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ABSTRACT Wrist electromyography (EMG) signals have been explored for incorporation into subtle
wrist-worn wearable devices for decoding hand gestures. Previous studies have now shown that wrist EMG
can even outperform the more commonly used forearm EMG, depending on the application. However, the
performance and robustness of wrist EMG-based pattern recognition systems in the presence of confounding
factors remain relatively unexplored. In this paper, we investigate the day-to-day stability of wrist EMG
signals to ascertain their reliability across days. The test-retest reliability of concurrently collected wrist
EMG and forearm EMG signals elicited during a variety of finger and wrist gestures was evaluated over
a series of days. Several classification approaches, including a novel Maximum independence domain
adaptation (MIDA), were investigated to explore and mitigate the effects of natural EMG variations across
days. Results showed that wrist EMG signals were reliable and relatively resilient to the negative effects of
EMG variations across days. Specifically, wrist EMG-based classifiers consistently outperformed forearm
EMG-based classifiers with statistically significant differences (p < 0.05) and had average classification
accuracies between 93.8% − 95.7% compared to 91.3% − 92.6% for the forearm EMG-based classifiers
using a novel Inter-Day Feature Set (IDFS) and a novel adaptive-MIDA linear discriminant analysis (LDA)
classification technique requiring minimal training. This study builds further evidence for the viability of
commercial wrist-worn EMG wearables with minimal training burden for general consumers.

INDEX TERMS Adaptive classification, domain adaptation, gesture recognition, stability, wearables,
wrist EMG.

I. INTRODUCTION
For decades, electromyography (EMG) signals recorded from
the upper forearm have been used to control prosthetic
devices for transradial amputees [1], [2], [3]. With increas-
ingly rapid advancements in wearable technologies, there
is a growing demand for reliable yet unobtrusive control
interfaces for general consumers as well. Leveraging sensors
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embedded in wrist-worn wearables has the potential for use in
commercial human-computer interaction (HCI) applications
and within augmented reality (AR) and virtual reality (VR)
environments.

Recently, some studies have shown promising gesture
recognition results when collecting EMG signals from the
muscles proximal to the wrist joint [4], [5], [6]. Con-
sistent with watches and other wearables, the wrist loca-
tion is an attractive and convenient location from which to
record EMG signals. Other studies have combined wrist and
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forearm EMG together to improve pattern recognition (PR)
performance when detecting fine hand grasps [7], [8]. Our
recent study [9] showed that wrist EMG yielded high-quality
signals that suffered less from additive noise artifacts EMG
collected from the forearm. Systems trained and tested
on wrist EMG outperformed forearm EMG for gestures
involving fine-finger movements and maintained comparable
performance for compound hand gestures. Together, these
studies have confirmed the potential of wrist EMG and paved
the way for more research on the reliability of wrist-based
EMG wearables across days.

Within the prostheses literature, the performance of
PR systems under different dynamic conditions has garnered
substantial attention [10]. Confounding factors that cause
changes in EMG signal characteristics over time introduce
inaccuracies between the model training phase and prac-
tical use. Over the years, many studies have investigated
these dynamic factors, which include aspects such as nat-
ural variations over time and changes in limb position and
forearm orientation, as they relate to the performance of
forearm EMG-based PR systems [11]. Natural variations
occur due to changes in electrophysiological factors (muscle
fatigue, sweating, skin impedance), electrode shift (spatial
orientation) and/or changes in muscle contraction effort and
behaviours (user intent) [11]. Nevertheless, how these factors
may change when EMG signals are recorded from a more
distal wrist location has not yet been fully explored.

EMG signal variability has been found to degrade the
classification performance of forearm-based PR systems by
up to 55% [12], [13], [14]. The corresponding necessity
to regularly retrain PR systems has, for a long time, been
seen as a roadblock to commercializing myoelectric control
systems. Many studies have therefore explored the nature of
these forearm EMG changes, including when they occur [15],
their impact on classification performance [16], [17], and
the amount of training data required to reach a stable ges-
ture recognition accuracy [18]. These studies have shown
that EMG classification performance continuously degrades
with increasing time between training and testing [18], [19].
Some studies have found that classification accuracy initially
decreases exponentially, but then plateaus or even improves
as the user becomes familiarized with the PR system and
begins performing more repeatable gestures [20], [21].

