wishart prior for the variance 6
with hyper-parameters ν and S.

To account for the bell-shaped velocity for each segment,
the velocity information yvi , which is the absolute velocity
in the direction of the movement, is in contrast to the MCI
algorithm modeled separately in vMCI with a basis function
φv that represents the bell-shaped structure. The basis φv is
defined as a single radial basis function with center c and
width r :

φv(xt ) = exp
{
−
(c− xt )2

r2

}
. (2)

The width parameter r is chosen to be half of the assumed
segment length, i.e., r = (j− i)/2, so that the whole segment
can be covered by the model. The center c regulates the
alignment to different velocity curves. For example, a center
location closer to the starting point of the segment allows to
approximate a segment with high velocity at the beginning
and rather low velocity at the end. In the vMCI algorithm,
different center positions are fitted to the observed data. These
centers are equally distributed over the segment length and
their number is predefined. During inference, the best fitting
model is determined.

With the basis φv, the velocity yvi is represented using:

yvi+1:j = α1φv + α2 + ε
v, (3)

with weights α = (α1, α2) and noise εv. Again,
weights and noise are matrix-normal distributed with α ∼
MN (0,Dv, 6v) and ε ∼MN (0, I , 6v). Dv and 6v are the
prior parameters. The prior distribution of6v is again chosen
to be inverse Wishart,6v ∼ IW(νv, Sv) to provide conjugate
priors. The model order is fixed to 2, with the two basis
functions φv and 1. The constant, weighted with α2, is added
to account for velocities unequal to zero at start or end of the
segment.

To determine the emission probability (see Fig. 2), the
likelihood of the data yi+1:j given model m and velocity
modelmv needs to be determined. As independent models are
assumed for the velocity and the position, the likelihood of
the data sequence p(yi+1:j|m,mv) given the model m of order
q and velocity modelmv, can be derived by marginalizing out
the model parameters β and α, i.e.,

p(yi+1:j|m,mv) =
∫
p(ypi+1:j|β,m)p(β) dβ

·

∫
p(yvi+1:j|α,mv)p(α) dα (4)

=

∫ ∫
p(ypi+1:j|β,6) · p(β|D, 6)

· p(6|ν, S) d6 dβ

·

∫ ∫
p(yvi+1:j|α,6v) · p(α|Dv, 6v)

· p(6v|νv, Sv) d6v dα. (5)

Due to the chosen conjugate priors for both LRMs, the inte-
grals can directly be solved resulting in

p(yi+1:j|m,mv) = (2π )−
nd
2
|M |

d
2

|D|
d
2

|S|
ν
2

|(yp)TPyp + S|
n+ν
2

·
0d ( n+ν2 )

0d ( ν2 )2
νd/2 · (2π )

−
ndv
2

·
|Mv|

dv
2

|Dv|
dv
2

|Sv|
νv
2

|(yv)TPvyv + Sv|
n+νv
2

·
0dv (

n+νv
2 )

0dv (
νv
2 )2

νvdv/2
, (6)

with M = (HTH + D−1)−1, P = I − HMHT used to
determine the model evidence for the position data yp and
Mv = (HT

v Hv + D−1v )−1, Pv = I − HvMvHT
v used to

determine themodel evidence for the velocity data yv. In these
notations H and Hv refer to the matrices of basis functions,
i.e., H = (φ1, . . . , φq) of shape n × q and Hv = (φv, 1) of
shape n × 2, with n defining the length of the segment, i.e.,
n = j − i. The matrix I is the n × n identity matrix and 0d
is the d-dimensional Gamma function. The derivation of this
formula for the general case can be found, e.g., in [23].

B. ONLINE INFERENCE OF CHANGE-POINTS
Using the model likelihood p(yi+1:j|m,mv), the segmentation
points in the data y as well as the underlying LRMs of the
observed data can be determined using an online Viterbi algo-
rithm presented in [10] whichwill be described in this section.
Here, a segmentation point is named change-point and refers
to a time point i in the series y where the underlying LRM
changes. The segment models are assumed to be independent
of each other and the change-point positions are modeled
via a Markov process, as depicted in Fig. 2. The transition
probabilities dependent on the segment length between two
change-points and are defined as:

P(next change-point at j|change-point at i) = g(j− i), (7)
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where g(l) is the probability of a segment having length l.
The cumulative distribution function of this length is given
by G(l) =

∑l
k=1 g(k). As proposed in [10], we assume a

geometric distribution for g(l), so that g(l) = (1−p)l−1p and
G(l) = 1− (1− pl). Using these distributions, the parameter
p regulates the expected segment length, which is 1/p.

