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ABSTRACT In this paper, a novel method is proposed to build an improved 1-D discrete chaotic map
called flipped product chaotic system (FPCS) by multiplying the output of one map with the output of a
vertically flipped second map. Two variants, each with nine combinations, are shown with trade-off between
computational cost and performance. The chaotic properties are explored using the bifurcation diagram,
Lyapunov exponent, Kolmogorov entropy, and correlation coefficient. The proposed schemes offer a wider
chaotic range and improved chaotic performance compared to the constituent maps and several prior works
of similar nature. Wide chaotic window and improved chaotic complexity are two desired characteristics
for several security applications as these two characteristics ensure enhanced design space with elevated
entropic properties. We present a general Field-Programmable Gate Array (FPGA) design framework for
the hardware implementation of the proposed flipped-product schemes and the results show good qualitative
agreement with the numerical results fromMATLAB simulation. Finally, we present a new Pseudo Random
Number Generator (PRNG) using the two variants of the proposed chaotic map and validate their excellent
randomness property using four standard statistical tests, namely NIST, FIPS, TestU01, and Diehard.

INDEX TERMS Nonlinear dynamical systems, chaos, field-programmable gate arrays (FPGA), bifurcation
diagram, lyapunov exponent, discrete-time map, random number generation (RNG).

I. INTRODUCTION
Since Lorenz’s seminal work demonstrating chaotic motion
on a strange attractor in 1963 [1], chaos has attracted a lot
of attention from diverse fields of enquiry. Nonlinear prob-
lems attract the interest of researches from a wide range of
disciplines including, biology, physics, chemistry, ecology
and engineering [2], as most systems of nature are inherently
nonlinear. Nonlinear dynamics describe the change of the
state variables of a system over time. When the steady-state
trajectory of a nonlinear deterministic dynamic system shows
aperiodicity and extreme sensitivity to slight perturbation of
initial state, we refer to this phenomenon as ‘chaos’.When the
parameters of a nonlinear deterministic dynamic system are
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tuned to the chaotic window, the output of the system never
repeats and two initial states, even if they are infinitesimally
close, drastically diverge and result in two completely uncor-
related steady-state trajectories. This extreme sensitivity to
the initial state is popularly know as ‘the butterfly effect’
i.e. a tiny change caused by a butterfly flapping its wings
in one region leading to a drastic change of weather in
another distant part of the globe. These two defining features,
namely, deterministic aperiodicity and sensitive dependence
on the initial state render chaotic systems suitable for numer-
ous applications including, data and image encryption [3],
[4], [5], pseudo-random number generation (PRNG) [6], [7],
[8], dynamical system modeling [9], [10], reconfigurable
logic [11], [12], side channel attack mitigation [13], [14],
secure communication [15], [16], logic obfuscation [17], [18]
and so on.
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Based on the nature of the time steps, chaotic systems
can be divided into two categories: i) Continuous-time
ii) Discrete-time chaotic systems. Logistic [19], sine, and tent
maps are classic examples of one-dimensional (1-D) discrete-
time maps defined by the evolution of one state variable
according to one equation in discrete time steps whereas,
Henon map [20] is an example of a famous two-dimensional
discrete-time map. On the other hand, Lorenz system [1] is
a famous example of a multi-dimensional continuous-time
chaotic system as it is constituted of three coupled ordinary
differential equations that define the evolution of three state
variables as a function of time in continuous domain. While
all classes have found their way in numerous security appli-
cations, 1-D discrete-time maps have gained popularity for
their simplicity in implementation. In this work, we confine
our discussion to 1-D discrete-time maps.

