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ABSTRACT The number of helpful votes on a review is an essential indicator of how much impact the
review has on other customers in electronic commerce. Therefore, predicting the number of helpful votes is
an important task. Regression analysis and Tobit modeling are typical methods of prediction. Those methods
come from the same initial assumption that the number of helpful votes follows a normal distribution on any
dataset. However, the assumption is not usually confirmed, and the distribution of the helpful votes often
follows other distributions. This paper proposes a framework for investigating the feasibility of building
a model that predicts the number of helpful votes according to the distribution of the number of helpful
votes. On top of that, considering the review age, we propose an adaptive window size sampling method
to evaluate the model on review datasets sorted chronologically. The experimental results validated that the
model adapting to the best approximate distribution gives a significant improvement compared to the baseline
models. In addition, model evaluation using the adaptive window size sampling method has significant
impacts on the performance on large datasets.

INDEX TERMS Distribution-adapted model, adaptive windows size sampling method, helpful vote.

I. INTRODUCTION
The customer often writes a review to describe their opinion
about the quality of a product. This review might help other
customers with their purchase decision. The number of help-
ful votes in a product review indicates the impact of a review
has on other customers. Hence, it is crucial to estimate the
number of helpful votes.

Previous studies examine the distribution of helpful votes1

in selecting a suitable model by some simple indicators.
Negative binomial regression [1], [2], [3] is chosen instead
of Poisson regression because they consider that helpful
votes are in a count distribution with an over-dispersion
problem [1]. Over-dispersion is a phenomenon where the
equality of mean and variance is not fulfilled in a count
distribution. For the same reason, some studies employ the

The associate editor coordinating the review of this manuscript and

approving it for publication was Taous Meriem Laleg-Kirati .
1We use this expression ‘the distribution of helpful votes’ in the same

meaning as ‘the distribution of the number of helpful votes’.

regression [4], [5] and Tobit model [6], [7] by first taking a
normalization or transformation of helpful votes. Normaliza-
tion and transformation, such as helpful ratio [1], [8], [9] and
log-transformation [5], are used to take the helpful votes into
a continuous distribution form. However, it has never been
confirmed that the distribution initially assumed by the model
conforms to or even approximate the distribution of helpful
votes. If regression models above are applied to an unsuitable
distribution, it may not achieve optimal results and even not
be acceptable.

The importance of confirming the target distribution has
been introduced to optimize the result on a normal distribu-
tionwithGaussian process [10]. The generalized linearmodel
(GLM) provides a solution when the target is not in a normal
distribution. The main idea of GLM is to build a model by
generalizing regression analysis to other distributions that fit
the target [11], [12]. The next problem is to provide the target
distribution before developing a GLM.

The goodness of fit test is usually performed to find
the best fit data distribution. However, the goodness of fit
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test cannot often find the best fit distribution. Therefore,
we use Mean Squared Error (MSE) and Akaike Information
Criterion (AIC) [13], [14] to approximate the distribution
by comparing the score of several distributions. Since the
normal distribution is in the Exponential Dispersion Model
(EDM) family, we use four other distributions: Gamma,
Inverse Gaussian (InvGauss), Exponential (Expon), and
Wald.

The critical step to approximate the distribution by AIC
and MSE is to create a histogram with a certain number
of bins. Any constant is often applied as the number of
bins without considering dataset characteristics, which lead
to wrong identification of the distributions. In this study,
we apply Scott’s rule [15] to calculate the number of bins
and use the Kolmogorov-Smirnov (KS) score [16], [17], [18]
for calibration. Later, we also investigate the possibility of
the model performance following the rank of distributions
identified.

Subsequently, we generate and evaluate the model on
the dataset by using a sampling method. Cross-validation
with 10-fold sampling is popularly employed to evaluate the
helpful-review models [3], [9]. However, a new review under
actual conditions does not have any votes yet when posted.
Saptono and Mine [19] proposed time-based sampling (TBS)
methods with Cochran’s formula, which assumes a binomial
distribution for classification tasks. Their formula uses the
binomial variance of the helpfulness rating calculated from
the whole dataset. Besides, only data in the training set are
assumed labeled, and the others are unlabeled. Here, the
variance formula for the binomial distribution is changed to
that for the other distributions so that the TBS method can be
used correctly and more effectively.

To address the problems described above, we propose a
framework to correctly implement a model adapting to the
distribution of helpful votes. Our framework collaborates
three main modules: distribution identification, model gen-
eration, and sampling methods. Each module employs a par-
ticular technique and contributes as follows:

1) We propose a method for identifying the distribution of
the helpful votes. The proposed method approximates
the distribution in more detail by computing MSE and
AIC scores by means of a histogram whose bin counts
are computed by Scott’s rule. We apply the KS score
for calibration.

2) On the model generation, we employ a model adapting
to the distribution of helpful votes to predict the number
of helpful votes. We call the model the distribution-
adapted model. We build the model in three machine
learning models: linear model, extreme gradient boost-
ing [20], and convolutional neural network [9], [21].

3) On the sampling methods to evaluate the models,
we adjust the window size of the TBS method [19] so
that it can be applied to a dataset even in a continuous
distribution.

Next, we conduct extensive experiments on Amazon.com
datasets [22] and IMDb datasets [23].

In this paper, we answer the following research questions:
Q1 Does distributional identification byMSE or AIC score

yield the same results as the KS score?
Q2 Does the performance of the distribution-adapted

model follow the rank of distribution identification
results?

Q3 Does the adjustment of window size of the TBSmethod
improve the model performance?

Q4 How are the effect of the implementation and evalua-
tion to the time consumption of the distribution-adapted
model with the AWS sampling method compared to
baseline models?