Many classification techniques have been proposed to
overcome the effects of these EMG variations [11], with
varying degrees of limited success. Adaptive algorithms have
also been explored to maintain or improve the performance of
PR systems. These self-enhancing algorithms are able to fol-
low subtle changes in data, and modify or retrain the param-
eters of the classification models [11]. For instance, adaptive
linear discriminant analysis (LDA) classifiers continuously
update their class mean vectors, the class covariances, and
the pooled covariance [22], [23]. Results have shown that
such adaptive algorithms significantly outperform their static
counterparts when properly implemented and evaluated over
time.

Recently, deep learning algorithms have been explored
as a way to maintain the performance of PR systems
across days and minimize the need for retraining [24],
[25], [26], [27], [28], [29]. Domain adaptation techniques
have also been proposed to mitigate drift in data distribu-
tions between initial training phases (source domain), and
later testing phases and/or when using a different device
(target domain) [30]. Such domain adaptation algorithms
have been applied to various areas of research including
machine olfaction [31], [32], image processing [33], [34] and
sentiment analysis [35], [36]. However, the potential of these
novel domain adaptation techniques has not been yet fully
explored in the EMG field.

Regardless of approach, the vast majority of EMG-related
efforts have, nevertheless, focused on forearm EMG signals,
and it is currently unknown how the impact of confounding
factors may differ at the wrist level. Given the different
anatomical structures, muscle bulk, and proximity to the wrist
joints, the relative effect is non-trivial. Some previous studies
have begun exploring the effect of natural EMG variations
at the wrist level. For instance, Jiang et al. [4] used an
adaptive LDA classification approach to maintain wrist EMG
PR performance across sessions. However, the time span
of this study was limited only to one day after the initial
classifier training. In another study, wrist EMG signals were
recorded across 4 days [6]. However, this study was limited
only to 3 gestures and did not take the training burden into
consideration. Neither of these studies quantified the stability
of wrist EMG PR performance across days nor compared it
to the performance of the commonly used forearm EMG in
the prosthetics field.

Therefore, for the first time with wrist-based EMG, the
goals of this work were (1) to quantify the inter-day stability
of wrist EMG in terms of test-retest reliability index, and
(2) to quantify any degradation in PR performance across
days when using static classification techniques. These
results are presented as a head-to-head comparison between
wrist EMG and the more commonly used forearm EMG.
To combat any degradation, a maximum independence
domain adaptation (MIDA) technique and several classifica-
tion approaches are explored to (3)mitigate the effect of EMG
variations and improve PR performance across days while
minimizing the user training burden.

II. METHODOLOGY
A. DATA COLLECTION
EMG data were collected from 12 able-bodied participants
(27.83 ± 4.90 years, 9 males, 3 females) with no history
of muscular or nervous system problems. Informed consent
was obtained from all participants before data collection,
as approved by the Research Ethics Board (REB #2018-159)
at the University of New Brunswick (UNB). EMG sig-
nals were collected using a UNB cuff [9], [37] consisting
of four wrist electrodes and four forearm electrodes with
a 1-kHz sampling frequency (Fig. 1). Data collection and
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FIGURE 1. Locations of wrist (W1-W4) and forearm (F1-F4) EMG
electrodes.

FIGURE 2. Illustration of performed gestures.

subsequent analysis were performed usingMATLABR2022a
(The MathWorks, Inc., USA).

Participants performed 5 hand gestures consisting of thumb
extension (TE), index extension (IE), pinch grip (PG), wrist
extension (WE) and wrist flexion (WF) (Fig 2). PG, WE and
WF gestures are commonly used in the prosthesis field to
restore lost or missing function while performing activities
of daily living [38], [39]. These gestures along with TE and
IE gestures can also be used by able-bodied users to control
menus and interact with HCI interfaces within smart homes
and AR/VR environments [40], [41].