One weakness of 1-D discrete-time maps comes from fact
that most common systems are not robust since they exhibit
strong chaotic property only within a very narrow range of
parameter values. Beyond this narrow window, the chaotic
properties of these maps degrade and eventually disappear.
That poses a problem in the security applications as the sys-
temmay deviate from narrow chaotic window due to undesir-
able parameter fluctuations, causing a security compromise.
Hence, robust chaos i.e. absence of periodic windows and
coexisting attractors in some neighborhood in the parameter
space of a dynamical system [21] is desirable which can
mitigate such issues [22], [23]. Another shortcoming is that
the entropy of the generated sequence even within this narrow
range is not very high as measured by different entropy
metrics such as Lyapunov exponent, Kolmogorov entropy etc.
Due to poor entropic properties, many chaotic system behav-
ior can be analyzed and predicted [24], [25] compromising
their potential for security applications. Multiple schemes
have been reported to improve the chaotic performance of
discrete-time 1D maps. Deng et al. proposed a feedback
controlmethod tomitigate performance degradation of digital
chaotic systems [26]. Li et al. introduced a reseeding-mixing
method [27] to build high throughput PRNG using logis-
tic map but it lacks parameter reconfigurability since the
design was optimized for a single parameter value with high
chaotic entropy. Another reported method is to widen the
chaotic region of a map by modulating the chaotic parameter
within a narrow high-performance range through a linear
transformation of the output from a second map [28], [29].
This scheme, however, does not necessarily improve the
Lyapunov exponent and is susceptible to performance degra-
dation through perturbation in the linear transformation
block. Cascading multiple maps under certain conditions
improves chaotic entropy as shown in [29], [30] but this
scheme does not necessarily improve the chaotic parameter
range and can lead to unpredictable behavior for two maps
with unequal parameter value [31]. An exponential chaotic
map was introduced in [23] which exhibits robust chaos
but the entropy is limited to the highest value achievable
by its seed maps and it requires computationally expensive

exponentiation and logarithmic operation making hardware
implementation in resource constrained applications difficult.

In this work, we propose a general framework of 1-D
chaotic maps called flipped product chaotic map (FPCM)
where the output of one map is multiplied with the output
of a vertically flipped second map to get the final output.
With the help of bifurcation plot and chaotic entropy mea-
sures, it is demonstrated that FPCM offers a wider chaotic
region with improved chaotic entropy than the constituent
maps henceforth referred to as seed maps. We first propose
the basic scheme called Basic Flipped-Product Chaotic Sys-
tem (BFPCS) and then show an improved version called
Enhanced Flipped-Product Chaotic System (EFPCS) requir-
ing more computational cost. A field-programmable gate
array (FPGA) design is presented to demonstrate a possible
hardware implementation of these schemes. Finally, we intro-
duce a new pseudo-random number generator (PRNG) using
the novel map and demonstrate its excellent properties using
four standard statistical tests, namely NIST, FIPS, TestU01,
and Diehard.

The remainder of the paper is organized as follows:
the seed maps are introduced in section-II. The general
scheme is presented in section-III followed by two variants in
section-IV and section-V accompanied with requisite analy-
sis of their chaotic properties using transfer curve, bifurcation
diagram, Lyapunov exponent, Kolmogorov entropy, and cor-
relation coefficient. section-VI compares the proposed work
with similar prior works. An FPGA implementation using
Verilog HDL (hardware description language) is presented in
section-VII. Section-VIII introduces a novel PRNG scheme
using the proposed map and validates its excellent properties
using standard statistical tests. Finally, section-IX gives the
concluding remarks with possible future direction of our
research.

II. SEED MAPS
This section reviews three existing 1-D chaotic maps namely,
logistic, tent, and sine maps as background. They will
be used as seed maps to generate new chaotic maps in
Section-IV and section-V. For ease of comparison, we are
using the normalized versions of these seed maps such that
their domain, range, and parameter values are within [0, 1].
Logistic map can be mathematically defined as,

xi+1 = L(xi) = 4rxi(1− xi). (1)

where r is the control parameter and r ∈ [0, 1].