For each time point t , the most likely change-point position
j prior to t and the most likely model of this segment from j
to t is calculated using an online Viterbi algorithm. This is
done by determining the posterior probabilities for each seg-
ment which ends at t and for all data models. The algorithm
calculates for each t > 0, j = 0, . . . , t − 1, and every model
m,mv ∈M:

Pt (j,m,mv) = (1− G(t − j− 1))p(yj+1:t |m,mv)

· p(m)p(mv)PMAPj , (8)

and

PMAPt = max
j,m

(
Pt (j, q)g(t − j)
1− G(t − j− 1)

)
. (9)

Equation (8) gives the probability that the most recent
change-point prior to t occurs at time jwith modelsm andmv
for the segment yj+1:t that has a length of at least t − j. The
first term is the probability that the assumed segment starting
at j + 1 has a length of at least t − j. It is multiplied with
the marginal likelihood of that segment having models m and
mv, p(yi+1:j|m,mv), times the prior probability of the models,
p(m) and p(mv). The last term PMAPt denotes the most likely
change-point position prior to j. In (9) the most probable j,
m, and mv are determined. We chose the initial PMAP0 to be
1/|M|. Because the probabilities Pt (j,m,mv) are very close
to zero for most of the possible segments, a particle filter as
proposed in [10] is used to reduce computation time.

IV. DATA ACQUISITION
For the evaluations done in this paper, several manipulation
movements were recorded with a Qualisys motion capture
system, consisting of seven Oqus300 cameras.2 With this
system, the positions of makers are tracked using infrared
light, with less than 1 mm deviation, at a maximal frame rate
of 500Hz. To track manipulation movements of a human,
markers were attached to the arm, hand, and back of the
subject. The positions can be seen in Fig. 3. At the back of
the hand as well as on the back of the subject a marker cluster
consisting of three markers were attached. With this, the
orientation of the hand and the back can be determined. Single
markers were used to record positions near the shoulder and
the elbow joint of the subject.

Three different manipulation movements were recorded at
500Hz from several subjects. In the first dataset, which we
call step-data, a stick was moved through a step pattern,
see Fig. 1. In this movement, the position of the hand is
very restricted, as the subjects have only little possibilities to
move the stick differently than on the straight line through

2www.qualisys.com

the pattern. Thus, the subjects are forced to do point-to-
point movements to go through the step pattern. Due to the
restricted movement position, the recorded movements can
be segmented into the main building blocks up, down, right,
and left, with ground truth segment borders at the corners
of the step pattern as indicated with circles in Fig. 1. The
movement through the step pattern was recorded for six
different subjects. Each subject performed several repetitions
of the movement, where the task in one repetition was to
move the stick from lower left of the pattern to the upper right
and back, resulting in eight point-to-point movements. This
was repeated several times for roughly three minutes with a
short break after each minute. The subjects were instructed to
perform the movement as precisely as possible, i.e., without
hitting the borders, while moving as fast as possible. In total,
171 repetitions of the movement were recorded, which corre-
sponds to 1368 movement building blocks.

Two additional datasets were used for evaluation in this
paper, which consist of movement sequences where the
subjects had more freedom in movement execution. The
stick-throwing movements were previously used as demon-
strations for imitation learning in [24]. In these movement
recordings, the subjects were instructed to throw a stick into
a cylindrical box from a fixed distance, see Fig. 3. The
throwing movements from three subjects were recorded with
the subjects performing the throw 10, 11, and 13 times respec-
tively. Each throw consisted of a strike out phase, the actual
throwingmovement, and a swing out phase. In between, short
sequences of no movement could be observed. Thus, the
throwing data can be divided into four movements classes. In
total, 34 throwing demonstrations were available containing
126 movement building blocks.

