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ABSTRACT Using a laser for cutting bones instead of the traditional saws improves a patient’s healing
process. Additionally, the laser has the potential to reduce the collateral damage to the surrounding tissue
if appropriately applied. This can be achieved by building additional sensing elements besides the laser
itself into an endoscope. To this end, we use a microsecond pulsed Erbium-doped Yttrium Aluminium
Garnet (Er:YAG) laser to cut bones. During ablation, each pulse emits an acoustic shockwave that is captured
by an air-coupled transducer. In our research, we use the data from these acoustic waves to predict the depth
of the cut during the ablation process. We use a Neural Network (NN) to estimate the depth, where we use
one or multiple consecutive measurements of acoustic waves. The NN outperforms the base-line method
that assumes a constant ablation rate with each pulse to predict the depth. The results are evaluated and
compared against the ground-truth depth measurements fromOptical Coherence Tomography (OCT) images
that measure the depth in real-time during the ablation process.

INDEX TERMS Acoustic feedback, depth control, laser ablation, neural network.

I. INTRODUCTION
Reducing the trauma of a patient during surgical procedures is
paramount in improving the post-surgical standard of living.
Consequently, minimally invasive alternatives to common
interventions are a highly researched topic [1], [2]. One
line of inquiry is the replacement of mechanical tools with
laser-based ablation [3], [4], [5], [6], [7].

When the tissue is exposed to microsecond pulsed Er:YAG
laser light, the water in the tissue heats up, vaporizes, and the
expansion causes micro-explosions that ablate a small part
of the tissue [8]. This process emits an acoustic wave that is
captured by a transducer [9].
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In contrast to classical mechanical cutting tools, laser abla-
tion does not provide direct haptic feedback on the progress
of the cut to the surgeon. Furthermore, the laser system
occludes the cutting location and impedes visual inspection.
With the development of new tools that assist the surgeon in
monitoring the depth of the cut, damaging sensitive tissue can
be avoided.

A classical method to measure the cutting depth would
be using an OCT [10], [11], [12], [13]. However, it can
be challenging to integrate an OCT in combination with an
Er:YAG laser for minimally invasive surgery. To this end,
we propose an acoustic depth measurement technique that
uses the acoustic wave created during the ablation process
to determine the depth of the cut.

When the location of the ablation source is known, the
depth of the cut can be estimated via various approaches. One
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approach is to triangulate the source [14], [15], [16]. How-
ever, this approach requires multiple transducers to determine
the source location. A different approach uses acoustic waves
in a 2D simulation to detect the source position using just two
transducers [17]. The main limitation of this approach is that
the exact acoustic wave generator (form and the frequency
composition of the source) has to be known. In another 2D
simulation, the source position and its form were recon-
structed in an unknown surrounding [18]. However, many
transducers are required for the reconstruction, making this
approach unsuitable for minimally invasive surgery.

There are several ways to determine the distance between
an acoustic source and the transducer. One option is to
estimate the time-of-flight (ToF). For example, in [19], the
authors used auto-correlation between the transmitted and
echoed signal. In [20], they exploited the phase shift between
transmitting and measured signals. However, in our applica-
tion, the source signal shape is unknown, and the signal may
even change for different depths. In [21] and [22], the authors
showed that the ToF correlates with the signal’s distance and
decay when ablating tissue with an Er:YAG laser and in [23],
they used ToF to estimate the depth of the ablation with a
Neodymium-doped Yttrium Aluminium Garnet (Nd:YAG)
laser. However, the ToF option has a significant drawback.
It requires the distance between the transducer and the bone
surface to be constant, and the medium velocity of the ablated
tissue must be known. As this can not be guaranteed in
our envisioned application of robotic-guided laser osteotomy,
we focus on different approaches to estimate the depth of the
laser cut.

Since the use of Neural Networks [24] is well established
in medical imaging [25], [26], [27], [28], speech, and signal
processing [29], [30], [31], [32], we aim to estimate the
ablation depth by interpreting the signal from one single
air-coupled transducer with a neural network. We compare
two approaches: The CA is used as a base-line approach,
where we assume that the ablation rate per pulse is constant,
and therefore, the depth is proportional to the number of
ablation shots. The second approach uses one or multiple
consecutive measurements of the acoustic waves during the
ablation process. These acoustic waves are then used as input
for an NN to predict the depth of the laser cut.