Tent map can be mathematically defined as,

xi+1 = T (xi) =

{
2rxi when, xi < 0.5
2r(1− xi) when, xi ≥ 0.5

(2)

where r is the control parameter and r ∈ [0, 1].
Sine map can be mathematically defined as,

xi+1 = S(xi) = rsin(πxi) (3)

where r is the control parameter and r ∈ [0, 1].
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FIGURE 1. Transfer characteristics of different seed maps (a-c) and
corresponding flipped maps (d-f).

FIGURE 2. Bifurcation diagram and Lyapunov exponent of three seed
maps.

The transfer curve shows the input-output characteristics of
a map for different values of the control parameter. The trans-
fer curves for the three seed maps are shown in Fig. 1(a-c)
and the transfer curves for their corresponding flipped maps
are shown in Fig. 1(d-f). The effect of a control parameter
on a dynamical system can be visualized with a bifurcation
diagram where for each parameter value, a long sequence
of steady-state output values is plotted. The advantage of
the bifurcation diagram is that it clearly shows the period
doubling process which causes the system to transition from
a fixed point to a periodic region and eventually to a chaotic
region while the control parameter is varied. The chaotic
property in the output is evaluated with a widely used metric
called the Lyapunov exponent (LE). A positive LE demon-
strates the existence of chaotic behavior [2]. Fig. 2 plots the
bifurcation diagrams and LEs of the logistic, sine, and tent
maps with the change of their control parameters. As can
be observed, the logistic, sine, and tent maps have chaotic
behaviors when r ∈ [0.89, 1], r ∈ [0.87, 1], and r ∈ (0.5, 1),
respectively.

III. PROPOSED SCHEME
As shown by Feigenbaum [32], any differential unimodal
(V-shape or inverted V-shape) map can potentially generate a

FIGURE 3. The schematic of the FPCS (flipped product chaotic system).

chaotic sequence. In this work, we propose a general scheme
to combine two 1-D maps of opposite shape (V and inverted
V-shape) with one common parameter into a single map
called flipped product chaotic map (FPCM) with improved
chaotic properties. As constituent seed maps, we consider
three common 1-D inverted-V shape discrete maps, namely
logistic, tent, and sine maps. Then we introduce the concept
of flipped map which is obtained by vertically flipping these
maps. If we have a seed map, S(r, x) with highest value of
Smax , its flipped version Sf (r, x) can be written as, Sf (r, x) =
Smax−S(r, x). For the three considered seed maps, Smax = 1.
Now, Fig. 3 shows the schematic of the proposed flipped
product chaotic system (FPCS). The output of a seed map
is multiplied with the output of a flipped map. The control
parameter, r , remains the same for both the seed map and
flipped map. There is a scaling factor A, which is chosen
to ensure that the maximum output of the FPCM does not
exceed 1. This FPCM output is then fed back as input for the
next iteration to build the chaotic oscillator system henceforth
called FPCS (flipped product chaotic system). The flipped
product chaotic map can be mathematically defined as,

xi+1 = FPCM (r, xi) = (1/A) ∗ S(r, xi) ∗ Sf (r, xi), (4)

where r is the control parameter. It is assumed that the ranges
of state variable and control parameters for all considered
maps are in the interval [0,1].

In the next section, we introduce the basic flipped prod-
uct chaotic system (BFPCS) where A is a global constant
for a particular map irrespective of the value of the control
parameter, r . Then in Section-V, we introduce the enhanced
flipped product chaotic system (EFPCS) where A is a func-
tion of r which leads to further improvement of the chaotic
properties.

IV. BASIC FLIPPED-PRODUCT CHAOTIC SYSTEM (BFPCS)
In basic flipped product chaotic system (BFPCS), A is con-
sidered a constant, independent of the control parameter, r .
For any seed map S(r, x), A is set as the maximum possible
value of S ∗ Sf (r, x) for all x, r ∈ [0, 1].

