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ABSTRACT The graphical modeling language GRAFCET is used as a formal specification language in
industrial control design. To use these formal specifications for model-driven development of control code
it is beneficial to ensure their syntactical and semantic correctness. Therefore in this paper, a detailed meta-
model for GRAFCET is presented, which takes so-called terms into account, i.e. logical and arithmetic
expressions in conditions and assignments. The meta-model and additionally proposed invariants allow the
creation of syntactically correct GRAFCET instances. Based on this, a translation of GRAFCET to Guarded
Action Language (GAL) is presented. The resulting transition system in GAL forms the basis for a semantic
analysis of the GRAFCET instances by means of model checking in future research. Finally, the models are
then employed for automatic code generation in Structured Text.

INDEX TERMS Industry automation, formal model, formal verification, model checking, model-driven
engineering, GRAFCET.

I. INTRODUCTION
An important part of the engineering process of cyber-physical
systems is the specification of the control code. Formal
methods can avoid the error-prone human interpretation of
informal specifications and increase the quality of control
code by automatic code generation [1]. However, formal
control design has not gained much acceptance in practice.
One reason given is that existing concepts and means of
description from the field of software development are not
suitable for control design in industrial automation [2].

GRAFCET is an internationally standardized graphical
specification language according to IEC 60848 [3] (the
term Grafcet refers to an instance of GRAFCET), which
makes it possible to describe hierarchical control structures.
If the behavior of the control system is described with a
Grafcet, it can be used as a specification in the formal
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control design. Since the cost of correcting errors in software
systems increases exponentially as the development phase
progresses [4], it is beneficial to verify the specification as
early as possible. Therefore, this paper will present a basis
for verifying modeled control behavior, i.e. the formal spec-
ification instead of the actual implementation. The formal
specification in form of a Grafcet is transformed into control
code via model-driven code generation only after successful
verification and, if necessary, iterative revisions.

The goal of this paper is to propose a groundwork for
model checking of GRAFCET integrated in the model-driven
development process of control code. The development pro-
cess presented in this paper consists of three steps: (I) Using
means to create syntactically correct Grafcets that (II) can
be transformed into a transition system used as input lan-
guage for a model checker. After the verification process an
(III) automatic transformation of GRAFCET into control
code ensures semantic equivalence of the verified specifica-
tion and the implementation.
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FIGURE 1. Model-driven development of control code using GRAFCET and formal verification.

An overview of this process is given in Fig. 1. After
discussing related work in Section II we give some prelim-
inaries in Section III which are used in our main contribu-
tions described in Section IV. There, the first subject is to
completely define the abstract syntax of the used specifica-
tion language GRAFCET in Section IV-A. This is done by
building on the work of Julius et al. [1], via a meta-model
(Fig. 1: GRAFCET meta-model) including the terms in con-
ditions (e.g. a transition condition A AND B) and assign-
ments which are not considered in research so far. Besides
the meta-model, invariants are necessary to formulate addi-
tional syntactical rules, which we investigate in Section IV-B.
After establishing syntactical correctness, a transformation
to Guarded Action Language (GAL) [5] is presented in
Section IV-C. GAL is a language for modeling transition
systems and is suitable for model checking. Thus, the trans-
formed GAL transition system can be used as an intermediate
representation for verification of Grafcets usingmodel check-
ing in a subsequent work. Additionally, a transformation of
the verified Grafcets, based on Julius et al. [6], into Structured
Text (ST) [7] is presented in Section IV-D. We evaluate this
approach in Section V and draw conclusions in Section VI.

II. RELATED WORK
Although the GRAFCET formalism provides a considerable
number of additional modeling mechanisms, in its basic core
it is in many ways similar to Petri nets: Transitions and steps,
connected alternately by arcs, form a bipartite graph and
transitions can only fire when all preceding steps are active,
to name two shared concepts. Petri net variants themselves are
powerful specification means for event driven systems that
have been thoroughly studied, in particular with respect to
verification.

A notable class form Signal Interpreted Petri Nets
(SIPN) [8] and Control Interpreted Petri Nets (CIPN) [9],

which are well suited for the specification of logic controllers.
They provide deterministic behavior and introduce input and
output signals associated with transitions and steps for mod-
eling interaction with the environment. These and similar
variants have been subject to research with respect to model
checking in e.g. [10], [11], [12] and lately [13] as well as code
generation for PLC in e.g. [14] and lately [15].

David and Alla [9] as well as El Rhalibi et al. [16] provide
a comparison of CIPN and GRAFCET concluding that CIPN
can be translated into GRAFCET without semantic loss. The
other way around only a subset of GRAFCET, so called
sound Grafcets, can be translated into CIPN. Sound Grafcets
are restricted to basic Grafcet elements, i.e., Grafcets with-
out hierarchical concepts, and also do not allow the usage
of special constructs such as source transitions. However,
these hierarchical concepts proposed by the GRAFCET stan-
dard allow for compact modeling of complex systems. They
include macro steps, enclosing steps and forcing orders [3].
Based on [9] Schumacher et al. provide a translation of
GRAFCET into CIPN by first normalizing hierarchical struc-
tures [17]. A drawback of this normalization technique is
the loss of hierarchical information in the process, making
it difficult to use directly for model checking, as finding the
error source in the original Grafcet might become challeng-
ing. Furthermore the resulting normalized Grafcets are not
sound and therefore most of the well known structural verifi-
cation techniques for Petri nets [18] are not applicable. Spec-
ifying hierarchical behaviour of logic controllers motivates
the need for GRAFCET-specific verification approaches
before the Grafcets can be transformed into control
code.