The goal of this work is to analyze the acoustic wave and
to prove that there is depth information in the acoustic wave
produced during the ablation process of the bone using the
Er:YAG laser. In addition, we can show that one transducer
is sufficient to measure the depth of the laser cut, simplifying
the complexity of the setup in future work.

II. MATERIAL AND SETUP
An Er:YAG laser (Syneron Candela, litetouch LI-FG0001A)
with an energy of 153mJ, a wavelength of 2940 nm,
with a repetition rate of 10Hz, is used for ablating
the bone. The ablation process emits an acoustic wave.
A CaF2 mirror diverts a small percentage of the laser
beam to a PbSe photodiode (PbSe Fixed Gain Detector,

PDA20H, 1500− 4800 nm), to trigger the acoustic measure-
ment. The wideband transducer,1 with a frequency range
of 100− 1000 kHz and a resonant frequency at 650 kHz,
measures acoustic signals with a sample rate of 7.8125MHz.
It is placed at a distance of approximately 5 cm to the bone
surface. The setup is displayed on the left of Fig. 1. We note
that due to the limited acquisition rate of our setup, and the
high repetition rate of the laser, we can only measure the
acoustic wave of every second laser pulse.

A custom-made dichroic filter reflects the wavelength of
the Er:YAG laser and transmits the OCT’s wavelength, there-
fore, integrating the Er:YAG laser into the OCT system in
a co-axial configuration. Consequently, we can monitor the
ablation depth with a long-range Bessel-like beam OCT sys-
tem [33] in real-time. The OCT has an imaging half-range
of 22.21mm in air and a field-of-view of 4.2mm. The OCT
system uses a swept-source laser (Insight Photonic Solution,
Inc., Lafayette, Co, USA), with a scan rate of 104.17 kHz,
a central wavelength of 1288.82 nm, and spectral bandwidth
of 61.5 nm.

We used 13 cow femur bones as ablation material, bought
in a local grocery store. The height of the bone varied between
2.4 cm to 2.9 cm.Muscle, fat, bonemarrow, and tendons were
carefully removed from the hard bone. To avoid dehydration
of the bone, we submerged the samples in water between
experiments.

We conducted our experiment by ablating a maximum of
nine holes in each bone, each reaching a depth of up to
3.5mm. The ablation process was stopped when we noticed
that the cutting depth stagnated, i.e. if the bone started car-
bonizing. Bone carbonizes when insufficient water is in the
tissue; hence, no micro-explosions remove the tissue, and the
laser energy accumulates heating up the tissue. An exemplary
bone is shown on the right of Fig. 1.

Since the frame rate of the OCT is 173.6167Hz and the
repetition rate of the laser is 10Hz, we have a fixed number of
OCT frames between the laser pulses. Therefore, we can align
the OCT frames to the corresponding acoustic waves emitted
during bone ablation. To generate a ground truth depth for
each measured ablation wave, we locate the first pulse of
the ablation in the OCT image stream. Then we labeled the
2443 OCT images by marking the bone’s edge and the cut’s
end (see Fig. 2). We deduced the depth of the cut using the
pixel resolution of the OCT of 10.86µm.

III. METHOD
To assess the performance of our approaches, we divided
our data into three mutually disjoint subgroups: training data,
validation data, and testing data. Each bone was only part of
one of these groups. Five-fold cross-validationwas conducted
to demonstrate the performance of the approach.

We investigated two approaches: (1) the first approach CA
assumes that the ablation rate of the laser is constant, and

1PHYSICAL ACOUSTICS WSα SNAK28
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FIGURE 1. (Left) the setup of our experiment. Laser light ablates the bone while the air-coupled transducer measures the acoustic wave.
The laser beam gets split at mirror 1, and a small percentage of the laser beam is redirected to the photodiode. The photodiode triggers the
acquisition of the acoustic wave with the transducer (distance to the bone: 5 cm at a 45◦ angle to the ablation). Further, the laser light is
diverted with mirror 2 (a custom-made dichroic filter that reflects the wavelength of the Er:YAG laser and transmits the OCT’s wavelength)
onto the bone for the ablation. At the same time, the OCT measures the depth of the ablation. (Right) an exemplary bone with nine holes
after the ablation process.