A. MATHEMATICAL EXPRESSION
Using three constituent seed maps (logistic, tent, and sine),
there can be nine possible FPCMs. In Table-1, the mathe-
matical expressions for these nine combinations along with
the corresponding scaling factor A are shown.
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TABLE 1. Mathematical expression for BFPCS.

FIGURE 4. Transfer characteristics of different BFPCS maps (a-i).

B. TRANSFER CHARACTERISTICS
The transfer curves for the nine possible combinations of
FPCM are shown in Fig. 4. As we can see from these figures,
the output of these FPCMs cover the entire range with more
oscillation due to their bimodal characteristics in contrast to
the unimodal transfer curve (Fig. 1) of their constituent seed
maps which lie at the core of their improved characteristics.

C. BIFURCATION DIAGRAM
Fig. 5 shows the bifurcation diagrams of nine combinations
of BFPCS. It shows that the BFPCS has a wider chaotic
range with higher signal swing compared to the seed maps
when both constituent maps are of the same type, namely
Logistic-flipped-Logistic (LLf ), Tent-flipped-Tent (TTf ), and
Sine-flipped-Sine (SSf ). However, when the two maps are
different, the improvement is less pronounced. Later, in
Section-V, we will introduce an improvement scheme that
gets rid of this problem.

D. LYAPUNOV EXPONENT (LE)
A characteristic of the chaotic system is the sensitive depen-
dence on its initial condition. On average, two adjacent
orbits, generating from slightly different initial conditions,

FIGURE 5. Bifurcation diagrams of nine BFPCS.

will diverge exponentially fast under chaotic operating
conditions. Lyapunov exponent is a widely used parameter
to measure this exponential divergence capturing the sys-
tem’s sensitive dependence on the initial condition. For a
discrete-time chaotic map f (x), it is defined as [2],

LE = lim
n→∞

1
n

n−1∑
i=0

ln|f ′(xi)|. (5)

Here, n is the total number of iterations and f ′(xi) indicates
the first derivative of the map function at its ith iteration. If the
operating region consists of stable fixed points or cycles,
LE is negative whereas, for chaotic attractors, its value is
positive [2]. Bigger positive LE values indicate faster diver-
gence of output trajectories and consequently, better chaotic
performance.

Fig. 6 shows the comparison of LE value between the nine
BFPCMs and corresponding seed maps. It is found that in
general, they have positive LE value within a much wider
parameter window and the values are significantly higher
compared to their constituent seed maps.

E. KOLMOGOROV ENTROPY (KE)
KE is another useful metric to quantitatively measure the
complexity in a given sequence [33]. It captures how much
extra information is required to predict the next output of a
dynamical system given its previous outputs and is defined
in 6 [33].

KE = − lim
τ→∞

lim
ε→∞

lim
d→∞

1
n

∑
i1,..,id

p(i1, i2, . . . ., id )

× ln(p(i1, i2, . . . ., id )) (6)

Positive KE implies chaotic unpredictability and a higher
value implies increased unpredictability. We have generated
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FIGURE 6. LE results for different seed maps and FPCS.

sequences with 13, 000 iterations, truncated the first
1000 transient values, and computed the KE based on
the remaining sequence. Fig. 7 shows the comparison of
KE value between nine BFPCMs and corresponding seed
maps. As this figure shows, BFPCM, in general, has a positive
KE value within a much wider parameter window and the
values are significantly higher compared to the traditional
seed maps.