The rest of the paper is structured as follows: we present
an overview of existing prediction models, factors, and sam-
pling methods to estimate the helpful votes in Section II
and the typical structure of the EDM family density function
in Section III. Subsequently, we elaborate on our proposed
framework in Section IV. In Section V, we describe our
experimental setup and report the results. Finally, we summa-
rize our contributions and discuss further tasks in Section VI.

II. RELATED WORK
In this section, we briefly describe some previous studies
related to ours.Wefirst discuss somemetrics tomeasure help-
fulness and then describe some models employed in helpful
vote prediction. Subsequently, we discuss some factors used
in previous research projects and trends to use the text fac-
tor. We next elaborate on previously implemented sampling
methods. Finally, we summarize related studies and compare
them with this study, as shown in Table 1.

A. HELPFULNESS METRICS
The previous paper used some metrics to measure how help-
ful the review is for the customer. A helpfulness rating also
called a helpful ratio, is applied if there are two types of
feedback captured by the system: helpful and not helpful [8],
[25], [26], [35], [36]. In this case, the helpfulness rating is
a ratio of the number of helpful votes to the total votes.
A higher helpfulness ratingmeans the review has helped other
customers to make a purchasing decision. Amazon.com also
used this metric on their dataset [37]. This metric is also used
to binarize the helpfulness rating with a threshold [4].

Recently, most commerce systems, including Ama-
zon.com and Yelp.com, have eliminated the unhelpful button
as customer feedback for product review. Consequently, the
current Amazon.com 2018 dataset [22], the updated version
of the previous Amazon.com 2014 dataset [37], has dropped
the total votes information and provides the number of helpful
votes as the only feature indicating helpfulness. Previous
research used the helpful votes to represent the number of
helpful votes [4], [6], [7]. Moreover, the categorized helpful
vote form is also used as a target variable [3], [19], [33], [34].

B. HELPFUL VOTE PREDICTION MODELS
Regression analysis is a representative model for predicting
review helpfulness [4], [9], [24], [26], especially in terms of
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TABLE 1. Related research on helpful vote identification.
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helpfulness rating, which comes from the ratio of the number
of helpful votes to the total votes. Tobit modeling, a zero-
censored regression, revises the regression model on massive
zero-value problems and has become a popular model for
predicting the helpfulness rating [7], [8], [25], [27], [28], [29].
When implemented in machine learning, the regression and
Tobit modeling employ the same objective functions, Sum
Squared Error (SSE) orMSE. Those objective functions come
from the initial assumption that the dependent variable in the
model is normally distributed [12].

Researchers were motivated by the results in the helpful-
ness rating to continue to employ both models to estimate
the number of helpful votes [4], [6], [7], [32] although the
distribution is not normal. The central limit theory also sup-
ports this condition that a large dataset tends toward a normal
distribution in many situations, even if the original variables
themselves are not normally distributed [38].

Recently, considering the discrete form of helpful votes,
negative binomial regression has been on the rise as a popular
model for predicting the number of helpful votes [1], [2], [3].
This model assumes that the number of helpful votes is in a
discrete distribution with an over-dispersion problem [1], [2],
[3], where the variance is far from the mean value [39].

C. FACTORS IN HELPFUL VOTE PREDICTION MODELS
Previous research has generally used numerical factors to
estimate the helpfulness of the reviews [1], [2], [3], [4], [7],
[8], [19], [25], [26], [27], [28], [29]. Numerical factors, such
as star rating [1], [2], [3], [4], [7], [8], [19], [25], [26], [28],
[29], [32], review age [1], [2], [3], [19], [29], product type [8],
[25], [29], and number/existence of product images [3], [19],
have been proven to be known as factors that can significantly
have impacts on estimating the helpfulness.

In addition, review length [1], [2], [4], [7], [8], [25], [26],
[27], [28], [29], [32], readability [4], [19], [27], [29], review
sentiment [1], [29], and text complexity [1], which are gen-
erated from the text reviews, are also essential in predicting
the helpfulness rating. Some studies prove that the review
helpfulness is significantly influenced by the contents of
a review, which describe other customers’ experiences or
emotions [25].

However, recent studies focus on the review contents rep-
resented by word embedding [9], [19], [40] or bag-of-words
vector [19], [24]. Moreover, a model with mixed numerical
and text factors gives no significant improvement compared
to models using either text or numerical factors [19].

D. SAMPLING METHODS
Helpfulness prediction studies generally use random sam-
pling methods on the Amazon dataset. This method randomly
chooses elements of the training and testing data. The 10-fold
cross-validation sampling method is one of the most popular
random sampling methods [3], [9]. However, the random
sampling-based models do not consider review age, which
neglects the obsolescence of the product functions or features
in the reviews [19].

FIGURE 1. Flowchart illustrating the steps in our proposed framework.

Considering review age, Saptono and Mine [19] proposed
TBSmethods. Their methods use Cochran’s formula and time
range to calculate the adequate training set size in classifica-
tion tasks.

III. PROBABILITY DISTRIBUTION FUNCTION
This study assumes that the helpful vote y is in the continuous
EDM family. The native members of EDM family are the
Normal, Gamma, and InvGauss distributions [11]. Regarding
the central limit theorem [38], of these distributions, dis-
tributional approximation for a wide range of data tend to
approach a normal distribution. Therefore, we add Expon
and Wald, as the particular case of Gamma and InvGauss,
respectively. Both are also EDM family members.

Each distribution in the EDM family has a different prob-
ability density function (PDF). However, we can generate a
common structure of the distribution PDF f (y, θ, φ) from the
response variable y, with parameters θ and φ, as follows:

f (y, θ, φ) = a(y, φ) exp
{yθ − κ(θ )

φ

}
, (1)

where θ is called the canonical function, κ(θ ) is called the
cumulant function, φ is the dispersion parameter and a(y, φ)
is a normalizing function ensuring that (1) is a probability
function [11]. We employ (1) to identify the distribution of
helpful votes and develop the models.