In the pick-and-place dataset, which was previously used
to evaluate movement classifiers in [25], the subjects grasped
a box from a shelf, placed it on a table standing on the right
side of the subject, and placed the box back into the shelf.
This dataset was recorded at 60Hz. To increase movement
variability, the exact position where the box should be placed
was not specified. After placing the box on the table or the
shelf, the subject moved the arm into a resting position in
which the arm lies relaxed besides the body. This resulted in
movements composed of seven different segments assigned
to the following movement categories: approach forward,
move object to table, move to rest right, approach right,
move object to shelf, move to rest down, and the class idle
for periods in which the subjects did not move their arms.
The pick-and-place task was performed by three different
subjects, repeated nine times by one of these and six times
by the other two. In total, 172 pick-and-place building blocks
were recorded. In [25], the vMCI algorithm was used to
segment these demonstrations, but without comparing the
results to a manually generated ground truth.

All movement data was conducted in accordance with the
declaration of Helsinki and approved with written consent by
the ethics committee of the University of Bremen. Subjects
gave informed and written consent to participate.
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FIGURE 3. Setups for movement recordings. Left: Setup for stick-throwing recordings. (Image extracted
from [24].) Right: Pick-and-place task, in which a box is grasped from a shelf, placed on a table, and vice
versa. (Image adapted from [25].)

A. MANUAL SEGMENTATION
In order to analyze different features of the recorded move-
ments and to evaluate the automatic segmentation, a ground
truth segmentation is needed. Whereas this ground truth seg-
mentation comes naturally with the position of the stick in
the step-data, it becomes more difficult to determine exact
segment borders with increasing movement complexity. For
labeling recorded movement trajectories manually, a time
series visualization tool was implemented at our institute.
With this tool, the 3D position of the markers can be visu-
alized as time series in a two-dimensional plot, which is
synchronized to a 3D visualization of the marker positions.
The tool allows to directly define segmentation points in the
time series by clicking on the time frame at which a segment
border is assumed. By using this labeling tool, all recorded
movements were manually segmented by the same person to
generate a ground truth for the evaluations in this paper.

For the step-data, the segment borders coincidence with the
corners of the step pattern, which segments the data into the
movements up, down, right, and left. The stick-throwing and
pick-and-place data were segmented into individual segments
referring to the four and seven different classes contained in
the movements as described in the previous paragraph. Please
note that all movements were manually segmented solely
based on the visualization of the positions of the markers.
With increasing complexity in terms of increasing movement
freedom, the movement borders were more difficult to deter-
mine which may have resulted in an imperfect ground truth
segmentation.

V. COMPARISON OF FEATURES FOR MANIPULATION
BUILDING BLOCKS
Experiments in the literature indicate that in human arm
movements bell-shaped curves in the velocity of the hand
are a characteristic feature of movement segments [7],
[8]. We used the data recordings of the reference step

pattern and the pick-and-pace data to examine this theory
on movement data recorded at high precision. Using the
position-based visualization, the point-to-point movements
of the step pattern and the pick-and-place movements were
manually divided into the 4 and 7 movement building blocks
as described in the previous section. Parts of the movement
which could not be assigned to one of the building block
classes remained unsegmented and were not considered for
further analysis. For all movement segments, the following
features were calculated from the recorded marker positions:
1. hand velocity in x, y, and z direction; 2. absolute velocity of
the hand; 3. elbow joint velocity calculated using the temporal
derivative of the elbow joint position, which is determined
using the angle between lower and upper arm; and 4. shoulder
joint velocity calculated using the temporal derivative of the
shoulder joint position, which is calculated using the angle
between upper arm and upper body. The features of all seg-
ments were normalized to the same time period between 0 and
1 seconds. For all segment features belonging to the same
movement class, the mean value and its standard deviation
were calculated. This mean feature value of each class is
visualized to determine similarities and differences in the
features of the different manipulation movements.

The resulting plots for the point-to-point movement build-
ing blocks are shown in Fig. 4. In these plots, the 2D position
of the hand is visualized as well as the mean values of the
four calculated features. Each segment class is performed two
times in one demonstration of the step pattern movement.
Additionally, the reference setup was located at different
positions in the global coordinate frame for individual move-
ment recordings, so that movements belonging to the same
movement class can be located at different positions (first
column in Fig. 4). Based on the direction of the movement,
the highest velocity can be observed in a different coordi-
nate of the hand position. For some movement classes an
increasing elbow joint velocity can be observed. In the up
and down movements, the main change in the velocity is in
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FIGURE 4. Different features of the point-to-point movements in the reference testbed shown in Fig. 1. Shown is the mean value and
standard deviation of the point-to-point movements right, up,down, and left(columns 1-4) for the movement features: hand velocity in
x, y, and z direction (lines colored in green, blue, and magenta), absolute hand velocity, elbow joint velocity, and shoulder joint velocity.
In the first column the position of all analyzed segments is plotted. The only feature that looks similar for all movements is the absolute
hand velocity, which is a bell-shaped curve.