F. CORRELATION COEFFICIENT (CC)
The correlation between two sequences of data X and Y can
be measured by Pearson’s correlation coefficient CC(X ,Y )
defined as [28],

CC(X ,Y ) =
E[(X − µX )(Y − µY )]

σXσY
(7)

Here, µ and σ represent the mean value and standard
deviation, respectively. The expectation operator is denoted
by ‘E[]’. The value of CC is between −1 and +1. If the
correlation value is close to +1/−1, then two data sequences
are highly correlated i.e. their relationship comes close to
a linear dependence. On the other hand, a correlation value
close to 0 indicates no discernible relationship between the
data sequences. Here, we have used CC to measure the
sensitive dependence of a chaotic map on initial value and
parameters. Fig. 8 shows the value of CC between a pair
of long sequences generated from a slightly different ini-
tial condition for different values of parameter r . Within
the non-chaotic window, we expect this value to be close

FIGURE 7. KE values of different seed maps and FPCS.

to 1 due to the convergence of both sequences. However,
inside the chaotic window, a slight change in initial condition
eventually leads to exponential divergence of both sequences
and lead to an almost uncorrelated sequence i.e. CC ≈ 0.
Similarly, Fig. 9 shows the CC between pairs of sequences
generated from slightly perturbed parameter values. Fig. 8
and Fig. 9 clearly show that the BFPCM maps have wider
chaotic region compared to the seed maps with high sensi-
tivity to perturbation in initial value and parameter and the
chaotic windowmatches with the bifurcation diagrams shown
in Fig. 5.

V. ENHANCED FLIPPED-PRODUCT CHAOTIC
SYSTEM (EFPCS)
In this section, we propose an improved configuration called
enhanced flipped product chaotic system (EFPCS) which
gets rid of some of the limitations of the initial scheme,
BFPCS. In contrast to BFPCS, the scaling factor, A is not
a constant for a particular map. Rather it varies as a func-
tion of r . We came up with an analytical or semi-analytical
expression for A(r), which gives the maximum value of
the product for that particular r . This ensures a very
wide chaotic region with good entropic properties for all
combinations.

A. MATHEMATICAL EXPRESSION
We illustrate this scheme for Logistic-flipped-Tent (LTf ). For
LTf , we define the product, p(r, x) as p(r, x) = L(r, x) ∗
Tf (r, x). The value of x at which we get the maximum
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FIGURE 8. CC measurement for initial value sensitivity of BFPCS.

FIGURE 9. CC measurement for parameter sensitivity of BFPCS.

value of this product for a particular r can be evaluated as

xmax = (2r + 1 −
√
(2r + 1)2 − 6r)/6r . So, the scaling

FIGURE 10. Transfer characteristics of different EFPCS maps (a-i).

factor, A would be A = p(r, xmax). Similarly, for all other
combinations, the crucial step is the calculation of the
corresponding xmax . Table 2 gives the mathematical expres-
sions for all nine combinations along with corresponding A
and xmax . For some combinations such as LSf , there is no
close-form analytical solution and in those cases, we have
approximated the solution with simple piece-wise linear or
exponential functions along with a correction factor (cf )
which is set to 1.005.

B. TRANSFER CHARACTERISTICS
The transfer curves for the nine possible combinations
derived using Table 2 are shown in Fig. 10. As we can
see from these figures, unlike BFPCMs, the output of
these EFPCMs has a higher signal swing for all parameter
values (4) which lead to its enhanced performance as demon-
strated in the following subsections.

C. BIFURCATION DIAGRAM
Fig. 11 shows the bifurcation diagrams of nine combinations
of EFPCS. These maps have significantly wider (close to
100% in most cases) chaotic range with higher signal swing
compared to seed maps(Fig. 2) and BFPCS (Fig. 5).

D. LYAPUNOV EXPONENT (LE)
Fig. 12 shows the Lyapunov exponents for all nine combi-
nations using EFPCS. They have positive LE values across
almost the entire parameter window and the values are signifi-
cantly higher compared to their constituent seed maps. These
figures also show marked improvement in LE compared to
BFCPS (Fig. 6).
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TABLE 2. Mathematical expression for EFPCS.

FIGURE 11. Bifurcation diagrams of nine EFPCS.

