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ABSTRACT The proliferation of smartphones has accelerated mobility studies by largely increasing the type
and volume of mobility data available. One such source of mobility data is from GPS technology, which is
becoming increasingly common and helps the research community understand mobility patterns of people.
However, there lacks a standardized framework for studying the different mobility patterns created by the
non-Work, non-Home locations ofWorking and Nonworking users onWorkdays and Offdays using machine
learning methods. We propose a new mobility metric, Daily Characteristic Distance, and use it to generate
features for each user together with Origin-Destination matrix features. We then use those features with
an unsupervised machine learning method, k-means clustering, and obtain three clusters of users for each
type of day (Workday and Offday). Finally, we propose two new metrics for the analysis of the clustering
results, namely User Commonality and Average Frequency. By using the proposed metrics, interesting user
behaviors can be discerned and it helps us to better understand the mobility patterns of the users.

INDEX TERMS Urban mobility, insight extraction, daily characteristic distance, GPS trajectories.

I. INTRODUCTION
Global Positioning System, or GPS for short, has been around
for many years and is increasingly being used in the context
of mobility studies. It has been found to be widely usable
for collection of spatio-temporal data on different scales [1].
GPS mobility data has been used in many different fields and
applications, such as finding efficient routes [2], understand-
ing the progression of infectious diseases [3], and prediction
or inferring of demographic information of users [4], [5].

Many studies analyze GPS data in conjunction with other
data, such as demographic data [6], [7], supplementary survey
data [1], Wi-Fi and geolocation data [8], or even sound and
light data [9]. With increasing privacy concerns in recent
years, it has become more difficult to obtain such data for
large numbers of volunteers. Additionally, large volumes
of human movement data are created without such supple-
mentary data. To be eventually able to make use of this,
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we want to explore ways in which we can analyze GPS
data without the need for additional supplementary data.
Zhu et al. [10] found that the user’s socio-demographic role
can be predicted with high accuracy using long-term GPS
data, which supports the idea that Working and Nonworking
users may have different mobility patterns. In addition to this,
Nahmias-Biran et al. [11] found several distinct clusters of
activity-travel patterns in their GPS-enriched travel survey
dataset, which included distinct temporal patterns of different
Out-of-Work activities as well as different Leisure activities.
This leads us to examine the mobility patterns of Workdays
and Offdays separately.

Although there are many works that have used GPS data in
many different applications, there lacks a study that compares
the mobility patterns ofWorking and Nonworking users, with
a focus on non-Home, non-Work locations, on Workdays as
compared to Offdays. Some challenges faced in this research
are ensuring a fair comparison between users who live and
work at different locations, as well as a fair comparison
between Workdays and Offdays. To this end, we propose
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a new mobility metric that excludes the effects of Home
and Work locations and uses the user’s Home location as a
reference point. We decided to use an unsupervised machine
learning method - clustering, which finds groups in data
without the need for labels or ground truth. We use the
above-mentioned metric for each user in conjunction with
other features as an input for the clustering algorithm.

Therefore, this paper has the following contributions:

• We propose a new mobility metric, Daily Characteristic
Distance (DCD), as a fair basis to compare the mobil-
ity of Working and Nonworking users on Workdays
and Offdays separately, even with differing distances
between the Home and Work locations for different
users.

• We use the DCD to extract features from users and use
these features in conjunction with Origin-Destination
(OD) matrix features to cluster users using k-means
clustering on a real-world dataset collected in Singapore.

• Finally, we analyze the cluster results using two other
analysis metrics that we have proposed - User Common-
ality and Average Frequency, which utilize information
from within the clusters to gather higher-level insights.

The structure of the remaining sections will be as follows:
Section II lists some related works in the field of GPS track-
ing and clustering. The dataset and preprocessing procedures
are presented in Section III, while the proposed methodology
is presented in Section IV. Section V shows the results and
analysis of performing our proposed methodology on Work-
day data, while Section VI does the same for Offday data.
Lastly, Section VII concludes the paper.

II. RELATED WORKS
This section will be split into three parts. The first part
addresses past works on the analysis of human mobility via
the usage of GPS data. The second part addresses the selec-
tion of clustering algorithms used for this paper. Lastly, the
third part deals with mobility metrics.

A. WORKS USING GPS DATA
There have been several works focusing on the use of
GPS data in mobility studies. Van der Spek et al. [1] used
GPS to collect data in three European city centers, as well
as track the activity data of 13 families in Almere (a city in
The Netherlands) for one week and conclude that GPS offers
wide usability in the collection of invaluable spatial-temporal
data on different scales and in different settings, adding new
layers of knowledge to urban studies.