Since the standard is used in several industrial domains,
for example railway transport and the manufacturing indus-
try [19], GRAFCET is alreadywidely known in the respective
areas, making it potentially easier to advance the usage of
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model-based engineering and verification using GRAFCET
in the industry.

A first step toward that goal is to define a meta-model.
An overview of the existing meta-modeling approaches of
GRAFCET is presented by Julius et al. [1]. Furthermore,
they propose a meta-model suitable for model-driven devel-
opment in PLC programming. The proposed meta-model of
IEC 60848 GRAFCET contains all basic elements, synchro-
nizations, time and event conditions and hierarchical struc-
tures. However, the formalization of terms, i.e., logical and
arithmetic expressions in conditions and assignments, has not
been considered in [1]. They are only represented as strings in
the target language syntax, which hinders formal verification.
Schumacher and Fay [20] use the Petri NetMarkup Language
(PNML) as exchange format for GRAFCET which is defined
in ISO/IEC 15909-2 [21]. The standard uses meta-models
according to the Meta Object Facility (MOF) standard to
define the structural concepts of Petri nets and to provide an
exchange format. One part of the meta-model refers to the
terms of the Petri nets. For syntactical correctness, related
invariants are provided. However, PNML covers all Petri
net formalisms and therefore results in a large amount of
specific elements not needed for GRAFCET. Approaches
to cover terms, left out by Julius et al., are proposed by
Arnold et al. [22] and Nzebop et al. [23], both of which use a
grammar and a parser. However, Arnold et al. do not provide a
meta-model and therefore their approach can not be adapted
to different target languages. Nzebop et al. parse the terms
into a meta-model based on the EclipseModeling Framework
(EMF) and provide additional invariants to ensure the correct
syntax. However, the integration of the meta-model of terms
into a GRAFCET meta-model (e.g. proposed by Julius et al.)
as well as additional invariants which cover this integration
are not presented.

To facilitate model checking of GRAFCET, previous work
has transformed IEC 60848 into different formal models.
In [24], Provost et al. discuss a translation toMealymachines.
Their concept includes that of a stable location automaton,
which describes all stable (i.e., not transient) situations of
the underlying Grafcet as states. The authors also intro-
duce a mathematical formalization of the standard which
Julius et al. expand on [1]. They use this formalization to
rigorously describe behavioral aspects of the standard. How-
ever, the authors of [24] neither discuss hierarchical concepts
such as enclosed steps nor timed elements. A translation
to timed automata is given by Cassez in [25], who consid-
ers a restriction of the standard to fundamental components
such as steps, transitions and timed conditions. However,
it includes neither forcing orders nor actions associated with
steps. The authors of [26], [27], and [28] provide a time
Petri net model for GRAFCET, that also considers timed
aspects of the standard, but neither rising and falling edges
on internal Boolean variables nor explicit source transitions.
Their approach models environmental variables structurally
by elements of the Petri nets, rather than by employing SIPN
or CIPN. More recently, GRAFCET has been utilized in

model checking distributed reconfiguration scenarios in [29].
In their approach, the GRAFCET instances are first trans-
formed into a programming language in order to be verified,
such that model checking is not employed on specification
level.

There are approaches that consider hierarchical concepts
in other specification languages. Frey [30] verifies a hierar-
chical variant of SIPN. However, the hierarchical concepts
proposed in hierarchical SIPN are only comparable to macro
steps of the GRAFCET standard and unable to represent
enclosures or forcing orders. Klotz et al. [31] verify UML
state-charts. They normalize hierarchical concepts using pri-
orities assigned to transitions. This approach can not be
adapted to GRAFCET, because priorities of transitions are
not supported due to the synchronous execution semantics
enforced by the fourth evolution rule [3].

III. PRELIMINARIES
In the following sections, a brief overview of our preliminary
work for formalizing GRAFCET and the basic concept of
GAL is given.

A. FORMALIZING GRAFCET
Provost et al. [19], among others, have worked towards
formalizing IEC 60848 to establish a rigorous framework
upon which details of algorithms and transformations can be
formulated precisely. Due to the semi-formal nature of the
standard itself, different authors have done so in different
ways. However, hierarchical concepts are often disregarded.
An extension of the work of Provost et al. [19] is given by
Julius et al. [32], which also includes the formalization of
hierarchical aspects, and serves as a basis for this chapter.

Macro steps are intentionally left out in this work since they
do not increase expressivity: Each Grafcet with macro steps
can be turned into one without macro steps while staying
semantically equivalent. This is done by simply replacing
every macro step with their respective macro step expansion
chart.