The distribution-adapted model is generalized from linear
regression analysis, the normal distribution-adapted model.
Therefore, we use the mean symbol µ of the normal distri-
bution to represent the estimator E[y] for the variable y in all
distributions.

IV. PROPOSED FRAMEWORK
In this section, we elaborate on our proposed framework.
Fig. 1 shows the overall steps in our framework. We first
select the review dataset in Step A and preprocess it in Step B.
From Step B, we choose the helpful votes as the dependent
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variable and the text part of reviews as the independent
variable. Subsequently, we identify the distribution of helpful
votes in Step C. In Step D, a generalized linear model is
formulated based on the distribution of helpful votes. Next,
in Step E, we implement the distribution-adapted models
in machine learning. Text factors extracted from a review
dataset take two forms: bag-of-words and word-embedding,
which follow machine learning, in Step F. Finally, in
Step G, the models are evaluated on the dataset using adaptive
window sampling methods and measuring the performance
by the MAE metric.

A. DATASET SELECTION AND PREPROCESSING
This study uses three categories of Amazon dataset [22] for
Step:

1) Automotive (AD1),
2) Cell Phones and Accessories (AD2), and
3) Industrial and Scientific (AD3).

Those datasets are a combination of many products, each of
which has the same category.

We also use movies of IMDb dataset [23]. We select three
movies dataset as follows:

1) La La Land 2016 (ID1),
2) X-Men Apocalypse 2016 (ID2),
3) 3 Idiots 2009 (ID3).
Amazon datasets in Table 2 contain massive numbers of

inapplicable votes, and then in Step B, we apply three rules
to select the data that are involved in the experiments. First,
we only use non-zero/applicable vote reviews in the exper-
iments because it is unclear whether an inapplicable vote
review is new or unhelpful. Even though the position of the
zero votes reviews is in the middle of voted reviews, it could
be a ‘never seen’ review due to the system design which
gives a priority to popular reviews. Second, we drop duplicate
reviews and leave the original one in the dataset. The removed
duplicate comes from the system that shares one review for
items with variations, such as color and size. Each variation
has a unique identity number but shares the same reviews,
making the duplicate review not directly related to the item.
That is why the duplicate reviews more frequently appear on
Amazon datasets than on IMDb datasets, as shown in Table 2.
Third, we apply L2-normalization [41] to the number of
helpful votes. The big difference between mean and variance

TABLE 2. Dataset description.

in Table 2 shows that the over-dispersion problem occurs in
the helpful votes of all datasets.

From Step B, we select the helpful votes as the dependent
variable and the text reviews as the independent variable.
We feed the helpful votes to Step C and the text reviews
to Step F.

B. DISTRIBUTION IDENTIFICATION
In Step C, we employ the MSE and AIC scores to determine
the goodness of fit [13], [14] to identify the distribution of
helpful votes. We compared those scores among five dis-
tributions in EDM C: Normal, Gamma, InvGauss, Expon,
and Wald. We initially generate a histogram based on the
whole helpful votes of each dataset to obtain MSE and AIC.
We employ Scott’s rule [15] to find the number of histogram
bins. This rule considers the data characteristics and the size
of data in the number of bin formulations, as shown in (2).

The steps of obtaining the MSE and AIC scores for each
distribution in C are described as follows:
1) We first select a distribution c in C and fit it to the

helpful votes of the dataset to get parameters of c.
2) We generate a histogram of the helpful votes of the

dataset. The number of bins nb in the histogram is
calculated using Scott’s rule [15] in (2).

nb =
max − min

3.49σN−
1
3

, (2)

where σ , N , max, and min are standard deviation, the
dataset size, the maximum and the minimum value of
the helpful votes, respectively. In this step, we also
get nb of (xi, yi) for each bar in the histogram, where
yi represents the actual value of helpful votes in the
axis xi.

3) Based on nb calculated in step-2 and the parameters
obtained in step-1, we generate nb of ŷi by using the
density function of c.

4) MSE and AIC are calculated using yi from step-2 and
generated data, ŷi in step-3

MSE =

∑nb
i=1(ŷi − yi)

2

nb − k
(3)

AIC = 2k − 2max
i

log ŷi, (4)

where k is the number of parameters in the
distribution c.

5) The steps above are repeated for other distributions
in C.

The distribution with the least MSE and AIC scores is the
best approximate distribution. We calibrate those results with
a KS score obtained by the KS test output, as (5):

Dm,n = sup
x
|F1,m(x)− F2,n(x)|, (5)

where Dm,n is a KS score for two sample with size n and m,
sup is the supremum function, F1,m and F2,n are empir-
ical cumulative distribution functions from sample 1 and
sample 2, respectively. We also use this calibration to
answer Q1 in Section I.
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TABLE 3. Unit deviance of EDM d (y, µ) [11] with canonical function (θ),
dispersion parameter (φ), cumulant function (κ(θ)), estimator of y (µ)
and variance of y (σ2).

C. MODEL GENERATION
The main task of this study is to generate a model that adapts
the suitable distribution of helpful votes in Step. The critical
process is to generate the unit deviance for the objective
function. The deviance is a generalization of using SSE in
regression analysis, which also plays a role as a cost function
and has to beminimized [12]. Becauseµ estimatorE[y] and θ
in (1) are a one-to-one function [11], then we get the formula
of unit deviance d for response y and the estimator µ is as
follows:

d(y, µ) = 2(t(y, y)− t(y, µ)), (6)

where t(y, µ) is the order of exponential in (1), which is
defined as follows:

t(y, µ) = yθ − κ(θ ), (7)

where θ is a function of µ.
Generalizing linear regression, we get the deviance as the

summation of unit deviance in (6). The unit deviance of the
distribution used in this paper is shown in Table 3.