Some studies make use of external data to supple-
ment GPS data in order to gain additional insights.
Sila-Nowicka et al. [6] performed an analysis of signifi-
cant places identified from their GPS data in conjunction
with additional social demographic data, while Long and
Reuschke [7] even use detailed GPS data to analyze the
effects of employment type (business owners or employees)
on daily mobility. Marakkalage et al. [12] used a fusion of

GPS data andWi-Fi data to derive insights on neighbourhood
activity and micro mobility.

GPS datasets may also provide an avenue for
modelling human mobility if they are large enough.
Alessandretti et al. [13] presented an extensive characteri-
zation of the statistical properties of GPS trajectories using
a dataset collected from around 850 people lasting around
25 months, while Solmaz et al. [14] used GPS traces to model
and simulate pedestrian mobility in disaster areas.

Other machine learning approaches in the analysis of
GPS data include supervised learning, where Zheng et al. [15]
proposed an approach based on supervised learning to infer
people’s motion modes from their GPS logs, as well as
anomaly detection, where Wang et al. [16] proposed a
hierarchical clustering method using an improved edit dis-
tance algorithm to detect anomalous taxi trajectories between
selected pairs of origins and destinations.

From the above, we understand that GPS data can be a rich
source of mobility information about users, even extending
to other aspects of demographics. As our focus is more on
unsupervised machine learning as compared to prediction,
we turn our focus to the application of clustering methods
in the analysis of GPS data.

B. CLUSTERING ALGORITHMS IN THE ANALYSIS OF
GPS DATA
Some authors have performed clustering on trajectories to
find common routes or popular locations. An example would
be Cesario et al. [17], who proposed their own algorithm,
Trajectory Pattern Mining (TPM), and used it to discover
dense regions and popular sequential patterns within their
dataset. Kumar et al. [18] also proposed their own novel
algorithm, with the aim of discovering clusters of taxi routes.
Dodge et al. [19] proposed their own framework to assess
movement similarity using symbolic representation of move-
ment parameters and used it to cluster trajectories of hur-
ricanes and couriers according to their proposed similarity
metrics. Tang et al. [20] used the Density-Based Spatial Clus-
tering of Applications with Noise (DBSCAN) [21] algorithm
to cluster locations of pick up and drop off points for their taxi
GPS dataset, aiming to describe the taxi trips using statistical
models. These above clustering methods are applied to the
trajectories themselves and not to the users, which is less
aligned with the aims of our study of the users’ mobility
patterns on Working and Nonworking days.

Another form of clustering in the analysis of GPS data
is the grouping of users based on their travel patterns.
Amichi et al. [22] used Gaussian mixture models [23] to
identify three different groups of people based on their travel
patterns - scouters, regulars, and routineers. However, this
was mostly based on how often each user traveled to new
locations as compared to returning to previously visited ones.
In the long term, the number of recorded ‘‘visited’’ places will
keep increasing, while the ‘‘new’’ locations will become few
and far between, so this approach may not be applicable on a
long term scale and is less suited for this study.
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FIGURE 1. Flowchart depicting the data collection, processing, clustering, and analysis framework proposed by this paper.

Scherrer et al. [24] went through a rigorous selection
process for parameters and algorithms before performing
their clustering. Out of a total of four clustering algorithms,
k-means clustering [25] was in at least the first two combina-
tions in terms of their overall ranking, and they eventually
used it to cluster users based on the large amount of data
they gathered from a mobile application. They were able to
draw conclusions from data that was gathered as a byproduct
and hence without specific experimental aim or ground truth.
As this is similar to our use case, we eventually decided to
use k-means clustering.

C. EXISTING MOBILITY METRICS
We aim to find some simple, understandable features within
our data that will result in meaningful interpretation of the
clustering results. The review paper by Solmaz et al. [26] clas-
sifies mobility metrics into three different types - movement-
based, link-based, and network-based metrics. As our focus
is on how the users travel, we place an emphasis on
movement-based and link-based metrics such as visit fre-
quency and mean squared distance, rather than on the
network-basedmetrics such as transmission count and energy
consumption.

Movement-basedmetrics include visit frequency andmean
squared distance. A commonly used metric that combines
these is radius of gyration [27], which has been used in many
papers [28], [29], [30]. It gives the characteristic distance
traveled by a user within a specified time period and is
calculated as the mean squared distance of the user’s visited
locations to the center of mass of those locations. We are
interested in non-Home and non-Work locations, thus we
adapted this formula based on what we have in our dataset
to extract the relevant features for clustering.

For a link-based metric, those mentioned by
Solmaz et al. [14] such as node density and intercontact
time were difficult to apply in our dataset. We then con-
sidered Origin-Destination (OD) matrices, which have been
commonly used in literature for analyzing flows between

locations. For example, they have been used by
Zhou et al. [31] and Koh et al. [32] to illustrate the probability
of human flows between different fixed nodes. However,
we believe that they can be used to describe an individual’s
probability of motion between different locations as well,
much like the links of a Markov chain model, which has been
shown to have relatively high prediction accuracy [33] for
trajectories. Based on this, we propose a method of extracting
OD matrix features in Section IV-A-2.