FIGURE 2. Exemplary OCT images, where we manually labeled the image after 10, 35, and 60 ablations. These corresponds to the depth of
0.5mm, 1.9mm, and 3.1mm.

therefore when counting the number of shots, it can predict
the depth of the laser cut. The ablation rate is estimated by the
median value of the ablation rate of the training and validation
data, and its performance is evaluated on the testing data.
(2) In the second approach, we use a NN to predict the depth
using the acoustic ablation waves.

A. NEURAL NETWORK (NN)
As the distance between the surface of the bone and the
transducer can vary, all approaches using the ToF to estimate
the cutting depth are of limited use. Furthermore, we wish
to investigate if the depth information of a cut is embedded
in other parts of the acoustic signal (excluding the ToF);

hence, we removed this information by cropping the signal as
follows: First, we identified the maximum absolute value of
the first 500 sample points (the time window of 64µs). Then
we used 1.5 times this value as a noise threshold to remove
the first part of the signal that only contained noise and no
signal from the ablation (see Fig. 3, top left): We removed all
sample points before the absolute value of the acoustic wave
that first exceeded this threshold (see Fig. 3, top right, red dot)
and solely used the window after that point (see Fig. 3, bottom
left). In the final step, we normalized the area of interest of
the acoustic wave w with:

w =
w∗ − w̄
σw

(1)
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where w̄ is the mean value and σw is the standard deviation of
the preprocessed acoustic wave w∗ (see Fig. 3, bottom right).
To reduce over-optimization during training, we applied

non-linear scaling of the wave amplitudes as data augmen-
tation: Each sample point of the acoustic wave w was scaled
by the formula

ŵ = w · (1+ λ · exp[|w|]) (2)

with λ a uniformly distributed random scaling factor.
As an input for the NN, we tried three different variants;

namely, one, five, or ten consecutively measured acoustic
signals as the input to the NN1, NN5, and NN10, respectively.
The Output of the NNs was a single value corresponding to
the depth of the laser cut in [mm] from the latest measurement
from the input.We trained the network using theMean Square
Error Loss (MSELoss):

LMSE (x, y) =
1
NB

NB∑
i=1

(xi − yi)2 (3)

where x = (x1, . . . , xNB ) is the output of the NN and
y = (y1, . . . , yNB ) is the label, that we labeled manually using
the OCT images (see Section II and Fig. 2), and NB is the
batch size.

B. HYPERPARAMETER SEARCH
We use a hyperparameter search [34], [35] approach with five
consecutive acoustic waves to find an initial network with
the following search constraints, as visualized in Table 1.
The input size, which correspond to the number of sample
points, varies between 2000, 3000, . . . , 7000. The numbers
of convolutional and fully connected layers vary between
1 and 9. The parameters of the convolution layers can get the
following values: Each output channel can allocate a value
of 2n, where n varies between n = 1, . . . , 8,, the kernel size
varies between 2 and 5, and the stride is 1 or 2. In addition, the
maxpool kernel is 2 or 3 with a stride of 1 or 2. Batch normal-
ization is applied randomly before any layer, and dropout is
randomly applied to the fully connected layers with a dropout
rate between 0 and 1. The number of neurons of the fully
connected layer is min(2n, outCNN), where n varies between
n = 3, . . . , 11 and outCNN is the number of neurons after the
flattened output of the last convolutional layer. We use the
Adam optimizer with a learning rate of 10−n, where n varies
between n = 2, . . . , 5. The maximum value λ of (2), varies
between 0, 0.1, . . . , 1.

C. IMPLEMENTATION DETAILS
We implemented the network using the PyTorch2 [36] frame-
work and trained the networks on an NVIDIA Tesla V100
DGXS 16 GB. As a result of the hyperparameter search,
a well-performing architecture is shown in Fig. 4, which uses
2000 sample points as the input size, namely a time window
of 256µs, for the NN. It has 5 convolutional layers followed

2May 2022, pytorch.org

TABLE 1. Overview of the parameter used in the hyperparameter search.
Batch normalization is randomly applied before the convolutional and
fully connected layers, and the dropout layers are randomly applied on
the fully connected layers. outCNN is the number of neurons after the
flattened output of the last convolutional layer.

by 8 fully connected layers with 1024 neurons. The Adam
optimizer had a learning rate of 10−3, a batch size ofNB = 32,
and the data augmentation parameter λ in (2) was a random
value between−0.5 and 0.5. In addition, batch normalization
uses a momentum of 0.1 and eps=1e-05, while the maxpool
layer had a padding of 0 with dilation of 1. The Dropout layer
had the parameter inplace=False, and the Linear layers bias
was set to true. The code is published on our GitLab page.3

IV. RESULTS
We evaluated the accuracy of our models through five-fold
cross-validation, which included splitting the data into five
mutually disjoint subsets and omitting one subset during
training for unseen forward passes during testing.