Wrist EMG and forearm EMG signals were concurrently
collected from each participant over three different sessions.
For all subjects, data of the second session were collected
on the following day after the initial data collection session.
For the third session: data were collected from 6 subjects on
the following day, while the other 6 subjects completed the
collection between 3−6 days after the second session. During
each session, participants were guided by on-screen instruc-
tions to perform 8 repetitions of each gesture. Locations of
EMG electrodes—relative to the muscle bellies, elbow joint
and ulnar styloid process—were recorded on the first day for

consistent placement on the following days. Slight radial and
lateral electrode shifts (±1 cm)were allowed tomimic natural
variations in the placement of consumer wearables. Collect-
ing data across different days also incorporates EMG signal
variations due to physiological changes, electrode shift, and
natural behavioural changes in user intent [11].

The raw EMG signals were filtered using a third-order
Butterworth high pass filter with a cut-off frequency of 20 Hz
to remove any low-frequency motion artifacts. Additionally,
an infinite impulse response (IIR) notch filter with a Q-factor
of 50 was applied at 60 Hz and its harmonics to remove
electromagnetic interference (EMI) noise [11].

B. FEATURE ENGINEERING
1) FEATURE EXTRACTION
EMG signals were segmented into overlapping windows of
length 150 ms with 50% overlap. To improve the informa-
tion density of the EMG, and evaluate test-retest reliability,
60 different features were extracted from each window
including 49 time-domain features and 11 frequency-domain
features (Table 1).

2) FEATURE SELECTION
The PR performance of several feature sets was evaluated
including the commonly used time-domain (TD) feature set
(consisting of MAV, WL, ZC and SSC) [45] as well as
TD4 (consisting of LS, MFL, MSR and WAMP) [44] and
TD9 (consisting of LS, MFL, MSR, WAMP, ZC, RMS,
IAV, DASDV and VAR) [44]. Other feature sets were eval-
uated including: TDHIST (consisting of TD and HIST fea-
tures), and TDHISTAR (consisting of TD, HIST and AR
features). Additionally, sequential floating feature selection
(SFFS) [46] was applied on the features extracted from the
wrist and forearm EMG signals independently to identify the
feature sets that may be more resilient to EMG variations
across days, using the average classification accuracy of the
Across-Days Static Classifier explained later in the Classi-
fication Algorithms subsection. Based on the SFFS selected
feature sets for the wrist and forearm EMG locations, the
performance of a new feature set consisting of the common
features between the two selected feature sets was evaluated.
This generalizable and stable feature set is referred to here
as the Inter-Day Feature Set (IDFS) and the full list of its
features is provided in the Results section.

3) DOMAIN ADAPTATION
A maximum-independence domain adaptation (MIDA) fea-
ture transformation technique was applied on the IDFS
selected feature set to mitigate the effect of EMG variations
across days. In this technique, a domain feature is defined
to represent the different days of data collection as a source
of feature variation. The domain feature is represented using
one-hot encoding and augmented with the raw features. The
combined features are then projected using a linear kernel
onto another space that maximizes the independence from the
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TABLE 1. List of extracted features [42], [43], [44].
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FIGURE 3. Illustration of the different classification techniques and how repetitions of hand gestures are used accordingly for training, calibration,
or testing across days. The Within-Day Classifier is denoted with an (x8) to indicate the employed 8-fold leave-one-repetition-out cross-validation
technique.

domain feature in the sense of the Hilbert–Schmidt indepen-
dence criterion to produce features that are more robust to
day-to-day EMG variations [47].

C. TEST-RETEST RELIABILITY
To assess the test-retest reliability of the EMG extracted
features across days, the intraclass correlation coefficient
(ICC) [48] was computed based on the one-way analysis of
variance model:

ICC =
MSbetween −MSwithin

MSbetween − (k − 1) MSwithin
, (1)

where MSbetween is the mean square of feature value between
windows, MSwithin is the mean square of feature value
within windows (across days), and k is the number of days.
ICC takes values in the range: 0 ≤ ICC ≤ 1, where higher
values indicate stronger agreement and consistency of feature
values across days.