the y coordinate of the hand and in the elbow joint velocity.
A change in the x coordinate of the hand can be observed
in the movements belonging to the classes right and left,
without an increasing elbow joint velocity. The only feature
that looks similar for all movement segments regardless of
the position and direction of the performed movement is the
absolute velocity of the hand.

The visualization of the features for the pick-and-place
movements can be seen in Fig. 5. In comparison to the point-
to-point movements, these movements are three-dimensional
and not restricted in the position of the hand. The partic-
ipants were free in the selection of the exact position to
place the box on the table or shelf. This resulted in more
variety in movement execution. Nonetheless, the common
feature for all building blocks of the pick-and-place task
is the bell-shaped pattern in the absolute velocity of the
hand, whereas the angular velocity of the elbow and shoulder
joint differ between building block movements. Especially
the elbow joint velocity shows multiple minima within one
movement class, which would result in an over-segmentation
if segment borders would be assumed at points where this
angular velocity isminimal. However, compared to the simple
point-to-point movements, the absolute hand velocity shows
more variations for different building blocks in the pick-and-
place movements with the main impact that the velocity peak
is for some movement classes clearly shifted to one side, for
example for themove object to shelf class. These variations in
the bell-shaped absolute velocity are considered in the vMCI
algorithm by the parameters c and r in (2).
These observations support the assumption that manipu-

lation building blocks may be characterized using the abso-
lute velocity of the hand. As shown in the next section,

segmentation based on these findings improves segmentation
accuracy.

VI. EXPERIMENTAL EVALUATION OF MOVEMENT
SEGMENTATION
The vMCI algorithm was already evaluated with respect to
the segmentation accuracy in the presence of noise in the data
and to the influence of the parameter selection in comparison
to a segmentation method based on local minima (locMin),
the MCI, and the BPARHMM algorithm on a synthetic
dataset and three real human movements of one subject in
the restricted environment of the reference step setup in [9].
Additionally, the vMCI algorithm was run on ball-throwing
movements in the same publication without a comparison
to a ground truth segmentation. In this paper, we extend the
evaluation of the vMCI segmentation on movement examples
of the reference setup using a bigger data set consisting of
multiple demonstration of different subjects as introduced
in section IV. Next to the comparison to MCI, locMin, and
BPARHMM, we additionally compared vMCI to the ProbS
algorithm, which is a promising segmentation technique
published recently. The algorithms were first evaluated on
movement recordings in the restricted environment of the
step reference setup, consisting of point-to-point movements
with only little variation in the position between different
recordings but with noisy velocity patterns. Additionally,
we evaluated all approaches on the stick-throwing data which
have a very smooth velocity but with higher variations in
the positions between recordings and on the pick-and-place
data. We compared the algorithms using the F1-score, which
is the harmonic mean of precision and recall. Additionally,
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FIGURE 5. Different features of the pick-and-place movements. Shown is the mean value and standard deviation of the
pick-and-place movements approach forward, move object to table,move to rest right, approach right, move object to shelf,
and move to rest down (columns 1-6) for the movement features: hand velocity in x, y, and z direction (lines colored in green,
blue, and magenta), absolute hand velocity, elbow joint velocity, and shoulder joint velocity. In the first column the position of
all analyzed segments is plotted. The only feature that looks similar for all movements is the absolute hand velocity, which is a
bell-shaped curve.

we investigated the number of true positives (TP) and false
positives (FP) in more detail to deduce how many of the
segments contained in the data are correctly detected by the
methods.