Expon is a particular form of Gamma distribution with
shape parameter equal to one and scale parameter θ , so the
PDF of the Expon distribution f (y, θ) is shown in (8) [11].

f (y, θ) = exp
{
y
(
−1
θ

)
− log θ

}
(8)

Based on (1), (6), (7) and E(y) = µ = θ , we get

t(y, µ) = y(−
1
µ
)− logµ (9)

and the unit deviance of the Expon distribution is as follows:

d(y, µ) = 2
{
− log

y
µ
+
y− µ
µ

}
. (10)

We found the equivalence of the Expon unit deviance shown
in (10) with the parent distribution, Gamma, as shown
in Table 3.

On the other hand, Wald is a particular case of InvGauss
with µ as the estimator of y is equal to one. Generalizing
Expon, we generate the unit deviance of Wald, which is
equivalent to the parent distribution, InvGauss, as shown
in Table 3. The unit deviance functions instead of the nor-
mal deviance have µ for the denominator. This condition
will affect the result if the prediction is close or equal to
zero. Therefore, we need to apply a translation to deviance.

For the normal deviance d(y, µ), it applies deviance transla-
tion as follows:

d(y+ ε, µ+ ε) = d(y, µ), (11)

where µ is an estimator for the response variable y and ε is
the translation coefficient. A typical example of the deviance
translation is implemented in squared log error (SLE), with
ε equal to one. Based on the deviance translation for the nor-
mal distribution and SLE, we generalize deviance translation
for other deviance to prevent error division by zero or an
anomaly result by a number close to zero.

D. MACHINE LEARNING AND FEATURE EXTRACTION
We employ three types of machine learning in Step. First,
considering the widespread use of regression and Tobit model
in previous studies, we employ the linear model (LM).
Second, we employ XGBoost (XGB) [20] since it has an
extraordinary result on classifier task as mentioned in [19].
Finally, regarding a state-of-the-art helpfulness rating predic-
tion model [9], we employ CNN to implement models adapt-
ing to the distribution of helpful votes. Furthermore, we use
the unit deviance, the output of Step, as the objective function
in machine learning to be minimized. For Gamma and Expon
distributions, we develop only the best one according to the
distribution identified. This condition is also applied to the
InvGauss and Wald distributions.

XGB employs gradient boosting and Taylor expansion
to support the development of a custom objective function.
Therefore, we need to provide the first and second derivatives
from each deviance [20] in Table 3.

FIGURE 2. CNN architecture for models adapting to (a) normal
distribution (linear regression) in [9] (b) normal (Tobit), Gamma,
InvGauss, Expon and Wald distributions.

We employ the CNN based on the architecture proposed
in [9], which is a state-of-the-art helpfulness rating prediction
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FIGURE 3. Sampling methods abstraction for (a) the 10-folds cross validation (CV) on random dataset, (b) the adjusted 10-folds cross-validation (ACV) on
the dataset sorted in chronological order, and (c) adaptive window size(AWS) on the dataset sorted in chronological order. Our proposed sampling
method AWS adjust the size of training size of TBS [19].

model, with modifications of the loss function and output
layer, as shown in Fig. 2. We build the loss function based
on the deviance of the distribution, which is the summation
of the unit deviance shown in Table 3. When implementing
Tobit model and models adapting to Gamma/Expon, and
InvGauss/Wald distributions in CNN, we employ an output
layer to prevent the result from negative value. Two activation
functions: ReLU [42] and LeakyReLU [43] with negative
coefficient, a, as in (12) are possible to use. Since ReLU has a
problem called the ‘dying’ phenomenon, where the prediction
is always zero for every value in the dependent variable,
we use LeakyReLU. Later, we prove the dying phenomenon
when using ReLU for the activation function at the output
layer.

f (x) = max(ax, x). (12)

In LM, we employ the same objective function as in CNN.
We use the Limited Memory Broyden–Fletcher–Goldfarb–
Shanno (L-BFGS) approach [44] to minimize the objective
function.

As independent variables, we use the results of fea-
ture extraction from the text review, in Step, depending on
machine learning. In the LM and XGB-based models, the
text parts of the reviews are transformed into unigrams,
and bigrams term frequency-inverse document frequency
(TF-IDF) [45] weighted bag-of-words format as independent
variables. Meanwhile, in CNN, the text parts are transformed
into word embedding by applying GloVe [46], [47] with six
billion words and 100 dimension vectors (Glove.6B.100d).

E. MODEL EVALUATION
Finally, in Step G, to evaluate the model, we propose an
adaptive window size (AWS) sampling method. AWS is
inspired by the TBS method [19], as shown in Fig. 3(b). The
basic idea of the TBS method is to get the training set as
close as possible to the testing set, under the assumption that,
as the training set gets closer to the testing set, it shares a
more similar characteristic with the testing set, and the model
performance becomes improved [19].

AWS uses a variable length of training set instead of a
fixed-length training set. Since the testing set is the same,

we can select a training set suitable to the testing set. How-
ever, Cochran’s formula uses the variance of the binomial
distribution to determine the sample size [48]. According to
the central limit theorem, we need to deal with continuous
distributions. Therefore, we adjust the formula as in (13) to
get the sample size n from the dataset size N .

n0 =
4Z2σ 2

w2 and n =
n0

1+ n0−1
N

, (13)

where Z is a standard score for the desired confidence level,
σ 2 is the variance of helpful votes, w is a unit margin of error,
and n0 is the number of samples if the dataset size is unknown.
In this paper, we calculate σ from the helpful votes of reviews
in the training set because we assume that reviews after the
training set are not voted yet.

If the dataset size is N , and fold-size is f , then AWS is as
follows:

1) We first sort the dataset with size N in chronological
order and divide the dataset by fold-size f . We use the
first data with size Nt = N/f for the candidate training
set and the next dataset with Nt for the testing set.