D. CLASSIFICATION ALGORITHMS
Several classification techniques were investigated to eval-
uate PR performance across days as illustrated in Fig. 3.
The goal was to maintain high classification accuracy across
days while minimizing the amount of required retraining

data, thus, reducing the perceived burden on the user and
potentially improving the usability of wearable devices. In all
approaches, a comparison between the gesture recognition
performance of wrist and forearm EMG signals was con-
ducted using an LDA classifier and the different feature sets.

1) WITHIN-DAY CLASSIFIER (WiDay)
In this approach, the classifier was retrained every day from
scratch using the new training repetitions and evaluated
using a leave-one-repetition-out cross-validation technique.
For instance, 7 repetitions were used for training the clas-
sifier, and the 8th repetition was used for testing (Fig. 3).
The average classification accuracy was computed across all
8 validation folds and all subjects for each group of ges-
tures. This supervised classification approach represents the
maximum training burden on the user while having the best
possible PR performance within each day.

2) ACROSS-DAYS STATIC CLASSIFIER (AcDays-STATIC)
Here, the classifier was fully trained using only repetitions
collected on the first day. No further retraining was conducted
on the following days and the PR performance of the static
classifier was evaluated on repetitions of the second and third
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days (Fig. 3). This classifier is termed static since it is trained
only on the first day and no changes occur to the classifier
parameters across days. This approach represents the least
training burden on the user but provides no adjustment to
account for variations across days.

3) ACROSS-DAYS RETRAINED CLASSIFIER
(AcDays-RETRAINED)
In this classification technique, the classifier was trained from
scratch every day using all the repetitions collected on the
previous days plus the first collected repetition on the current
test day (Fig. 3). The predicted labels of the hand gestures
used for testing on the 2nd day were used (unsupervised
training) along with the true labels of the new repetition on
the 3rd day (supervised training) to retrain the classifier. This
technique represents a low training burden on the user since
it requires performing each gesture just once before the user
uses the wearable device on a given day.

4) ACROSS-DAYS ADAPTIVE CLASSIFIER (AcDays-ADAPTIVE)
This classifier was first trained using repetitions collected
on the first day. On subsequent days, the first new repetition
of each gesture from the current test day was used to adapt
the previously trained classifier (Fig. 3) [49]. Again, the
predicted labels of the hand gestures used for testing on
the 2nd day were used (unsupervised recalibration) along
with the true labels of the new repetition on the 3rd day
(supervised recalibration) to recalibrate the classifier.
LDA classifier parameters were adapted using:

∼
µ = (1− τ ) µ1 + τ µ2, (2)
∼
σ = (1− λ) σ1 + λ σ2, (3)

where µ1 and σ1 represent the mean and covariance matrices
of the previously trained classifier, µ2 and σ2 represent the
mean and covariance matrices of the recalibration repetitions
of the new day, and

∼
µ,
∼
σ are the adapted mean and covari-

ance matrices used to construct the adapted LDA classifier.
A Bayesian optimization technique was used to find the
optimal values for the τ and λ parameters. This approach
has a low perceived training burden on the user similar to the
across-days retrained classifier.

5) ACROSS-DAYS ADAPTIVE MIDA CLASSIFIER
(AcDays-AdaptMIDA)
In this proposed approach, the MIDA domain adaptation
technique was applied in conjunction with the across-days
adaptive classification technique to mitigate the effect of
EMG changes across days. MIDA is used first to project the
features onto another space that maximizes the independence
from the domain feature (changes across days) then the clas-
sifier is adapted as with the AcDays-Adaptive classifier. This
approach has the same perceived training burden on the user
as the across-days adaptive and retrained classifiers since it
requires only one recalibration repetition on any given new
day.

E. STATISTICAL ANALYSIS
Statistical significance between the performance of wrist
EMG and forearm EMG-based techniques was assessed
against the null hypothesis that their respective means come
from populations with equal means. The Lilliefors test was
first used to assess the null hypothesis that the wrist and
forearm results come from normal distributions or not.
If the normality condition was satisfied, then two-sample
paired t-tests were used to identify statistically significant
means (p < 0.05). Otherwise, if the distributions were
not found to be normal, then a Wilcoxon signed-rank test
(p < 0.05) was used to assess the significance level.
Box charts were also used to compare between the classifi-

cation accuracy of different techniques using wrist EMG and
forearm EMG. The horizontal line inside each box represents
the median classification accuracy across all repetitions of
all subjects for each technique. The top and bottom edges
of each box are the upper and lower quartiles correspond-
ing to the 0.75 quantile and the 0.25 quantile respectively.
Whiskers connect the upper and lower edges of each box
to the non-outlier maximum and minimum classification
accuracies (values within 1.5 times the interquartile range)
respectively. Box charts whose shaded regions do not overlap
have different medians at the 5% significance level. The sig-
nificance level is based on a normal distribution assumption.