We assumed a constant ablation rate in the first approach
CA. The median error over all the five-fold cross-validation
sets was 0.13mm and the distance B between the 25th per-
centile and the 75th percentile was 0.163mm, as shown in
Table 2. In Fig. 5, we visualize a box plot that shows the
distribution of the deviating distance between the ground
truth value and the output. As shown in Table 2, we see
that the average box length was 0.271mm with an aver-
age median value of −0.024mm. At the interval between
I = [3.25, 3.5]mm the median value was−0.076mm with a
box length of 0.396mm.We note that the number of shots was
counted from the start of the ablation process to determine the
depth of the cut.

In the second approach, we used one, five, or ten consec-
utively measured acoustic waves as the input for the NN.
We trained the network on the training data and used the
best-performing network on the validation data to test the
performance of the testing data. In Table 2, we give a detailed
description of the results. The median error was 0.174mm,
0.130mm, and 0.092mm for NN1, NN5, and NN10, respec-
tively. In the box plots of Fig. 5, we visualize the difference

3https://gitlab.com/cian.unibas.ch/ablaiton-depth-estimation

126606 VOLUME 10, 2022



C. Seppi et al.: Bone Ablation Depth Estimation From Er:YAG Laser-Generated Acoustic Waves

FIGURE 3. (Top left) measured acoustic wave with a sample rate of 7.8125MHz. (Top right) multiply the maximum absolute value of
the 500 first sample points (time window of 64µs) by 1.5 (green). Remove all the data before the intersection between the green
line and the acoustic signal from the ablation (redpoint). The 2000 sample points (time window of 256µs) after the red dot are used
for the further processing step (magenta). (Bottom left) the acoustic wave is visualized, where the time-of-flight is removed.
(Bottom right) Normalized acoustic wave in the area of interest, which we use as input for the NN.

FIGURE 4. Detailed description of the neural network (left) and graphical visualization (right). It has 5 convolutional
layers, followed by 8 fully connected layers. We chose a batch size of NB = 32 and used the Adam optimizer. We note,
that k_size represents the kernel size, s is the stride, out_c are the channel out, and out_f are the number output
feature.

between the ground truth value and the label’s output. Here,
the mean length of the boxes B were 0.336mm, 0.253mm,
and 0.200mm for NN1, NN5, and NN10, with a mean median

value of −0.010mm, −0.036mm, and −0.027mm, respec-
tively. The largest errors were located at the interval I (in
the last box plot of each subfigure) with a median value of
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FIGURE 5. The box plots visualize the difference between the output and ground truth depth. CA is the method where we assume a constant
ablation rate. NN1, NN5, and NN10 are the NN approaches with one, five, or ten consecutive acoustic measurements, respectively. NN5s and
NN5h use five consecutive acoustic measurements as input. NN5s data do not exceed the depth of 2.8mm, and NN5h uses some label
augmentation. Each value on the x-axis corresponds to an interval, e.g., 0.25mm represents the interval between 0 and 0.25mm.

−0.407mm, −0.332mm, and −0.222mm. The box length
B was 0.349mm, 0.275mm, and 0.218mm for NN1, NN5,
and NN10, respectively.

V. DISCUSSION
We compared two approaches: CA, which assumes a linear
estimation of the depth and a NN with either one (NN1),
five (NN5), or ten (NN10) consecutively measured acoustic
waves as an input. In the box plots in Fig. 5, we observed
that CA has fewer outliers than the NNs. The median value
is close to 0 for all intervals, and even within the interval I
(DistanceI ), the median value was close to 0. The NNs had
more outliers, and the median value between the distance of
the output and the ground truth depth shifts into the negative
with increasing depth. Hence, it underestimated the depth of
the cut, especially in the interval I, as can be seen in Table 2
and Fig. 5. However, the box length B was smaller for the NN
than the CA for the interval I. We further observed that CA
outperforms the NN1 and had a similar performance to NN5.
The best performing network was NN10.
To further investigate the underestimation of the depth,

we retrained the Network NN5 with data that reaches a max-
imum depth of 2.8mm (NN5s ). We observe in Fig. 5 that
both NN5 and NN5s had a significantly larger error in the
reported interval I and [2.75, 3]mm, respectively. This is also
reflected in Table 2, where the median value at DistanceI
were −0.332mm and −0.278mm, with a box length of
0.275mm and 0.117mm, respectively. Therefore, we assume
that underestimating the depth at the end is due to the lack of
training data.