In all experiments, the basis functions φ of the LRM in
vMCI, MCI, and BPARHMM were chosen to be autoregres-
sive with order q = 1, i.e., φ(xt ) = yt−1. For this, the
data was preprocessed to a mean of zero and such that the
variance of the first order differences of each dimension is
equal to 1. This preprocessing was not done for the velocity
dimension if vMCI was used. The parameter for the distribu-
tion of the segment length p in the MCI and vMCI algorithm
was fixed to p = 0.02 because it has a small influence on
the segmentation results due to the Bayesian model of the
algorithm [9]. The parameter D, which regulates the variance
of the model parameters β along the data dimensions, was
set to the identity matrix. This is a good choice because an
autoregressive basis is chosen and the data is preprocessed
to a variance of one. The parameters S and ν influence the
variance of the weights as well as the Gaussian noise of
the LRM along the time dimension. These parameters can
directly be calculated from the data to estimate the true vari-
ance by determining the variance of the first order differences
of the data along the time dimension. As shown in [9], these

hyper-parameters have only little influence on the segmen-
tation result. In the vMCI algorithm, the number of centers
was fixed to three and the hyper-parameters were calculated
identically to the ones of the position LRM from the velocity
data.

To run BPARHMM, next to the selection of the basis
function and corresponding hyper-parameters, several other
hyper-parameters must be set in advance. We used the same
hyper-parameter configuration for all datasets based on the
suggestions made in [11]. The sampling algorithm was run
5 times, with 5000 iterations each. To compare to ProbS,
we implemented the probabilistic segmentation based on the
formulas given in [12]. In this algorithm, the data is repre-
sented using DMPs. Based on an initial over-segmentation
the algorithm infers the number and parameters of the DMPs
needed to generate the observed data. We used locMin to
generate the initial over-segmentation. Due to the computa-
tionally intensive inference steps, we limited the number of
iterations to 50 and run the algorithm separately for demon-
strations of each subject. The locMin approach detects a seg-
mentation point at positions where a local minimum occurs
in the velocity in a predefined window [9]. This window was
varied for each dataset and the margin with the best result was
selected for the final evaluation.
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TABLE 1. Mean segmentation results on step pattern movements.

A. SEGMENTATION OF POINT-TO-POINT MOVEMENTS
For the automatic segmentation of the step data, the recorded
movements were down-sampled to 30Hz. In the locMin
approach, the window size was set to 0.27 seconds and
for pre-segmentation in ProbS the window size was set to
0.13 seconds to achieve an over-segmentation. All other
parameters of the compared algorithms were selected as
described in the previous paragraph.

The results of evaluated algorithms can be seen in Table 1,
in which the mean F1-score, TP, and FP are shown. The
mean values were determined using all 171 demonstrations
of going through the step pattern upwards and back, resulting
in an optimal segmentation into eight building blocks which
corresponds to an optimal number of true positives of seven.
A determined segmentation point was treated as correct when
it laid within a margin around the ground truth segmenta-
tion point of 0.2 seconds. The dataset contained examples
with very smooth velocity changes as well as noisy velocity
profiles. An example result of the segmentation using the
different approaches on a sample with noisy velocity is shown
in Fig. 6.

Using the simple locMin approach, all segmentation points
could be detected in all movement examples, but with a mean
value of 3.7 FP. The lowest number of FP was achieved using
vMCI, which detected on average 6 segmentation points with
1 FP. With this, the vMCI algorithm had the highest F1-score
on this dataset and outperformed all other approaches,
whereby locMin and BPARHMM over-segmented the data.
ProbS was not able to detect the segmentation points at all,
possibly because there was only little variation in movement
execution in the data, i.e., nearly the whole demonstration can
be represented by the same DMP. However, on movement
examples with a noisy velocity, ProbS over-segmented the
data, see the example in Fig. 6. In this experiment, vMCI
achieved a perfect segmentation despite the noise in the
velocity. However, this noise resulted in an over-segmentation
using locMin, ProbS and BPARHMM.

B. SEGMENTATION OF STICK-THROWING MOVEMENTS
On the stick-throwing dataset, the same parameters config-
urations were used as for the step data for vMCI, MCI,
BPARHMM, and ProbS. The window for locMin was set to
0.2 seconds and 0.07 seconds for initial over-segmentation
needed in ProbS.

The mean segmentation results for all algorithms can be
seen in Table 2. For this dataset, the optimal number of TP is
3.7, i.e., the throwing movements are on average segmented

FIGURE 6. Example demonstration of a movement through the step
pattern, consisting of the building block sequence right, up, right, up,
down, left, down, left. Shown is the absolute velocity (solid line) and the
position (x,y,z - dashed/dotted lines) of the hand. The top left plot shown
the manual segmentation result. The other plots show the result of vMCI,
MCI, locMin, ProbS, and BPARHMM, in which the data which is used as
basis for segmentation is plotted (position and/or velocity).