III. RESULTS
In this study, EMG signals were recorded from the wrist
and forearm levels while subjects performed different hand
gestures. A SFFS technique was applied on all features from
the wrist and forearm EMG independently to identify the cor-
responding feature sets that yielded the highest PR robustness
across-days without retraining (across-days static classifier),
as shown in Table 2. Another feature set (IDFS), comprising
of the common features between those two feature sets, was
identified and used for further analyses in the rest of the
paper (Table 2).
The ICC test-retest reliability index was evaluated on dif-

ferent feature sets extracted from the wrist and forearm EMG
signals. The ICC values were plotted against the classification
accuracy within the first day for the different feature sets
(Fig. 4). Results show that, while forearm EMG had signifi-
cantly higher ICC values across days using the well-known
TD feature set, wrist EMG had significantly higher ICC
values than forearm EMG for SFFS and IDFS (p < 0.05).
Fig. 4 also shows that wrist EMG consistently had higher
within-day classification accuracy on the first day compared
to forearm EMG using all features sets with the difference
being statistically significant (p < 0.05) for the TD, TDHIST,
TDHISTAR, TD9, SFFS and IDFS feature sets.

To assess the effect of EMG variability across days at
both the wrist and forearm locations, the uncorrelated lin-
ear discriminant analysis (ULDA) projection technique was
applied on each independently to help visualize the vari-
ability of EMG feature clusters of different gestures across
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TABLE 2. SFFS selected features and the corresponding average static classification accuracy across days extracted from wrist and forearm EMG
electrodes.

FIGURE 4. Comparison between test-retest reliability of wrist EMG and
forearm EMG in terms of intraclass correlation coefficient (ICC) across
days, and the corresponding classification accuracy within the first day
using different feature sets. Significant differences between the ICC of
wrist and forearm EMG are denoted by ◦ when p < 0.05. Significant
differences between the classification accuracy of wrist EMG and forearm
EMG are denoted by * when p < 0.05.

days (Fig. 5). Results show that the wrist EMG clusters
were more consistent and separable in the feature space
across days compared to their forearm EMG counterparts,
especially for finger gestures (Fig. 5a). Also, the PR per-
formance of the across-days static classification approach
was evaluated and compared to the within-day classifica-
tion approach (Fig. 6). Results show that wrist-based EMG
PR had consistently higher performance than forearm EMG
using the within-day classification approach.Wrist EMG also
had higher resilience to EMG variations across days com-
pared to forearm EMG in detecting hand gestures (Fig. 6).
Specifically, wrist EMG AcDays static classification accu-
racy dropped by 3.54% and 8.40% on the second and third
days of data collection, respectively, compared to 10.85% and
12.58% drops in performance for forearm EMG.

Multiple domain adaptation and classification approaches
were explored to mitigate the effect of EMG variations
across days. Fig. 7 shows the average classification accu-
racies across subjects of separate repetitions using differ-
ent projection and classification techniques on both wrist
EMG (Fig 7a) and forearm EMG (Fig 7b). Fig 8 also shows
box plots of the day-to-day classification accuracy of the
same techniques using all subjects’ repetitions of gesture
using wrist EMG (Fig 8a) and forearm EMG (Fig 8b).
Results in Fig 7 and Fig 8 show that using the across-days
retrained, MIDA, adaptive and adaptive MIDA classifiers
improved the PR performance with minimal training burden
on the user (one repetition per gesture for recalibration on a
new day).