2) We calculate the variance of the helpful votes σ 2
t in the

candidate training set in step (1). Furthermore, we fed
σ 2
t and the size of the candidate training set size Nt to

Cochran’s formula in (13), replacing σ 2 and N to get
the sample size n.

3) If n in step (2) ≥ Nt in step (1), then we use Nt as
the training set. Otherwise, we use n elements in the
candidate training set closest to the testing set.

4) We add the testing set to the candidate training set
and select the following Nt data as the new testing set.
We feed the new candidate training set and testing set
to step (2).

5) We repeat the above for f − 1 samples.
For comparison, we run the model in 10-fold cross-

validation (CV). Meanwhile, we need to adjust the 10-fold
CV in Fig. 3(a) when applying the model to the dataset in
chronological order, as shown in Fig. 3(b). The white cells are
used as a training set in random sampling. Since the review
dataset is sorted in chronological order, the white cells are
unlabeled. The testing set in the current row increments the
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TABLE 4. Distribution-adapted and baseline models, including some miscellaneous linear and ensemble models.

training set in the next row, and we call it the adjusted cross-
validation (ACV) sampling method.

We employ mean absolute error (MAE) in (14), to evaluate
the performance of each model and compare it among the
models to find the best model. The model with smaller MAE
means better model.

MAE =
1
n

n−1∑
i=0

|yi − ŷi|, (14)

where y, ŷ are the actual and predicted numbers of helpful
votes, respectively, and n is the testing set size.
On the other hand, we need to use mean absolute per-

centage error (MAPE), as shown in (15), to prove the dying
phenomenon of CNN with ReLU on the output layer. Using
MAPE makes it easier to detect zero prediction on any values
of normalized helpful votes. If the average MAPE is 1 with 0
standard deviations, we can conclude that the prediction value
is always zero.

MAPE =
1
n

n−1∑
i=0

∣∣yi − ŷi
yi

∣∣ (15)

We also use MAE for CTR with ReLU on the output
layer in determining the acceptance of a model performance.
If the model has a smaller MAE than the threshold, it has an
acceptable result, otherwise is an unacceptable one.

V. PERFORMANCE EVALUATION
We conduct experiments to validate our proposed models.
We first identify the distribution using MSE and AIC scores.
Subsequently, we implement the distribution-adapted models
using three machine learning methods: LM, XGB, and CNN,
and evaluate them using the AWS and ACV sampling meth-
ods. We employ a statistical analysis of variance to check the

significance of the mean difference. Finally, we investigate
the effect of machine learning, sampling methods, and distri-
bution on model performance.

A. EXPERIMENT SETUP
We build two baseline models adapted to the normal dis-
tribution: linear regression [4] and Tobit regression [6], [7]
when the best approximation distribution is not the normal
distribution. In addition, we also involve a model adapting
to the second-best approximate distribution to investigate the
possibility of model performance following the distribution
of helpful votes. We develop each model in three machine
learning contexts, where the details are shown in Table 4.

Here, we implement our proposed framework in
Python. We use a linear model library on sklearn.
linear_model to implement linear regression, Tobit
regression, and the Gamma/Expon distribution-adapted
model. For the InvGauss/Wald distribution-adapted model,
we use a Tweedie Regression and set the power with three.
Since we use a linear model on sklearn.linear_
model, we also use all machine learning in the library and
ensemble, as shown in Table 4, which employ SSE/MSE
or its modification for the objective function as baseline
models [49], [50], [51], [52], [53], [54], [55], [56].

We also use xgboost library to implement XGB. Two
problems arise when we use XGB:

1) The native objective function of Gamma/Expon can not
handle a normalized value of the independent variable,

2) The objective function of InvGauss/Wald has not been
implemented in XGB yet, while Tweedie regression in
XGB can not accept power equal to or close to three.

Therefore, we need to provide a custom objective function
for models adapting to Gamma/Expon and InvGauss/Wald
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distributions. We first use a translation of unit deviance
in Table 3, as generalization from (11). Equations (16)
and (17) show the translation of the Gamma/Expon and
InvGauss/Wald unit deviance, which we call GAMMA+ε
and WALD+ε, respectively. Subsequently, we feed the first
and second derivatives of the translation of unit deviance to
develop custom objective functions of XGB.

d(y+ ε, µ+ ε) = 2
{
− log

y+ ε
µ+ ε

+
y− µ
µ+ ε

}
(16)

d(y+ ε, µ+ ε) =
(y− µ)2

(µ+ ε)2(y+ ε)
(17)

Appendix A Figs. 12 and 13 show that the GAMMA+ han-
dles normalized helpful votes better than the original Gamma
objective function in XGB. GAMMA+ performs better when
ε ≥ 1. Identically, the WALD+ implementation in XGB also
handles the normalized helpful votes better than the original
Wald objective function, as shown in Figs. 14 and 15 in
Appendix A. WALD+ performs better when ε ≥ 1 with
AWS on ID3 and ε ≥ 2 for the rest. We resume the ε-values
in Table 5.
Moreover, we use PyTorch to develop CNN. We use

MSE Loss for models adapted to a normal distribution.
However, we need to provide a custom loss function for
models adapting to Gamma/Expon and InvGauss/Wald distri-
butions based on the mean of summation from unit deviance,
as shown in Table 3.
We can use two activation functions: ReLU and negative

coefficient LeakyReLU, as mentioned in Subsection IV-D,
for the output layer of CTR, CEX, and CWA. Since CTR is
one of the baseline models, we use the CTR model to prove
that CTRwith ReLU for the output layer will give the ‘dying’
phenomenon on normalized helpful votes. On the other hand,
CNN with a negative coefficient LeakyReLU will solve the
ReLU problem.