TABLE 2. In the top row, the error, in the centre row, the mean distance
over all intervals between the estimation and the label from the box-plots
in Fig. 5, and in the bottom row, the distance of the last interval from the
box-plots DistanceI are described. We show the median, 25th percentile
(PCTL), 75th PCTL value, and the distance B, which is the difference
between the 25th and 75th PCTL, of all the testing data from the
cross-validation. CA is the method where we assume a constant ablation
rate. NN1, NN5, and NN10 are the approach with the NN that uses one,
five, or ten consecutive acoustic measurements. NN5s and NN5h use
5 consecutive acoustic signals as input. NN5s data do not exceed 2.8mm
depth, and therefore DistanceI represents the interval 2.75mm− 3mm,
while all the others represent the interval of I = [3.25, 3.5]mm. NN5h
was trained with some label augmentation.

To this end, we retrained the network with label augmen-
tation. Specifically, we added a random value r to the depth
during the training of the network for all depths exceeding
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3mm. The value r is the absolute random number from the
normal distribution N (0, 0.5), with the mean value of 0mm
and the standard deviation of 0.5mm. We augmented the
label as described above, leading to overestimating the depth
during the network training. In Fig. 5 we can see that this
strategy counteracts the general underestimation of the depth
of the network at the last intervals. This is also reflected in
Table 2, where the median value of DistanceI was reduced
from −0.332mm to −0.127mm. However, the box length B
was increased to the value 0.275mm to 0.415mm. Therefore,
augmenting the data improves the median accuracy but pro-
duces a higher output fluctuation.

VI. CONCLUSION
The experiments show that assuming a constant ablation rate
already leads to good depth estimations of the cut by only
counting the number of shots. This assumption, however,
is limited to shallow cuts and does not hold for deep bone
ablations that need a cooling system [37]. These cuts can
reach a depth of up to 3 cm. Moreover, the number of shots
must be maintained for a valid estimation. This is not state-
less, meaning it needs all the information since the beginning
of the ablation to estimate the depth. Therefore, it is not
fail-safe since it may cause loss of depth information in case
the number of the previous ablation gets lost.

It is essential for medical devices to continue working,
even when a power failure occurs and all prior information
is lost. Hence, we opt for a stateless method to ensure a
fail-safe device. In this regard, the proposed approach with
the NN is stateless (almost no prior information of previous
ablations is needed) and, therefore, advantageous as it uses
one or multiple consecutive acoustic waves as an input to
predict the depth of the cut and does not need all information
from the beginning of the ablation. Therefore, it is fail-safe
and can predict the depth after only a few laser pulses. The
NN approach has comparable accuracy but slightly more
outliers due to its statelessness and sensitivity. The perfor-
mance improved with an increasing number of consecutive
acoustic waves used as input. Too many consecutive acoustic
waves are disadvantageous because multiple acoustic waves
are needed to estimate the depth accurately, increasing the
risk of cutting the hole too deep and damaging sensitive tissue
behind the bone.

In this work, we demonstrate the possibility of predicting
the depth of a laser-ablated hole by analyzing the acoustic
shock waves captured by a single transducer. The results
encourage further investigations into the depth estimation
during the laser ablation of tissue using acoustic waves. Our
experiments were performed in a dry environment, and for
future work, we plan depth estimation during a similar setup
in wet conditions. Irrigation during laser ablation allows
deeper cuts yet presents further challenges in combination
with OCT systems. One of the challenges facing the irriga-
tion system is that water accumulates in the hole, distorting
depth measurement. In addition, the debris and water droplets
pollute the OCT’s protective window, reducing the image’s

contrast. An important factor may be the heterogeneity and
the age of the bone influence the ablation process and the
prediction of the depth using acoustic waves, which needs to
be investigated.
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