Wrist EMG consistently outperformed forearm EMG
using different projection and classification techniques on
different days (Fig 9). Particularly, wrist EMG had higher
average values and less variability in classification accu-
racy compared to forearm EMG with the difference being
statistically significant (p < 0.05) for the AcDays-Static,
AcDays-Retrained, AcDays-MIDA and AcDays-Adaptive
and AcDays-AdaptMIDA techniques on Day 2 (Fig 9a) and
for the AcDays-Static, AcDays-MIDA and AcDays-Adaptive
techniques on Day 3 (Fig 9b).

Fig. 10 shows the effect of increasing the number of
recalibration repetitions (hence the training burden on the
user) on the classification performance of the across-days
adaptive MIDA classification technique. Shaded areas repre-
sent the standard classification error at different numbers of
recalibration repetitions. Results again show that wrist EMG
consistently had higher classification accuracy using different
numbers of calibration repetitions compared to forearm EMG
both on Day 2 (Fig 10a) and Day 3 (Fig 10b).

IV. DISCUSSION
The main aim of this work was to evaluate the day-
to-day stability of wrist EMG signals for hand gesture
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FIGURE 5. Scatter plot showing changes in the feature space of Wrist EMG and Forearm EMG across days for (a) finger gestures and (b) wrist
gestures, using uncorrelated linear discriminant analysis (ULDA) projection matrix calculated on the first day. Darker to lighter shades of the same
color represent the projection changes across days and the ellipses represent the 95% confidence interval of each cluster.

recognition in potential wrist-worn wearables. Therefore,
wrist EMG and forearm EMG signals were concurrently
recorded from 12 able-bodied subjects across 3 days while
performing 5 different hand gestures. Results confirmed that
wrist EMG-based classification models had high long-term
stability across days, and suffered less from the negative
effects of natural EMG variations over time compared to their
forearm EMG-based counterparts using a novel Inter-Day
Feature Set (IDFS) and a novel adaptive-MIDA classification
technique with minimal retraining.

In this paper, SFFS was applied on 60 different features
extracted from wrist EMG and forearm EMG (indepen-
dently) to find a feature set for each location that is resilient
to EMG variations across days. The SFFS technique is a
wrapper-based approach that considers correlation between
features and dynamically adds or removes features during
the selection process to reach the optimal feature set [46].
SFFS-selected feature sets had an average classification
accuracy across days of 92.78% and 86.48% for wrist
EMG and forearm EMG, respectively, using a static

classification technique without any mitigation techni-
ques (Table 2).

Despite different absolute classification accuracies, the
SFFS selected feature sets for the wrist and forearm EMG
locations were relatively consistent. A feature set consisting
of the common features between the two selected feature sets
was therefore identified as a reasonable compromise. This
new generalizable feature set consists of MFL, AR, SKEW,
SSC, SampEn, WLR, KURT, MNF, HNSM, HC, and ASM
features, and is referred to here as the Inter-Day Feature Set
(IDFS). This IDFS feature set had comparable performance
to the wrist and forearm-specific SFFS selected feature sets
and was therefore adopted for further analyses in this study.

Wrist EMG signals had consistently high within-day clas-
sification accuracy for detecting hand gestures using different
feature sets (Fig. 4 and Fig. 6). The strong performance of
wrist EMG is at least in part attributed anatomically to the
presence of the fine-finger movement controlling muscles
closer to the wrist joint [50]. These findings are consistent
with the outcomes of our previous study [9] which was
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performed with a different group of subjects. The first goal of
this paper was to quantify the inter-day stability of wrist EMG
in terms of the test-retest reliability index. Results confirmed
that wrist EMG signals were reliable across days and had high
values of ICC for detecting performed hand gestures (Fig. 4).
This could potentially be due to less electrode shift occurring
at the wrist level given its confined anatomical structure with
flat posterior and anterior surfaces that improve the contact
at the electrode-skin interface and limits electrode move-
ment [50]. Another contributing factor could be the smaller
volume and circumference of the muscles at the wrist level
compared to the upper forearm muscles which reduce the
EMG variability due to the natural differences in contraction
intensity across days [11].