To prove the ‘dying’ phenomenon, we combine CTR with
ReLU for the output layer. CTR model with ReLU gives the
average of MAPE equal to 1 with 0 standard deviations for all
datasets with both sampling methods, ACV and AWS. This
result proves that the combination of CTR and ReLU always
gives zero results for any value of the normalized helpful
votes. Since the output is always zero, we get the average
MAE of CTR-ReLU as the average sum squared of the abso-
lute actual number of helpful votes. So, it is unacceptable if
the value of MAE of any model is greater than or equal to
the average of MAE of CTR-ReLU. Therefore, we use the
average MAE of CTR-ReLU as a threshold to determine the
acceptance of the model performance.

Furthermore, considering the value of the helpful votes
after L2-normalization, we use negative values for the
LeakyReLU coefficient in the range [−1e−3,−1e−9] for the
output layer of CTR to solve the ReLU problem. The negative
coefficient of LeakyReLU, as in (12), ensures the output is
above the axis line (y = 0), except on 0. In addition, within
that range, we also get a gentle slope of LeakyReLU. Fig. 16
in Appendix shows that CTR with a negative coefficient

TABLE 5. The ε-values for GAMMA+ε and WALD+ε, and the coefficients
for CNN-based models.

TABLE 6. Distribution identification results. We use two goodness of fit
metrics: AIC and MSE. We also provide the KS score for calibration.

LeakyReLU has an improvement compared to CTR with
ReLU. The LeakyReLU coefficient for each dataset is shown
in Table 5.

We need to provide some parameters in machine learning
and the AWS sampling method. We use a learning rate of
0.1 for XGB and 0.01 for CNN.We also set a negative param-
eter of 1e-5 to get a positive gradient function on LeakyReLU.
In the AWS sampling method, we set the unit margin of error
w as two and Z -score with a confidence level of 99%.

B. APPROXIMATE DISTRIBUTION
Since there is no best fit distribution based on the p-value of
the KS test with a value less than 0.01 for all distributions,
we useMSE and AIC scores to establish the approximate dis-
tribution to identify the distribution of helpful votes. Table 6
shows the result of approximate distribution identification
using the MSE and AIC scores compared to the KS score as
calibrator.

We get Wald as the best approximate distribution for Ama-
zon datasets, either with MSE or AIC. This result is the same
as the outcome of the KS score best approximate distribution,
as shown in Table 6. Table 6 shows the different results
for IMDb datasets, although the score difference is small
between Expon and Wald with AIC.

Above results answer Q1 that our approach gives the same
result on the best approximate distribution as the KS score on
Amazon datasets. However, we get dynamic results on small
and homogenous datasets: IMDb. MSE gives Wald on ID1
and ID2 datasets and Expon on ID3. Meanwhile, AIC pro-
vides Expon on ID1 and ID3 datasets andWald on ID2. Those
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TABLE 7. Performance of models on Amazon datasets with the ACV and AWS sampling methods. The performance is measured by the average of MAE
followed by the standard deviation in the parentheses. We use the result of CTR-ReLU as the acceptance threshold of models.

FIGURE 4. Performance of models under the threshold line on Amazon datasets. Distribution-adapted models in LM and CNN do not always
cross the line.

results differ from the results of the KS score, which gives
InvGauss on ID1 and ID2, and Wald on ID3. Furthermore,
we feed the results of distribution identification to the model
generation step.

According to the results in Table 6, the best approximate
distribution on Amazon datasets is Wald, whose effect may
depend on machine learning methods. We also implement
Expon, the second-best approximate distribution, instead
of the parent Gamma to investigate the distribution effect
on model performance. Meanwhile, we implement Wald/
InvGauss and Expon, which provide the best approximate
distribution on IMDb datasets.

C. MODEL PERFORMANCE
Here, we show that implementing a model adapting to
unsuitable distribution tends to give an unacceptable and
suboptimal result. We first develop the model that adapts
to the best approximate distribution, as in Table 6. We then

compare the results of the model adapting to the best approx-
imate distribution along with those of the other baseline
models with the averageMAE of CTR-ReLU, the acceptance
threshold, as mentioned in Subsection V-A. Subsequently,
we check the impact of sampling methods.

Table 7 shows that the models adapted to the best approxi-
mate distribution always give an acceptable result on Ama-
zon datasets, primarily when implemented in LM (LWA)
and CNN (CWA). All miscellaneous and LM-based models
give acceptable results when evaluated with AWS on the
AD1 dataset, where the average MAE is under the thresh-
old, the average MAE of CTR-ReLU. Meanwhile, with
ACV, we find that only SGD, RFR, GBR, ETR, and LWA
models provide acceptable results. Models built in XGB
and CNN, except CSE, also provide acceptable results on
AD1. However, we get fewer models (LWA, CTR, CEX,
and CWA) which give acceptable results on AD2 and AD3
datasets.
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TABLE 8. Performance of models on IMDb datasets with the ACV and AWS sampling methods. The performance is measured by the average of MAE
followed by the standard deviation in the parentheses. We use the result of CTR-ReLU as the acceptance threshold of models.

FIGURE 5. Performance of models under the threshold line on IMDb dataset. Distribution-adapted models in LM and CNN do not always
cross the line.

Overall, CWA gives the best results on Amazon datasets,
as shown in Table 7 and Fig. 4. These results follow the pat-
tern of those of distribution identification with all approaches,
as shown in Table 6. MSE, AIC, and KS approaches give
the same best approximate distribution, Wald on Amazon
datasets.

We also find that LWA, CTR, CEX, and CWAmodels give
acceptable results on IMDb datasets as shown in Table 8 and
Fig. 5. On ID1 and ID2, CWA gives the best result when
evaluated with ACV. On the smallest dataset, ID3, CEX has
the best achievement with AWS. These results are in the same
pattern as the best approximate distribution of theMSE score,
as shown in Table 6.