In the following, a Grafcet G = (Vin,Vint ,Vout ,C) is a
model that comprises a set of charts C 6= ∅ with globally
available sets of input variables Vin, internal variables Vint
and output variables Vout . Input, internal and output variables
can either be Boolean or integral, i.e. v is assigned a value
of Z for all v ∈ Vin ∪ Vint ∪ Vout with Boolean variables
being limited to the set {0, 1}. We denote by VinB ⊆ Vin
(VintB ⊆ Vint , VoutB ⊆ Vout ) the set of Boolean input
(internal, output) variables. Given these variables we are now
able to construct Boolean expressions with usual relational
symbols (such as = and ≤) and Boolean operators (such as
disjunction∨ and negation¬). A variable may change values
caused by an event. In particular, any Boolean expression
x may change from 0 to 1 or vice versa. As a short hand
notation for this, we use ↑x (↓x) for such a rising (falling)
edge event. When such an event occurs, these variables are
set only for the first subsequent evolution when dealing with
transient situations. By CNDwe denote the set of all Boolean
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expressions over variables inG, whileCNDE ⊆ CND denotes
all such expressions that require an event to evaluate to true.
For example, given a, b ∈ Vin, a ∨ ↑b ∈ CND \ CNDE
and a ∧ ↑b ∈ CNDE . Let CNDNE ⊆ CND be the set of
all conditions that never depend on a rising or falling edge
event.

Every chart c ∈ C is a 6-tuple c = (S, I ,E,M ,T ,A),
where
• S is a finite set of steps, each of which is either active or
inactive at any given time,

• I ⊆ S is the set of initial steps,
• E ⊆ S × C is the set of enclosing steps,
• M ⊆ S is the set of marked steps,
• T ⊆ P(S)× P(S)× CND is the set of transitions,
• A is a set of actions.

We use the notation Sc, Ic, Ec, Mc, Tc, Ac to refer to the
respective sets of a given chart c ∈ C . The set Mc describes
the steps that are activated by the enclosing step, which are
graphically denoted by an asterisk next to the step. Every
e ∈ Ec describes an enclosing step, which translates formally
to e = (s, cenc) for a step s ∈ Sc and a chart cenc ∈ C . If an
enclosing step becomes active, it activates all stepsm ∈ Mcenc .
If an enclosing step becomes inactive, it deactivates all steps
s ∈ Scenc . We say that c is enclosed iff Mc 6= ∅. Further we
have disjoint sets of steps, that is Sc∩Sc′ = ∅ for every c′ ∈ C
with c 6= c′. Every s ∈ Sc induces a new Boolean variable xs
which indicates the activation status of s and is true iff the
step is active in the current situation. These variables can be
used in Boolean expressions (CND).

A transition t ∈ Tc is a triple t = (U ,D, b), where
• U ⊆ Sc is the set of immediately preceding steps,
• D ⊆ Sc is the set of immediately succeeding steps,
• U 6= ∅ ∨ D 6= ∅,
• b ∈ CND is the transition condition.

We also call U the upstream and D the downstream of t .
Note that if b ∈ CND \ CNDE the transition may cause a
transient situation. We say that t is enabled if xs is true for
every s ∈ U . We say that t can fire, if it is enabled and
b is true. Finally, we formalize the set of actions Ac. The
standard defines different types of actions: continuous actions
(Acont ), forcing orders (Afo) and stored actions, of which the
latter is subdivded into the three categories of action on event
(Ae), action on activation (Aact ) and action on deactivation
(Adeact ). These sets are assumed to be disjoint. Let Ac =
{Acont ,Afo,Ae,Aact ,Adeact }. Every element of Acont is a triple
(s, v, b), where
• s ∈ Sc is the associated step,
• v ∈ VoutB is a Boolean output variable,
• b ∈ CNDNE is the action condition.

We say that a continuous action is active if xs and b are true.
Several charts in G may employ continuous actions on the
same output variable v. In this case, v is set to true if at least
one of these continuous actions is active. Note that v can not
be used by any stored action.
Every element of Ae is a tuple (s, v, val, b), where
• s ∈ Sc is the associated step,

• v ∈ Vint ∪ Vout is an internal or output variable,
• val is an expression yielding a value in the respective
domain, e.g. val ∈ Z,

• b ∈ CNDE is the action condition.
An action on event sets v to val if xs and b are true.
Every element a ∈ Aact ∪ Adeact is a tuple (s, v, val), where
• s ∈ Sc is the associated step,
• v ∈ Vint ∪ Vout is an internal or output variable,
• val is an expression yielding a value in the respective
domain, e.g. val ∈ Z.

Such an action a assigns v to val if xs changes value from
false to true (true to false) if a ∈ Aact (a ∈ Adeact ). This
corresponds to the rising (falling) edge semantics discussed
earlier.
Finally, every element of Afo is a tuple (s, cforced , S), where
• s ∈ Sc is the associated step,
• cforced ∈ C is the chart which is to be forced,
• S ∈ (P(Scforced ) ∪ {∗, init}).

A forcing order action is regarded as a special kind of con-
tinuous action. It is active while xs is true and forces cforced
into the situation specified by S. If S = ∗, then the current
situation in cforced is retained for as long as s is active.
If S = init then cforced is set to its initial situation. Otherwise
it is set to the specified situation (element of the power set
P(Scforced )). Note that init always represents a situation which
is part of P(Scforced ). No transition of Tcforced can fire while xs
is true.