TABLE 2. Mean segmentation results on stick-throwing movements.

into the three main building blocks strike out, throw, swing
out, and some occurrences of additional segments. Again, the
highest number of detected TP was achieved using locMin
and the lowest number of FP using vMCI, where both algo-
rithms have a similar F1-score of approximately 0.7. With
that, vMCI, and locMin outperform all other approaches.
On this dataset, in which nearly no noise can be observed,
BPARHMM and locMin again detected some FP, but not as
much as on the step-data. Again, ProbS does not performwell
on this data. An example result can be seen in Fig. 7.

C. SEGMENTATION OF PICK-AND-PLACE MOVEMENTS
To segment the pick-and-place dataset, the recorded data was
down-sampled to 20Hz, because in this dataset the move-
ment were on average much slower (mean segment length
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FIGURE 7. Example demonstration of a stick-throwing movement,
consisting of the building blocks strike out, throw, and swing out. Shown
is the absolute velocity (solid line) and the position (x,y,z - dashed/dotted
lines) of the hand. The top left plot shown the manual segmentation
result. The other plots show the result of vMCI, MCI, locMin, ProbS, and
BPARHMM, in which the data which is used as basis for segmentation is
plotted (position and/or velocity).

of 1.3 seconds) compared to step dataset (mean segment
length of 0.82 seconds). The parameters for vMCI, MCI,
BPARHMM, and ProbS were identical to the ones in the
previous evaluations. The range in which the minima are
detected in locMin was set to 0.2 seconds and 0.1 seconds
for the initial over-segmentation in ProbS. Due to the slower
movement speed, the margin in which a detected segmenta-
tion point is still treated as correct is increased to 0.3 seconds.

This dataset has a bigger movement variability compared
to the other two datasets and the ground truth segmentation
was more difficult to manually define. Due to rather slow
movements when the object is grasped or placed, the exact
movement start and end point were difficult to determine
based on the position of the hand. If the subject did not
move or did a movement which was not part of the defined
movement classes, the segment borders were still added to the
ground truth data. To accomplish the pick-and-place tasks,
the subject had to perform 6 basic movements: approach for-
ward,move object to table,move to rest right, approach right,
move object to shelf, move to rest down. In between there
are idle phases. The average number of manually defined
segmentation points per demonstration was 8.1.

TABLE 3. Mean segmentation results on pick-and-place movements.

As can be seen in the results in Table 3, most TP could
be detected using BPARHMM and locMin, but with a high
number of FP using BPARHMM. On this data, vMCI seg-
mentation resulted in a higher number of FP compared to the
other two datasets. If the results on the individual demonstra-
tions are examined more closely, one can observe that vMCI
detected most of the segments but with a very inaccurate
position of the segment boundaries, which lie often outside
the margin of 0.3 seconds. This can also be seen in the
example result in Fig. 8. Again, the segmentation points could
not be reliably detected using ProbS.

VII. DISCUSSION
In the comparison of several features in human point-to-point
and pick-and-place movements in section V, a bell-shaped
curve in the absolute velocity of the hand was identified as
a feature which was identical for all movement segments,
independent from the movement direction. In the experi-
mental evaluations of vMCI run on the same point-to-point
movements of the step reference setup (section VI-A) it can
be seen that vMCI was able to detect these segments with
bell-shaped hand velocity. Also in movement examples with
a very noisy velocity, the majority of the true segmenta-
tion points were detected using vMCI. This confirms the
results we obtained on a small number of demonstrations
of the step setup of one subject in our earlier publication.
Based on the velocity features, segmentation points could
also reliably be detected using locMin. In comparison to
vMCI, the resulting segment borders were more accurate
because they are located directly a time points where the
velocity was in a local minimum. However, the threshold
in locMin needs to be adapted to different datasets or even
different movement examples of the same tasks executed in
different speeds. Furthermore, in data with a noisy velocity
profile locMin over-segmented the data and detects a lot of
false positives. By using vMCI, this over-segmentation can
be prevented without an additional preprocessing, such as
smoothing.