The best model on Amazon datasets CWA is achieved
when evaluated with AWS. In addition, on twomost extensive
datasets: AD1 and AD2, model evaluation with AWS has a
significant impact, as shown in Figs. 4(a) and 4(b). However,

on the AD3 and IMDb datasets, model evaluation with ACV
has no significant difference compared to AWS, as shown
in Figs. 4(c) and 5.
Furthermore, we analyze effects of distributions to which

the model is adapted, the sampling methods used, and the
time consumed by the model.

D. EFFECT OF DISTRIBUTION
We show the effect of distribution on the model performance
in Figs. 6 to 8 and answer Q2 in Section I. We also show the
improvement in the model performance when models follow
the identified approximate distribution in Table 9.

The models that adapted to the best approximate distribu-
tion LWA give acceptable results on all datasets. In addition,
the performance of the model built in LM follows the rank of
the identified distributions, as shown in Table 9. The results
on Amazon datasets shown in Figs. 6(a) to 6(c) follow the
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FIGURE 6. Performance of models implemented in LM. The version
follows the best approximate distribution with the KS score.

FIGURE 7. Performance of models implemented in XGB. The version
follows the best approximate distribution with the KS score.

MSE, AIC and KS scores as in Table 6. On the other hand, the
results on IMDb datasets, as shown in Figs. 6(d) to 6(f), fol-
low KS on all datasets, MSE (ID1 and ID2), and AIC (ID2).

The effect of identified distribution, which was used in
XGB, is perfectly shown in Fig. 7. However, distribution-
adapted models have only a slight effect on AD1. Still,
overall, XEX and XWA models gave a consistent effect
according to the identification rank of the distributions,

FIGURE 8. Performance of models implemented in CNN. The version
follows the best approximate distribution with the MSE score.

TABLE 9. Performance improvement as effect of distribution-adapted
model compared to baseline models.

as shown in Table 6, especially with the KS score. Those
results also follow the rank by MSE (despite ID3) and AIC
(despite ID1 and ID3). Table 9 confirms those results.

While the model performance in LM and XGB fully fol-
lows the rank by the KS score, the model performance in
CNN entirely follows the rank by MSE. Tables 7 and 8 show
that the distribution-adapted models give a significant drop
on MAE compared to CSE. Fig. 8 shows that CEX and
CWA also perform better than CTR, as in Table 9, except on
AD1 and AD2 when evaluated in AWS. On AD1 and AD2,
CTR performs better than CEX when evaluated with AWS.
Following the distribution identificationwith theMSE scores,
as in Table 6, CEX performs the best on ID3, while CWA on
the rest.

The implementation of distribution-adapted models affects
LMmore than other machine learning, in Table 9. LWA gives
more than 15% improvement compared to the best model
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TABLE 10. Performance improvement as effect of evaluation with AWS
sampling methods compared to ACV sampling methods.

adapting a normal distribution. The same pattern with smaller
improvement appears in XGB, as in Table 9. Implementation
with AWS in ID1 gets the greatest effect. Meanwhile, the
implementation with ACV on AD2 gets the least impact. The
smaller effect is in CNN, with less than 1% improvement.

Overall, the implementation of the model that adapts to
the distribution gives a positive improvement in all machine
learning.

E. EFFECT OF SAMPLING METHODS
Next, we answer Q3 in Section I. We calculate the improve-
ment of each model performance with the AWS sampling
method compared to ACV, as shown in Table 10.

Table 10 shows that evaluation with AWS affects the model
performance on large-size datasets, Amazon. AWS gives sig-
nificant positive results for all models except for CSE on
AD1 to AD3. ACV and AWS have dynamic results on IMDb
datasets with no significant difference. The best model on ID1
and ID2 is CWA, achieved with ACV, and on ID3 is CEX
when evaluated with AWS.

Based on the above results, we can answer Q3 that the
model evaluation with AWS improves the performance, espe-
cially on large datasets. Moreover, it gives an almost constant
improvement in LM and XGB models.

F. TIME CONSUMPTION
Here, we answer Q3 in Section I by comparing the time
consumption of each model in each machine learning and
dataset. We calculate the time consumed from the start of
training the model to obtaining the test results.

We find that all models run far faster when evaluated in the
AWS sampling methods on the two most extensive datasets,
AD1 and AD2. We find that distribution-adapted models
spend various run times depending on the machine learning,
the dataset characteristics, and sampling methods. The details
are shown in Appendix C.

In LM, the best approximate distribution model LWA dou-
ble the time of the fastest model to get a result, as shown in
Fig. 9. LAR is the quickest model on the two largest datasets,

FIGURE 9. Model run time in LM.

FIGURE 10. Model run time in XGB.

AD1 and AD2, while SGD is the fastest on the rest. We also
find that the model evaluation with AWS reduces the run
time by more than 60% compared to ACV on AD1 and AD2.
On the rest, using AWS has no significant effect on the time
consumed to run the model.

In XGB, the best approximate distribution-adapted
model, XWA, spends less than other models on IMDb
datasets, as shown in Figs. 10(d) to 10(f). On Amazon
datasets, XWA spends more time than XSE, as shown in
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FIGURE 11. Model run time in CNN.

Figs. 10(b) and 10(c), except on AD1 with AWS. Moreover,
using AWS reduces the time consumption up to 75% on AD1
and 30% on AD2.