E. KOLMOGOROV ENTROPY (KE)
Fig. 13 shows the comparison of KE value between nine com-
binations of EFPCS and corresponding seedmaps. As evident
from this figure, EFPCS has a positiveKE value across almost
the entire parameter range with higher values compared to
their constituent seed maps. The KE values also show signif-
icant improvement compared to BFPCS (Fig. 7).

F. CORRELATION COEFFICIENT (CC)
Fig. 14 and Fig. 15 show the CCs capturing the initial value
and parameter sensitivity, respectively for all nine combina-
tions using EFPCS. These figures are consistent with our
findings from the bifurcation diagram, LE, and KE and
clearly demonstrate chaotic operation (implied by CC value
of 0) within a much wider window compared to seed maps
and BFCPS (Fig. 8 and Fig. 9).

FIGURE 12. LE results for different seed maps and EFPCS.

VI. PERFORMANCE COMPARISON
The first advantage of the proposed design is its much wider
chaotic region i.e. increase in the quantity of chaotic design
space. The second advantage is higher entropic properties
across wider chaotic range i.e. improvement of quality of
chaotic operation. Due to finite precision arising from dis-
cretized digital representation, only finite number of distinct
parameters values are available within a certain range of real
numbers. For a particular digital implementation, if a system
has p parameters and each parameter can have N distinct
values, then the entire parameter space (EPS) can be defined
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FIGURE 13. KE values of different seed maps and EFPCS.

FIGURE 14. CC measurement for initial value sensitivity of EFPCS.

as, EPS = N p. A subset of this space is chaotic which we call
chaotic parameter space (CPS). Chaotic ratio (CR) is defined

FIGURE 15. CC measurement for parameter sensitivity of EFPCS.

as the ratio of CPS to EPS [35].

CR(%) =
CPS
EPS
× 100 (8)

For quality assessment, we are averaging LE, KE, and the
absolute value of CC across the chaotic region to come up
with a single global metric for each entropy measure. Higher
average LE (ALE), and average KE (AKE) imply better
entropic properties. Similarly, a lower average CCmagnitude
(ACC) closer to zero implies more initial state sensitivity i.e.
better chaotic quality. We also report the maximum value of
LE, and KE (MLE andMKE) andminimum absolute value of
two types of CC (mCC). In addition, the dynamic swing range
of the steady state output voltage inside the chaotic region
should be as close to highest output range, R as possible. This
is captured by a metric called average normalized dynamic
range (ANDR) [35] which is defined as,

ANDR(%) = (
1

CPS

∑
i∈CPS

V i
max − V

i
min

R
)× 100. (9)

Table 3 compares our proposed design, EFPCS (in bold) with
the three basic seed maps as well as four previous works,
namely ZBC [34], CCS [30], DPCCS [28] and ECM [23]
using the above mentioned metrics and it shows significant
improvement considering all aspects of chaotic operation.

VII. FPGA IMPLEMENTATION
A. FPGA DESIGN OF FPCS
As a representative example to show the simplicity of
FPCS implementation, we have used Verilog to implement
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TABLE 3. Comparison of chaotic performance.

FIGURE 16. Schematic of FPGA implementation.

Tent-flipped-Tent (TTf ) in FPGA using both BFPCS and
EFPCS. The state variable and control parameter for all con-
sidered maps are real numbers in the interval [0,1]. To rep-
resent them in hardware, real numbers between 0 and 1 are
divided into 264 + 1 states and each value is represented by a
65-bit binary number. The 64 least significant bits (LSB) are
used to represent [0,1) and the most significant bit (MSB) is
used to include 1. The circuit has two 65-bit inputs r and x.
The output is also a 65-bit number denoted by xoutput as shown
in Fig. 16.

There are two modules that make up the digital circuit as
shown in Fig. 16:
1. Tent_f_Tent: This module implements the mathematical

operation needed to compute FPCM. Here, we show results
for Tent-flipped-Tent (TTf ) map using both BFPCS or EFPCS
scheme.