The presented formalization will be used in Section IV-C
in which we describe the translation.

B. GAL
Guarded Action Language (GAL) is a modeling language
which allows for a compact description of a transition system.
It is specifically designed to be a target in a model-to-model
transformation process. Before we describe the transforma-
tion from IEC 60848 to GAL in Section IV-C, we provide
a brief introduction to GAL [5] itself. GAL is the backend
language of the model checker ITS-Tools [33]. A GAL sys-
tem comprises variables, arrays and transitions, where the
only variable type available is an integer, limited to the range
[−231, 231 − 1]. The transition system is then made up of
the states that are defined by the valuations of the variables.
Variables are initialized with the value 0, if not specified
otherwise. This then describes the unique initial state. Tran-
sitions describe how variables are updated and lead to new
states. To this end, a transition in GAL comprises two parts: a
guard and a list of actions. The guard is a Boolean expression
over the variables, together with constants in [−231, 231− 1]
and relational symbols such as = or >. Boolean expressions
can be combined with usual Boolean connectives to form new
Boolean expressions. A transition starts at every state that
meets this guard and ends in another target state. That target
state is defined by the valuation in the current state together
with the action list that indicates how variables are updated.
The action list allows for control structures such as the usual
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if , then, else. A transition can optionally bear a label. If a
transition has a label, it in itself does not automatically induce
any transition in the resulting transition system. However, that
transition can be called from within the action list of another
transition, much like a function in programming languages.
The action list of a transition, including calling other transi-
tions, is handled atomically, such that intermediate results are
not visible in the state space.

Before we present the translation of a Grafcet to
GAL we concern ourselves with syntactical aspects in
Sections IV-A and IV-B.

IV. CONTRIBUTION
In [1], a meta-model for GRAFCET is presented which
defines an abstract syntax that forms the basis for
model-driven software development in [6]. However, these
concepts do not consider the verification of GRAFCET
instances. Furthermore, the meta-model presented in [1] does
not take into account the modeling of Boolean, logical, and
arithmetic expressions which occur in GRAFCET in condi-
tions and value assignments and are called terms in this work.
For verification, the modeling of such terms is necessary to
allow a more accurate analysis of execution behavior.

Therefore, in this work, the abstract syntax of terms in
GRAFCET is defined in Section IV-A using a meta-model
(i.e. a model used for instantiation of Grafcets and its
terms) designed according to the MOF standard [34]. The
GRAFCET meta-model then uses these expressions. In addi-
tion, the syntactic rules for the formation of terms that are not
covered by the meta-model will be described using invariants
(Section IV-B). Next, we provide a description of the trans-
formation process of a Grafcet into GAL in Section IV-C.
We elaborate on how this model simulates the behavior of the
transformed Grafcet. Finally, we provide a transformation of
GRAFCET into IEC 61131-3 ST code in Section IV-D.

A. META-MODEL OF TERMS
The meta-model of terms (Fig. 2) is based on the standard of
High Level Petri Nets [21]. However, it has to be adapted to
represent GRAFCET-specific elements such as step variables
and events.

As shown in Fig. 2, terms can be of the type variable
or operator. Operators can have sub-terms allowing a recur-
sive structure. Variables refer to a variable declaration which
describes the variable. Modeling the sorts allows to verify the
syntax of terms using invariants (cf. Section IV-B). Therefore,
note that the correct references to the sorts are not necessarily
required for following transformations. Sorts of terms can
be derived, either from the variable declaration or from the
type of the operator. An operator contains its output sort and
references its input sorts, depending on the number of sub-
terms. E.g., the AND operator in the term A AND B references
an instance of the class Bool as output, meaning the
operator returns a value of the type Boolean. It has two addi-
tional children (Variable instances A and B) each stored

as subterm. The sorts of the sub-terms are referenced by
the AND operator via input.

To use instances from the meta-model of terms in Grafcets,
the GRAFCET meta-model imports it. Fig. 3 shows an
excerpt of the GRAFCET meta-model presented in [1]
(dashed lines indicate the neglected parts of the model). The
root of the model is the Grafcet itself. The Grafcet has an
instance of the VariableDeclarations class, contain-
ing the variable declarations, i.e. of input, output and internal
variables. A transition has a condition, containing a term.
An action controls the variable variable. A stored action
has a value which will be assigned to the corresponding
variable when the action is performed. A stored action on
event can be modeled using a stored action instance with a
condition. The class EventCondition proposed in [1] is
replaced by the rising and falling edge operators in the terms
meta-model.

B. FORMALIZING INVARIANTS
In the following, invariants are presented to ensure additional
syntactical rules of Grafcets. The rules can be divided into
two categories. First, the consistency of the terms indepen-
dently of the usage in GRAFCET has to be ensured. Most
of these rules are already formalized in [21] and are omitted
in this work. Second, we formalize GRAFCET specific rules
mentioned in the IEC 60848 standard [3]. In this work as well
as in [21], the Object Constraint Language (OCL) is used to
formalize these rules as invariants. OCL is a formal language
independent of a programming language to describe expres-
sions on UML models. In general, OCL expressions are
written in the context of a specific model instance, to which
the keyword self refers. The operator ‘‘.’’ is referring to
an attribute. This can result in a single attribute or a set,
called collection. Navigation from a collection is done with
the operator ‘‘->’’.