CNN is the most time-consuming machine learning,
as shown in Figs. 11(a) to 11(c), which is almost 10 times
XGB and 20 times LM on Amazon datasets. However,
on IMDb datasets, CNN models perform faster than XGB,
as shown in Figs. 11(d) to 11(f). Among CNN mod-
els, CWA and CEX reach a level with the fastest mod-
els on all datasets, despite AD2 and ID1, as shown in
Figs. 11(a), 11(c), 11(e) and 11(f). On AD2, CWA and CEX
increase slightly compared to CSE, but gain a level with CTR,
as shown in Fig. 11(b). Meanwhile, Fig. 11(d) shows that
CEX reaches the topwhenCWAconsumes slightlymore time
than CSE and CTR. Consistent with the LM and XGB, AWS
reduces the time consumption by more than 60% on AD1 and
AD2 for all models.

G. DISCUSSION
Previous studies commonly use the helpfulness rating as a
dependent variable since their datasets, such as Amazon.com
2014 [37], have helpful and total votes to measure helpful-
ness. Moreover, their focus is on model factors’ contribution
to helpfulness, and many factors appear as independent vari-
ables in Table 1. So, we cannot make a direct comparison
with previous research.

In this research, we use Amazon.com 2018 [22] as an
updated version of Amazon.com 2014 [37], which has
dropped total votes. With the result, we use the helpful votes
as a dependent variable, even on IMDb dataset [23]. To make
a comparison with the state-of-the-art helpfulness rating

TABLE 11. Comparison with previous research.

predictionmodels [9], [30], we rerun them in the helpful votes
on Amazon.com [22], and IMDb [23] dataset. Our proposed
framework, especially with LM and CNN approaches, does
not have poor performance compared to previous studies,
as shown in Table 11.

VI. CONCLUSION AND FUTURE WORK
This study discussed the benefits of checking the distribution
of helpful votes of reviews in a dataset. It was proved that the
distribution of helpful votes significantly affects the model
performance. The performances consistently follow the rank
of distribution identification results, especially when imple-
menting LM and XGB.

The experimental results illustrated that the helpful votes
are not statistically distributed in a continuous distribution.
Meanwhile, MSE and AIC consistently show that Wald is
the best approximate distribution of the helpful votes on
Amazon datasets. This result follows the calibrator of the KS
score. On the other hand, the best approximate distribution
is dynamic among Expon, InvGauss, and Wald on IMDb
datasets. MSE and AIC have a distinct result on ID1, where
MSE gives Wald while AIC gives Expon. Both approaches
give Wald and Expon for ID2 and ID3, respectively. These
results do not follow KS, which has InvGauss for ID1 and
ID2, and Wald for ID3.

Models adapting to Wald distribution are significantly
improved compared to the other models, following the best
approximate distribution on Amazon datasets. On IMDb
datasets, Wald distribution-adapted model, CWA, gives the
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FIGURE 12. XEX with GAMMA+ε performance compared to the native
objective function of Gamma/Expon model on Amazon datasets.
GAMMA+ε can handle normalized helpful votes better when ε ≥ 1.

FIGURE 13. XEX with GAMMA+ε performance compared to the native
objective function of Gamma/Expon model on IMDb datasets. GAMMA+ε
can handle normalized helpful votes better when ε ≥ 1.

best result on ID1 and ID2, while Expon distribution-adapted
model, CEX, is on ID3. Those results are the same pattern as
the distribution identified by the MSE score.

When predicting the number of helpful votes, it is impor-
tant to take into account the sampling time elapsed since

FIGURE 14. XWA with WALD+ε performance compared with WALD on
Amazon datasets. WALD+ε can handle normalized helpful votes better
when ε ≥ 1.

FIGURE 15. XWA with WALD+ε performance compared with WALD on
IMDb datasets. WALD+ε can handle normalized helpful votes better
when ε ≥ 1.

the review was posted. It was proved that the model eval-
uation with AWS, an adjusted window size in the TBS
method, has a greater effect with much less training data
than using ACV, especially on large and medium size
datasets. Moreover, AWS provides slightly better results on
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TABLE 12. Average model run time spent on each iteration on Amazon datasets with the standard deviation in parentheses.

small-size datasets. In addition, AWS also positively affects
model performance on average when implementing LM,
XGB, and CNN.

Evaluation with the AWS sampling method on two large
datasets, AD1 and AD2, decreases the time consumption
significantly for all models. On the other hand, the time
consumed by a model that follows the best approximate dis-
tribution to produce results is variable. It depends on machine
learning, characteristics of the data set, and sampling meth-
ods. In CNN, normal distribution-adapted models perform
faster: CSE on two large datasets, AD1 and AD2, and CTR on
two small datasets, ID2 and ID3. However, models adapting
to Expon and Wald distributions spend not far different from
the fastest model. In XGB, Wald distribution-adapted models
spend not far different on Amazon datasets and even faster
thanmodels adapting to other distributions on IMDb datasets.
On the other hand, LWA consumes double compared to the
quickest model in LM and miscellaneous models. However,
it is still under a minute on the largest dataset and even a
second on IMDb datasets.

The best approximate distribution is identified by measur-
ing the distribution of whole helpful vote reviews in each
dataset. Adaptively changing the distribution identification
on the training set will be challenging. Moreover, there is a
minor difference in the order of AIC, MSE, and KS scores on
InvGauss and Gamma. Investigating the effect of the metric
on the other datasets also becomes a further task. Considering
the advantage of the RNN-based model in sequential data,
developing an RNN-based model for helpful votes prediction
also becomes a challenge.

FIGURE 16. CTR is sensitive to the change of the LeakyReLU coefficient.
CTR with AWS has the same coefficient of the LeakyReLU as with ACV on
IMDb datasets.

APPENDIX A GAMMA AND WALD DEVIANCE
TRANSLATION EFFECT ON XGB
See Figures 12–15.

APPENDIX B LeakyReLU COEFFICIENT FOR CTR
See Figure 16.
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TABLE 13. Average model run time spent on each iteration on IMDb datasets with the standard deviation in parentheses.

APPENDIX C THE TIME CONSUMPTION
See Tables 12–13.
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