Looking at the performance of different feature sets, results
showed that the TD4 feature set (consisting of LS,MFL,MSR
and WAMP) outperformed the commonly used TD feature
set (consisting of MAV, WL, ZC and SSC) in terms of the
ICC test-retest reliability index as well as the classification
accuracy (Fig. 4). These findings are consistent with the
results in [44] and hence we encourage future studies moving
forward to consider using the TD4 feature set as a baseline
for the performance assessment of EMG-based PR systems.
Furthermore, the IDFS feature set showed robust PR perfor-
mance and stability across days using different classification
approaches and had comparable performance to the optimal
SFFS selected feature sets for both wrist EMG and fore-
arm EMG. Therefore, we recommend that the IDFS feature
set to be employed in the machine learning systems of wear-
able devices and neural interfaces to achieve high and stable
PR performance across days.

The second goal of this study was to quantify the degrada-
tion in the PR performance of wrist EMG across days. Results
showed that wrist EMG static classification accuracy dropped
by 3.54% and 8.40% on the second and third days of data
collection (Fig. 6). The consistent patterns of wrist EMG in
the feature space across days (Fig. 5) led to strong test-retest
reliability (Fig. 4) and hence high classification accuracy
using the static classifier. This across-days static classifica-
tion approach represents the lowest training burden on the
user since no recalibration repetitions need to be collected.
However, the classifier parameters do not get updated using
any new EMG data which leads to having lower classification
accuracies. On the other end of the spectrum, the within-day
classification approach has potentially the highest classifica-
tion accuracy within a certain day since the classifier gets
trained from scratch using several (7 in this study) repetitions
on any given new day. Nevertheless, this technique represents
themaximum training burden perceived by the user since they
would need to provide multiple repetitions of each gesture
every day before they can start using the wearable device.

Therefore, the third goal of this study was to explore
different techniques with a low training burden on the
user to mitigate the effect of EMG variations and improve
the PR performance across days. Maximum independence
domain adaptation was applied to potentially minimize the

FIGURE 6. Comparison between the classification accuracy of wrist EMG
and forearm EMG using the Within-Day (dashed lines) and the
Across-Days Static (solid lines) classifiers for the IDFS feature set.
Significant differences between the classification accuracy of wrist EMG
and forearm EMG are denoted by * when p < 0.05.

variations in the feature space of EMG data collected on dif-
ferent days. Results showed that using only one recalibration
repetition on a new day to transform the EMG features signif-
icantly improved the PR performance over the performance
of the static classifier (Fig. 7 and Fig. 8).

Canonical correlation analysis (CCA) is another feature
projection technique that was initially considered in this
study. However, CCA performed poorly compared to even
the across-days static classifier and the across-days retrained
classifier when using one recalibration repetition on a new
day. The low performance of CCA, even when optimized
for this problem, could be partially attributed to discrepan-
cies in the data distributions across days and the absence of
inter-repetition information in the one repetition from a new
day. This suggests that a single repetition is not enough to
for CCA to infer the extent of the EMG variability leading
to less than optimal transformations [51]. It could be also
partially attributed to the limitations of the technique itself.
Specifically, CCA requires that the data from the previous day
(source domain) and data from the new day (target domain)
have the same number of observations with the same class
labels. Therefore, CCA limits the amount of data from pre-
vious days to only one repetition leading to transformation
matrices that don’t cover the full range of variability from
previous days. In a previous study [27], Campbell et al.
reported similar limitations of the CCA technique with unsat-
isfactory performance. In our preliminary work, adding more
recalibration repetitions improved the classification accuracy
of CCA, corroborating results reported in [52], however, this
defeats the intended purposes in this context.

Several other classification approaches were employed
to compensate for the EMG variations across days: the
across-days retrained classifier, the across-days adaptive
classifier and the across-days adaptive MIDA classifier
(Fig. 7 and Fig. 8). In the former technique, the classifier
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FIGURE 7. Comparison between the average classification accuracy of separate gesture repetitions across subjects using one recalibration
repetition for different classification techniques on (a) wrist EMG and (b) forearm EMG.