2. FSM: This module is used to store the value of the
state variable xi of the chaotic system as its state. In the first
round, the initial state (x0) is defined by the user defined input.
After the device user presses the start button, the circuit
updates the state in every clock cycle with the output of the
module ‘Tent_f_Tent’based on the previous state.

B. RESULTS
We have computed the first 60 iterations for TTf map in both
MATLAB and FPGA and compared these values in Fig. 17.
The sequence produced byMATLAB and FPGA start diverg-
ing around 50th iteration for x0 = 0.3 and r = 0.5 as shown
in figure 17. This is inevitable given the different number
representation method between 64-bit IEEE-754 floating-
point representation [36] in MATLAB and our fixed point
FPGA implementation. However, in security applications, the
more important consideration is having a chaotic sequence
with good long-term entropic characteristics which can be

FIGURE 17. Comparison of trajectory between FPGA vs MATLAB
Simulation. Here, x0 = 0.3, r = 0.5.

evaluated by metrics such as LE, KE, and CC.We have calcu-
lated these metrics for different values of r for MATLAB and
FPGA implementation of TTf using both BFPCS and EFPCS.
The comparison results between MATLAB and FPGA for
BFPCS and EFPCS are shown in Fig. 18 and Fig. 19, respec-
tively. As it clearly shows, FPGA results match very well with
MATLAB results over the entire range demonstrating their
functional equivalence.

VIII. PRNG USING FPCS
High quality PRNGs play a critical role in information
security and crytographic applications [37], [38]. The deter-
ministic aperiodicity and sensitive dependence on the initial
condition in a chaotic system give rise to apparently random
sequence which have been leveraged to build PRNGs [27],
[39], [40]. Due to the improved chaotic properties of FPCS,
they are promising for building high quality PRNGs. Here,
we introduce a new PRNG using the proposed BFPCS
and EFPCS. As a representative example, we are showing
the results for Tent-flipped-Tent (TTf ) map but the general
scheme can be adapted to any FPCS.

The schematic of the proposed PRNG is shown in Fig. 20.
We have two parallel chaotic oscillators, one using seed map
(SM) and the other one using FPCM. At every iteration,
we truncate the 64-bit output to extract the last 8 bits andXOR
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FIGURE 18. LE , KE , CCinit , CCpar comparison between FPGA and MATLAB
Simulation for TTf of BFPCS.

them to produce the final 8-bit output i.e. a throughput of
8 bits/iteration. The excellent performance of the PRNG has
been verified using four statistical randomness tests, namely
NIST, FIPS, Diehard and TestU01.

A. NIST SP 800-22 TEST SUITE
The test suite from the National Institute of Standards and
Technology (NIST) offers 15 statistical sub-tests to measure
the randomness in a sequence [41]. We ran the test with
100 bit-streams generated from 100 different initial condition
with each bit-stream having a length of 1 million bits. The
significance level was set to 0.01. Hence, a sequence with

FIGURE 19. LE , KE , CCinit , CCpar comparison between FPGA and MATLAB
Simulation for TTf of EFPCS.

FIGURE 20. Schematic of the proposed PRNG.

100 million bits (containing 100 bit-streams) will pass a
particular test if at least 96 out of the 100 bit-streams generate
a p-values greater than 0.01. The test suite allocates each of
the 100 generated p-values in 10 sub-intervals from 0 to 1
and evaluates the uniformity in the distribution with χ2-test.
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TABLE 4. NIST results (*shows an average of multiple tests).

TABLE 5. FIPS test results.

The sequence under test can be considered uniform if the
p-value generated from the χ2-test (refers to p−valueT )
is greater than or equal to 0.0001. NIST results, pre-
sented in Table 4, show that both BFPCS and EFPCS
sequences using TTf based PRNG pass all requirements of
15 sub-tests.