Listing 1. Consistency of sorts.

Additionally to the rules defined in [21], the OCL invari-
ant in Listing 1 ensures the consistency of the sorts of the
sub-terms of an operator. The invariant ensures for every
instance of the class Operator that sort of the sub-
term(s) refers to the same sort as input of the operator.
Therefore, the sorts of the sub-terms are collected using
the collect() operator. The asSequence() operator is
used to cast into the correct type of collection.

The remaining rules are described in the following shortly
and the related listings can be found in Appendix A.

If a variable is declared as step variable it has to be of type
Boolean and step has to be set (Listing 3).

The term of a condition has to be a logical expression
returning a Boolean (Listing 4).
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FIGURE 2. Meta-model of terms.

According to the standard, output variables must not be
read (Listing 5) and input variables must not be written
(Listing 6) [3]. Therefore, instances of the class Condition
can only be an expression from input, step or internal vari-
ables, i.e. no output variable should occur in the term. Hence,
it has to be checked if the corresponding term is either one
of the correct variable types, or an instance of the Operator
class containing only the correct variable types.

On the other hand to ensure no input variables are written,
variable of an action has to be an output variable (for
continuous and stored actions) or an internal variable (only
allowed for stored actions) [3].

The remaining rules ensure the correct sort of variables
and condition types of continuous (Listing 7 and 8) and
stored actions (Listing 9 and 10). According to the standard,
continuous actions can only perform actions on Boolean
variables [3]. Furthermore, potential conditions of continuous
actions (so called assignation conditions) must not include an
event, i.e. a RisingEdge or FallingEdge instance [3].
Stored actions on the other hand can assign both logical or

arithmetic expressions to variables [3]. However, it has to be
ensured that variable and assigned term have the same sort.

Similar to continuous actions, according to the standard, con-
ditions on stored actions must contain an event [3]. However,
checking if the appropriate term contains a RisingEdge
or FallingEdge instance does not completely ensure that
the condition is an event. E.g. the term A OR RisingEdge(B)
is true in the case of A is true without an event occurring.
The usage of the presented meta model and the for-

malized invariants ensures a syntactically correct Grafcet.
We now turn to questions concerning the semantics of a
given Grafcet, for which we describe a transformation in the
next Section IV-C. The result is a verifiable model which
is suitable for verification techniques, in particular model
checking.

C. GAL-TRANSFORMATION
We now illustrate how a model in GAL can be constructed
from a givenGrafcetG. The goal is to have a transition system
which describes the behavior of the system that is modeled in
G, based on the formalization provided in Section III-A. The
resulting model roughly consists of two parts:

• The parts that are generated from the elements of G.
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FIGURE 3. Excerpt of GRAFCET meta-model.

• The evolution manager, which is GAL code that is part
of every G transformed by this method. It is struc-
turally fixed and coordinates how evolutions, execution
of actions, input changes and transient situations are
dealt with.

We begin with the former. The most fundamental elements
in GRAFCET arguably are the variables. Since GAL only
allows for integers, Booleans form a special case with the
usual interpretation that 0 corresponds to false and 1 to true.
Boolean variables in G are therefore translated the same way
as integer variables. All these variables in the resulting model
are initialized to 0, in accordance with the standard. These
variables are globally available to all charts of G.
Next, we consider a chart c ∈ C . For every step s ∈ Sc we

create three variables: The step activity variable xs, a variable
MarkActivate and one MarkDeactivate, each of which is
Boolean. All variables are initialized to 0, except for s ∈ Ic.
In that case, the corresponding MarkActivate is initially set
to 1. They ensure the compliance with the evolution rules four
and five of the standard, which state that all transitions that
can be simultaneously fired do so and that a step remains
active if it is to be activated and deactivated at the same
time. This decouples the evaluation of transitions from the
actual state changes of the steps. Accordingly, three labeled
transitions are generated for every s ∈ Sc. One deals with the
activation of the step. It sets xs to true and also executes all
actions on step activation that are associated with this step,
that is for all (s, v, val) ∈ Aact an assignment v = val is
generated. Another transition that deals with the step deacti-
vation is constructed analogously. The final labeled transition

is concerned with the evaluation of the marker variables.
It checks if the system is to call the step’s (de)activation
transitions or not. More precisely, ifMarkActivate for s is true
and xs is false, the step’s activation transition is called. Else,
ifMarkDeactivate is true,MarkActivate is false and xs is true,
the step’s deactivation transition is called. In all other cases,
the state of this step does not change and in any case, both
marker variables are reset to false.