In the evaluation performed on the stick-throwing and pick-
and-place data, vMCI again yielded good results and detected
the majority of the segmentation points correctly. The ground
truth segmentation points were determined based on the
recorded marker positions and the vMCI approach detected
these based on the position and velocity of the hand marker.
In thesemore complexmanipulationmovements compared to
the point-to-point movements, building blocks could still be
detected based on the bell-shaped velocity of the hand using
the vMCI approach.
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FIGURE 8. Example demonstration of the pick-and-place movement,
consisting of the building blocks approach forward, move object table,
go to rest right, approach right, move object shelf, move to rest, with
small periods of no movement in between (building block idle). Shown is
the absolute velocity (solid line) and the position (x,y,z - dashed/dotted
lines) of the hand. The top left plot shown the manual segmentation
result. The other plots show the result of vMCI, MCI, locMin, ProbS, and
BPARHMM, in which the data which is used as basis for segmentation is
plotted (position and/or velocity).

In all analyzed movements, but especially in the pick-and-
place data, vMCI detected some segment points inaccurately,
resulting in a lower number of TP with increasing number
of FP. However, the total number of detected segments was
nearly the same as the manually defined number of segments
in all experiments. This indicates that the data is not over-
segmented using vMCI.

On all three datasets, vMCI performed better than the MCI
algorithm which does not model the velocity dimension of
the data differently than the position. This also applies to
the comparison to BPARHMM, which models the data in a
very similar data as vMCI and MCI but does not have the
special look at the velocity. Using BPARHMM, also good
results could be achieved but the algorithm is more sensitive
to noise. Furthermore, it is a batch method which needs a lot
more computation time and cannot be run online.

In the performed experiments, we were not able to achieve
good results using our implementation of the ProbS algo-
rithm. Although it was shown in [12] that the algorithm con-
verges, this could not be achieved in a reasonable time period
in our evaluations and calculations had to be stopped after

a fixed number of iterations. On all observed movements,
only unsatisfying results could be obtained on most of the
movement examples using this method. Possibly, this results
from the design of the algorithm which identifies a set of
basic movement the analysed demonstrations are generated
from. In the experiments of Lioutikov et al, the algorithm was
tested on movement demonstrations which contain different
combinations of a small number of basic movements. In that
data, ProbS successfully identified basic movements [12].
Our datasets, on the other hand, contain repetitive demonstra-
tions of the same manipulation movement without changes
in the order of the concatenated building blocks. Our results
indicate, that ProbS is not suited to segment this kind of
data. However, BPARHMM and ProbS give not only the
segmentation points but also clustered segments that describe
which segments belong to the same movement. For vMCI,
a successive step is needed to obtain grouped or labeled
segments. Due to the simple structure of the building blocks
detected using vMCI, we showed that labeled segments can
be obtained using a simple k-Nearest Neighbor classifier with
k = 1 and a small number of training examples, see [26].

VIII. CONCLUSION
In this paper, we complemented experiments conducted in
related publications and showed that the velocity of the hand
is a relevant feature to characterize building blocks in human
manipulation movements. We presented the vMCI algorithm
which detects these building blocks with a bell-shaped profile
in the hand velocity in an unsupervised and online manner.
In vMCI, this knowledge about characteristics of manipula-
tion movements is directly integrated into the segmentation
process. Evaluations performed on different manipulation
datasets showed that building blocks can reliably be detected
using vMCI, also in movement examples with a noisy veloc-
ity. In comparison to other state of the art segmentation
methods, segmentation points can be determined fast and
the algorithm can be applied to different movements without
parameter tuning.

Because the bell-shaped velocity is a movement feature
that can mainly be observed in manipulation movements, the
vMCI approach works best on this kind of data. In other
movements, such as gestures or generative movements such
as walking, building blocks may show different reoccur-
ring patterns. To detect building blocks in these movements,
other approaches may be needed. Furthermore, vMCI is
designed for single-handedmanipulationmovements. To seg-
ment dual-arm movements into meandingful building blocks,
vMCI was extended to a hierarchical segmentation approach
in [27].

Overall, our experiments show that automatic approaches
for movement segmentation can benefit from taking regu-
larities in human movements into account. For future work,
it should be evaluated if the resulting manipulation build-
ing blocks can be used in robotic applications to gener-
ate different behaviors using learning from demonstrations.
First applications already show that meaningful goal-directed
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robotic movement can be generated using the building blocks
obtained using vMCI [2].
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