B. FIPS PUB 140-2
The Federal Information Processing Standards Publications
(FIPS PUB) 140-2 test suite was developed by NIST [42].
FIPS tests the randomness of a binary sequence by divid-
ing the sequence into 20,000-bit blocks. Hence, for a test
sequence with 100 million bits, there will be 5000 blocks
in total. The blocks are subjected to 4 sub-tests namely,
Monobit, Poker, Runs, and Long run. TheMonobit test counts
the number of 1’s in each 20,000-bit block. To pass the test,
this number must be within the range of [9725, 10275]. The
Poker test divides each 20,000-bit block into 5,000 successive
4-bit segments. The 4-bit segment can have 16 possible val-
ues. The occurrences of 16 values are counted and stored.
This sub-test examines the uniformity of the 4-bit segment.
Runs test counts and stores themaximum sequence of consec-
utive 1’s or 0’s in a 20,000-bit block. A run of 26 or more of
either 1’s or 0’s is defined as a Long run. The total number of
Long runs in a 20,000-bit block is counted as the total failure.
TABLE 5 shows the FIPS test result for BFPCS and EFPCS
using TTf based PRNG. The second column (from the left)
of TABLE 5 shows the total number of blocks passing the
test out of the total 5000 blocks and the last four columns
show the number of failed blocks under corresponding sub-
tests. The results show close to 100% success implying great
randomness.

FIGURE 21. Diehard statistical test result.

TABLE 6. TestU01 results.

C. DIEHARD STATISTICAL TEST SUITE
The Diehard statistical test suite was developed by
Marsaglia [43]. It generates 219 p-values under 15 sub-tests.
A sequence is considered to be random if the generated
p-values range between [0,1). On the other hand, if there are
six or more (out of 219) p-values of either 0 or 1 then the
sequence fails. Our test sequences contain 100,000,032 bits
(with a padding of 32 1’s at the beginning). FIGURE21 shows
the plots of p-values, organized in ascending order. The linear
fits in both plots show close conformity with the generated
p-value trends, demonstrating excellent randomness for both
BFPCS and EFPCS using TTf based PRNG.

D. TestU01
TestU01 offers a collection of utilities for empirical statistical
testing. This test suite comes as a software library generated
in ANSI C language [44]. We ran three test batteries namely,
Rabbit, Alphabit, and BlockAlphabit. The complete test was
run on three test sequences containing 220, 224, and 228 bits.
Depending on this sequence size, the Rabbit test consists
of 38 sub-tests whereas, Alphabit consists of 17 sub-tests
and BlockAlphabit consists of 6 blocks of the same 17 sub-
tests (102 tests in total). The sequence passes a sub-test if
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the generated p-value remains between 0.001 and 0.999.
TABLE 6 presents the ratio between passes and the total
number of sub-tests in each case and demonstrates excellent
performance for sequences generated from both BFPCS and
EFPCS using TTf based PRNG.

IX. CONCLUSION
In this work, we have introduced FPCS, a new methodology
for building high-quality 1-D chaotic map using existing
maps, and outlined two schemes called BFPCS and EFPCS.
Nine configurations based on three seed maps are shown
for each scheme, and the resulting performance improve-
ment of these new maps compared to their constituent
maps has been demonstrated using bifurcation diagram, Lya-
punov Exponent, Kolmogorov entropy, and correlation coef-
ficient. EFPCS is computationally more expensive compared
to BFPCS but yields better chaotic properties with wider
chaotic window for all combinations. We compared our
results against prior works which show marked improvement
in several important metrics. We also presented hardware
implementation of both schemes in FPGA to illustrate their
simplicity of implementation and verified their entropic prop-
erties against software simulation. The improved entropy
metrics seem promising for various security applications.
We showed one application by building a new PRNG using
proposed maps and validated their excellent randomness
using four standard statistical tests, namely NIST, FIPS,
Diehard, and TestU01. Since a common parameter was used
for both constituent maps in this paper, future work may
include extension of the proposed framework using two maps
with two independent parameters.
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