So far, the marker variables play an important role in
determining how the situation changes, but they are not yet
set. Usually, these markers are set by the transitions of G,
which we describe next. For every t ∈ Tc a labeled GAL
transition is definedwhich checks if t is fireable. As described
in the standard, t = (U ,D, b) is fireable if xs is true for
all s ∈ U and b is true. If fired, all s ∈ U are marked for
deactivation, while all s′ ∈ D are marked for activation. If in
any chart cforcing ∈ C there is a forcing order action a ∈ Afo
with Afo ∈ Acforcing such that a = (s, c, S), then the guard is
extended by the conjunction of¬xs for all such forcing orders
a. This ensures that the chart can not evolve while any forcing
order is active. For example, the guard of a source transition
within a chart that can be subject to a forcing order issued by
steps s13 and s82, while the transition itself has the condition
a ∧ b, is a ∧ b ∧ (¬x13 ∧ ¬x82).
Actions on events can be caused by internal events such as

input changes. Such an action can be fired if the condition is
true while the associated step is active. Since the associated
actions can potentially influence the evaluation of other con-
ditions, we employ a similar system as with step activations
to ensure that actions that can fire simultaneously will end up
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FIGURE 4. Overview of the evolution manager which simulates a given
Grafcet.

doing so. To this end, we add a Boolean variable that signals
that the event is marked for execution. Every such action also
creates two labeled transitions: One which marks the action
for execution and one that executes the associated assign-
ment. The former consists merely of a condition that checks
whether the associated condition is true while the linked xs is
true as well. If this is the case, the marker variable is set. The
latter transition executes the assignment (action) if themarker
variable is true and then also resets the marker to false. The
last type of actions, other than continuous actions which are
discussed later, are forcing orders. A forcing order comprises
two parts: Upon activation, it enforces a specific situation in
the underlying chart cforced ∈ C , while it also disables all
transitions in that chart, i.e., none of these transitions can
fire. The behavior of the first aspect is similar to the behavior
of a stored action on step activation. Therefore, if the step
that performs the forcing order becomes active, we set the
appropriate MarkActivate and MarkDeactivate variables for
all steps in the forced chart to their respective value within
the step activation transition introduced earlier. Note that if
the forcing order is of type ∗, then none of such markers are
set. We do not modify the step activity variables directly to
ensure that associated actions on step (de)activation are also
performed. Finally, in order to implement the freezing aspect
of the forcing order, we ensure that for every t ∈ Tcforced the
condition is extended to include the negated xs for the forcing
order issuing step s ∈ Sc as a conjunct as described above.
Enclosing steps are simulated in a similar way: Upon step

FIGURE 5. Simple Grafcet containing basic elements.

activation, the desired situation is set in the enclosed chart
cenc ∈ C . The desired situation is described by the set of
steps that are marked, i.e.,Mcenc . Upon deactivation, all steps
are deactivated in cenc. We again set the appropriate marker
variables instead of modifying the step activity variables
directly. Note that enclosing steps do not include any freezing
aspects, unlike forcing orders.

So far we have provided translations for the different
elements of the standard. We need some mechanism in the
target model that describes how G evolves, when a situa-
tion is stable and how the different types of variables are
updated, i.e., we need the aforementioned evolution man-
ager. An overview of themanager is given in Fig. 4. The over-
all flow of action of this manager can be summarized as fol-
lows: If the situation is stable, simulate an event, e.g. a change
of a Boolean input variable. Next, evaluate which transitions
and actions can now be executed and mark these respectively.
Subsequently, the marked transitions are fired and the marked
actions executed. This usually results in a change of situation
and internal or output variables. The new situation may lead
to other transitions being enabled, which may be fireable
due to the current variable assignments. We therefore have
to check again if any transition or action can be executed,
i.e., we repeat the previous steps. If this is the case then the
current situation is transient. Assuming that a stable situation
is reached, we now have to properly evaluate the continuous
actions, as their values are not set during transient situations.
For each output variable v ∈ VoutB that is used in the context
of such an action, a labeled transition is generated which
checks if at least one of the steps that have a continuous action
on v is active. If that is the case, v is set to true, otherwise to
false. Finally, we go back to the first step. Note that an infinite
transient loop can still be modeled with this transformation.
In fact, this model can be used to check for the existence of
such an usually undesired loop by means of model checking.
The manager is implemented mostly in a single transition,
which calls the labeled transitions introduced earlier, in order
to, e.g., check whether a transition is fireable and to perform
step (de)activations. The resulting GAL code of the example
in Fig. 5 is given in Appendix B. This generated model can be
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FIGURE 6. Example Grafcet consisting of two Grafcet charts.

used for verification, in particular model checking, as shown
in Fig. 1.

D. TRANSFORMATION IN ST-CODE
After verification of the Grafcet by means of model checking,
it can be transformed into control code, as shown in Fig. 1.
The target language is one of the IEC 61131-3 languages as it
is the most common standard in PLC programming. As dis-
cussed in [6], ST is the most suitable for the requirements.
IEC 61131-3 proposes three different kinds of so called Pro-
gram Organization Units: Functions, Function Blocks (FB)
and Programs. The authors of [6] also discuss that FB are the
most suitable Program Organization Units because they can
store states and can call each other. In the transformation con-
cept, each GRAFCET chart corresponds to a FB and the com-
munication between charts takes place via global variables.
This has the advantage of keeping the Grafcet’s hierarchical
structure. An example of an application would be distributed
control code. Local variables would have the advantage of
more precise read and write permissions. However, the code
is more readable and less complex without the cascading
transfer of local values between the GRAFCET charts.