FIGURE 8. Comparison between the day-to-day classification accuracy of different classification techniques using all subjects’ gesture repetitions of
(a) wrist EMG and (b) forearm EMG.

was retrained from scratch using repetitions from the pre-
vious days as well as a new repetition for each gesture
on each new day which improved the classification accu-
racy over the static classification technique. In the adaptive
classification technique, the LDA classifier parameters were
continuously adapted using a single repetition per gesture
on each new day. In the novel adaptive MIDA classifier,
the MIDA domain adaptation was applied in conjunction
with the adaptive classification techniques to minimize the
effect of EMG and features variations across days. This
adaptive MIDA classification approach (using 1 repetition)
improved PR performance across days to be comparable with
the within-day classification approach (using 7 repetitions)
and was found to outperform the retraining and adaptive
classification approaches (Fig. 7 and Fig. 8) consistent with
the forearm EMG literature [22], [23].

In all parts of this study, wrist EMG consistently had lower
variability between repetitions and significantly (p < 0.05)
outperformed forearm EMG in terms of the ICC index and

the classification accuracy (Fig. 4 and Fig. 9). In a previ-
ous study [4], Jiang et al. hinted at the potential of wrist
EMG and its stability across three sessions within one day
after the initial classifier training session. This study extends
that up to 6 days after initial classifier training and our
results confirmed that wrist EMG consistently outperforms
forearm EMG in recognizing fine finger gestures and wrist
gestures (Fig. 9).
Specifically, results showed that wrist EMGhad higher sta-

bility and PR robustness than forearmEMGwhen the analysis
was performed on two groups of participants: one with data
collection on consecutive days and the other with 3− 6 days
between collections. The group with bigger gaps between
data collections yielded on average 2.96% and 7.46% lower
static classification accuracy on Day 3, for wrist and forearm
EMG, respectively, than those with collection on consecutive
days. These results further support that patterns of wrist EMG
may be more consistent over both sessions and time and
explain how the adaptation techniques benefited from the
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FIGURE 9. Comparison between the classification accuracy of wrist EMG and forearm EMG using different classification techniques on (a) Day 2
and (b) Day 3.

FIGURE 10. Comparison between the effect of adding more repetitions on (a) Day 2 and (b) Day 3 on the classification accuracy of wrist EMG and
forearm EMG using the Across-Days Adaptive MIDA Classification technique. Shaded areas represent the standard error of classification accuracy.
Significant differences between the accuracy of wrist EMG and forearm EMG are denoted by * when p < 0.05.

smaller inter-day differences in wrist EMG, making them
better able to translate mapping across days (Fig. 9). With
more recalibration repetitions available, wrist EMG contin-
ues to have robust PR performance across days (Fig. 10). The
newly introduced across-days adaptive MIDA classification
approach also helped to improve the performance of forearm
EMG while adding more repetitions on Day 3 to be compa-
rable to that of wrist EMG. This suggests that the approach
may also be applicable for forearm EMG-focused studies and
that it may be employed as a way to preserve performance in
myoelectric control of prostheses.

Finally, this study also highlights that wrist EMG had less
variability in PR performance across subjects compared to
forearm EMG for all classification techniques and gestures
(Table 2 and Fig. 9). This result hints at the potential for more
robust wrist EMG-based cross-users classification models,
enabling a better out-of-the-box wearable experience with
minimal user training. Hence, future studies could focus on

developing advanced across-users classification models that
generalize to many users with minimal user-specific training.
Other directions could include and studying the effect of limb
position on wrist EMG PR performance.

V. CONCLUSION
In this work, the negative effects of EMG variation across
days were explored for both wrist and forearm EMG. Wrist
EMG-based PR models consistently outperformed their fore-
armEMG-based counterparts in finer-finger and hand gesture
recognition. Results were repeatable across a series of tests
including ICC test-retest reliability testing, feature extraction
and selection exercises (leading to a novel Inter-Day Feature
Set; IDFS), and an exploration of a novel adaptive MIDA
classification technique. This work supports the potential for
employingwrist EMG inwrist-wornwearables such as smart-
watches to improve human-computer interaction for emerg-
ing industrial applications including augmented and virtual
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reality environments. The demonstration of wrist EMG’s
day-to-day stability suggests that these systems may provide
robust and repeatable long-term performance with minimal
retraining requirements for the user leading to potentially
more wide adoption of wrist EMG-based wearables.
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