The main concept of the transformation is already
described in [6]. To support the presented model of the terms,
the transformation has to be adjusted. In the ST code, global
variables for input, output and internal variables have to be
declared. Step variables used in the terms have to be mapped
to existing step variables proposed by [6]. Finally a recursive
algorithm generates a string in ST syntax from the term
objects. Thereby, for rising (falling) edges the standard ST
Function Block R_TRIG (F_TRIG) [7] is used.

The proposed generation of PLC code forms the last step
of the model-driven development process proposed in Fig. 1.

FIGURE 7. XMI representation of transition 1 of the example Grafcet
in Fig. 6.

V. EVALUATION
To evaluate the proposed model-driven development process
we first show the implementation of the tool chain before
applying it on an example presented in Fig. 6.

A. IMPLEMENTATION
Two different tools have been implemented: An EclipseMod-
eling Framework (EMF) [35] based graphical editor for the
syntactical check and the transformation of GRAFCET to ST
code as well as a C++ based tool to perform the transforma-
tion of GRAFCET to GAL. XMI is used as exchange format.
The serialization to XMI is provided by EMF.

The meta-models are implemented as Ecore files. Sirius is
used to design a graphical editor which allows to instantiate
the GRAFCET meta-model. The terms are represented in a
recursive tree-based manner. Thus, the expressions have a

125660 VOLUME 10, 2022



R. Mross et al.: Transformation of GRAFCET Into GAL for Verification Purposes Based on a Detailed Meta-Model

variable as root element or an operator as a root element
with additional operators in a recursive manner. This allows
the creation of terms independent of the target language,
as shown in Fig. 6 at transition 1. For derived references
in the meta-model, a rule-based instantiation of the corre-
sponding classes is possible and implemented using Sirius.
E.g., to add a sub-term the user has to create the Operator
instances manually using the editor. However, the Sort
instance output is created automatically and the references
sort and input are added.
The invariants written in OCL can be checked using

Eclipse OCL. The invariant check provides feedback to the
user on which class instance violates which invariant.

The implementation of the GAL transformation is capa-
ble of using the exported XMI file as input. The trans-
formation can be configured in detail by flags that alter
small nuances of the resulting code which is due to some
unclear formulations of the standard with respect to the
behavior.

For the transformation to ST code the EMF-API is used.
The ST code output format is PLCOpenXML [36], a vendor
neutral exchange format for IEC 61131-3 control code.

B. EXAMPLE
Fig. 6 shows a Grafcet composed of two GRAFCET charts
G1 and G2, whereby G2 is controlled by the enclosing
step 2 in G1. The condition at transition 1 shows the tree-like
graphical structure of the terms. The corresponding visual-
ization of the XMI file in the EMF editor is shown in Fig. 7.
The referenced classes for the datatype are visible. This
example has been transformed into GAL using the procedure
described in Section IV-C and the resulting state space has
a size of 169. In order to evaluate elements of the behavior
of the provided Grafcet, the generated GAL code has been
verified in the model checker ITS-Tools [33]. Several proper-
ties have been evaluated and the instance, for example, fulfills
the property that it is impossible to reach a situation in which
step 1 and step 12 are active simultaneously. This can be
formulated by the Computation Tree Logic (CTL) expression
AG(¬(x1∧x12)). This implementation is proof-of-concept and
ongoing research is focused onmaking the approach tractable
on larger systems, the details of which are the subject of future
publications.

An excerpt of the transformed ST code regarding transi-
tion 1 from Fig. 6 is shown in Listing 2, which is divided
into three sections. First, the global variables, used in the
transition conditions, are declared (Lines 1-4). Second, the
local variables for the FB corresponding to the GRAFCET
chart are declared (Lines 5-7). From Line 8 on, the actual FB
is shown. The transition is transformed into an IF statement
starting at Line 13 and requires the transition condition as
well as the Boolean variable T_1. T_1 is true when transi-
tion 1 is enabled i.e. step variable Step_1 of step 1 is true
(Line 10). To detect the rising edge of the input variableDI_1
the R_TRIG FB declared in Line 7 is called in Line 12 and

Listing 2. Excerpt of ST code showing transition 1.

the value is requested in Line 13. The omitted body of the
IF statement (Line 14) would deactivate step 1 and activate
step 2 according to the GRAFCET evolution rules.

The modeled Grafcet was transformed into ST code com-
pletely and the code was simulated in CODESYS [37], result-
ing in expected behavior.

VI. CONCLUSION
In this work a complete GRAFCET meta-model according to
the standard [3] has been presentedwhich can be used to guar-
antee syntactical correctness of a given Grafcet. It is based on
the work of Julius et al. [1] and has extended their meta-model
by adding a representation of terms. To this end, invariants
formulated in OCL have been provided in detail, which
describe syntactical rules specific to GRAFCET. Examples
of this are that output variables are never read or that input
variables are never written. Another example is a rule which
ensures that continuous actions only write Boolean variables,
as it is demanded by the standard. This work therefore pro-
vides the basis for static analysis methods. A formalization,
based on the work of Provost et al. [19] and Julius et al. [32],
has been provided which describes all elements of the stan-
dard except for timed aspects and macro steps. In this work,
it has mainly been used to describe the transformation of
GRAFCET to GAL. The translation creates a model that
simulates the behavior of a given Grafcet. Unlike methods
discussed in Section II our approach covers structural ele-
ments of the standard such as enclosures, forcing orders,
source transitions and retains hierarchical information. The
transformation has been evaluated on an example, and with
the help of ITS-Tools [33] its behavior exemplarily tested.
Details on the verification process itself using model check-
ing in this tool chain have been left out of this work, but are the
topic of on-going research. Existing contributions shown in
Section II could be adapted to the verification of GRAFCET
using this approach.
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APPENDIX A
OCL LISTINGS

Listing 3. Sort of step variables.

Listing 4. Sort of conditions.

Listing 5. Variable types in conditions.

Listing 6. Variable types in actions.

Listing 7. Sort of variables in contiuous actions.

Listing 8. Event type of continuous actions.

Listing 9. Consistency of sorts in value assignments.

Listing 10. Event type of stored actions.

APPENDIX B
GAL CODE OF THE GRAFCET IN FIG. 5

1 gal GeneratedGrafcet {
2 //System Variable
3 int situationIsStable = -2;
4 int transitionSystemState = 0;
5 int aComponentIsFireable = 0;
6 int xG1 = 1;
7
8 //Input Variable
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9 int switch_A = 0;
10 typedef randswitch_A= 0..1;
11
12 //Step Variable
13 int xs1 = 0;
14 int xs1MarkActivate = 1;
15 int xs1MarkDeactivate = 0;
16 int xs2 = 0;
17 int xs2MarkActivate = 0;
18 int xs2MarkDeactivate = 0;
19
20 //System Transition
21 transition transitionStateChange_0[

true] label "checkTransitions" {
22 transitionSystemState=0;
23 situationIsStable=0;
24 }
25
26 transition initialTransitionCheck[

transitionSystemState==-2] {
27 self."stepEvaluateMarkerss1";
28 self."stepEvaluateMarkerss2";
29 self."checkTransitions";
30 }
31
32 transition

checkIfComponentIsFireable [true
] label "
checkIfComponentIsFireable" {

33 if((xs1 == 1 && (switch_A)) ){
34 aComponentIsFireable = 1;
35 } else{
36 aComponentIsFireable = 0;
37 }
38 }
39
40 transition setGrafcetVars [true]

label "setGrafcetVars" {
41 xG1 = xs1 + xs2;
42 if(xG1 > 0){
43 xG1 = 1;
44 }
45 }
46
47 //Input Transition
48 transition inputVariableChanges (

randswitch_A $switch_A) [
situationIsStable == 1]{

49 switch_A = $switch_A;
50 self."checkTransitions";
51 }
52
53 //Transition Transition
54 transition checkIfFireable_t1 [true]

label "t1check" {
55 if(xs1 == 1 && (switch_A)) {

56 xs1MarkDeactivate = 1;
57 xs2MarkActivate = 1;
58 }
59 }
60
61 //Step Transition
62 transition stepActivation_s1 [true]

label "sAs1" {
63 xs1 = 1;
64 }
65
66 transition stepDeactivation_s1 [true

] label "sDs1" {
67 xs1 = 0;
68 }
69
70 transition stepEvaluateMarkers_s1 [

true] label "
stepEvaluateMarkerss1" {

71 if (xs1MarkActivate == 1 && xs1 ==
0) {

72 self."sAs1";
73 } else{
74 if xs1MarkActivate == 0 &&

xs1MarkDeactivate == 1 && xs1 ==
1) {

75 self."sDs1";
76 }
77 }
78 xs1MarkActivate = 0;
79 xs1MarkDeactivate = 0;
80 }
81
82 transition stepActivation_s2 [true]

label "sAs2" {
83 xs2 = 1;
84 }
85
86 transition stepDeactivation_s2 [true

] label "sDs2" {
87 xs2 = 0;
88 }
89
90 transition stepEvaluateMarkers_s2 [

true] label "
stepEvaluateMarkerss2" {

91 if (xs2MarkActivate == 1 && xs2 ==
0) {

92 self."sAs2";
93 } else{
94 if (xs2MarkActivate == 0 &&

xs2MarkDeactivate == 1 && xs2 ==
1) {

95 self."sDs2";
96 }
97 }
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98 xs2MarkActivate = 0;
99 xs2MarkDeactivate = 0;

100 }
101
102 transition transitionStateChange_0_1

[transitionSystemState==0] {
103 situationIsStable = 0;
104 self."t1check";
105
106 self."stepEvaluateMarkerss1";
107 self."stepEvaluateMarkerss2";
108
109 aComponentIsFireable = 0;
110 self."checkIfComponentIsFireable";
111 if(aComponentIsFireable==1) {
112 aComponentIsFireable = 0;
113 situationIsStable = 0;
114 transitionSystemState = 0;
115 } else{
116 situationIsStable = 1;
117 transitionSystemState = -1;
118 }
119 self."setGrafcetVars";
120 }
121 }
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