III. DATA COLLECTION AND PREPROCESSING
The overall data flow of this paper is summarized in Fig. 1.
This section deals with the Data Collection and the Prepro-
cessing parts.

Timestamped GPS data was collected through a
user-installed smartphone application that runs in the back-
ground and collects GPS data adaptively. When moving,
data is recorded about once every minute, whereas when the
device is still or not moving, the data is recorded about once
every five minutes. Data collection was carried out over a
range of different periods of time for different users. Usable
data was selected with the criteria of at least one month
of valid data accounting for at least 50% of the recording
duration for each user, resulting in the data from a total of
73 users being selected for use. Although the sample size is
relatively small, it is due to strict criteria to ensure quality of
the data used. Additionally, for this paper, we focus mainly
on the framework, which can be extended to other datasets
with larger sample size in the future.

Each detected point of the data consists of a latitude,
longitude, start time, and end time. For each user, individual
points at similar coordinates were clustered together using
a validation based stay point detection algorithm [34] to
identify points of interest (POIs). Home and Work locations
for each user are then detected from this set of POIs using
frequency and stay duration given the time of day, roughly
based on a Monday to Friday workweek within standard
office and retail hours. Taking into consideration that there
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TABLE 1. Labels for the different POI types considered in the dataset.

may be differences in mobility patterns on Workdays and
off days for the Working population, the POI data was then
separated into Workday data and Offday data. Workdays are
taken to be days when the user was detected at their Work
location. Some of the users who are not detected in a fixed
’Work’ location during those standard hours are considered
as Nonworking users and all of their data is considered to lie
in the Offday category.

Next, each POI is manually labeled by its proximity to
the nearest location with a specific type out of ten different
categories. If it is more than 400m away from any location
with known POI types, it is left unlabeled. The labels are as
shown in Table 1.

Finally, to minimize the impact of the GPS inaccuracy,
the data points were then assigned to specific areas called
subzones, which are small sections of planning areas delin-
eated by the Urban Redevelopment Authority of Singapore
for statistical purposes [35]. These subzones were used in
the extraction of clustering features, which can be found
in Section IV-A-2.

IV. PROPOSED CLUSTERING METHODOLOGY
This section will go into details of the feature extraction and
clustering processes. These processes differ slightly between
the Workday and the Offday datasets. The aim of clustering
these users is to find common types of users based on their
mobility patterns, and thus possibly derive insights into com-
mon mobility patterns.

A. FEATURE EXTRACTION
For the purposes of clustering, we extract two main types
of features from each user. One is derived from a proposed
metric, Daily Characteristic Distance (DCD), while the other
is derived from the Origin-Destination (OD) matrix of each
user’s individual trips.

1) DAILY CHARACTERISTIC DISTANCE
We are interested in mobility patterns for different users in
the dataset. As different users have different Home and Work

FIGURE 2. (a) Illustration of radius of gyration. The shaded gray circle is
centered at the computed center of mass, with a radius equal to the
computed radius of gyration. (b) Comparison between radius of gyration
(single value, red line) and proposed Daily Characteristic Distance (set of
values, bar plot) over the same time period.

coordinates, it is imperative to find a mobility metric that
enables us to compare different users despite this spatial
restriction. One such metric in the literature to quantify the
mobility of individuals is the radius of gyration, which con-
siders distances from the center of mass of a trajectory and is
thus user-dependent. The radius of gyration rg of a user a from
the start of their dataset up to a certain time t was proposed
by Gonzalez et al. [27] and expressed by Equation 1:

rag (t) =

√√√√ 1
nac(t)

nac∑
i=1

(Erai − Er
a
cm)2 (1)

where Erai represents the i = 1, . . . , nac(t) positions recorded

for user a and Eracm =
1

nac (t)

∑nac
i=1
Erai is the center of mass of

the trajectory.
For the purpose of comparison between different users in

our dataset, the time t in the above equation is taken to be the
entire duration of each user’s dataset, as the duration varies
between users. Thus, the value of nac(t), which originally
refers to the number of recorded positions of user a up to
time t , becomes the total number of locations N a visited by
user a and the time dependency is removed. The simplified
equation is as shown in Equation 2.

rag =

√√√√ 1
N a

N a∑
i=1

(Erai − Er
a
cm)2 (2)

An illustration for this metric is shown in Fig. 2(a) for a user
with a 40-day dataset. As expected, the center of mass lies
between the Home and Work location, as those locations are
visited with a higher frequency than other locations.

However, there are some things that can be added to this
metric, which it currently lacks. Firstly, as our dataset has
labels for Home locations of each user, we can add more
meaning to the metric by using the Home location of each
user as the reference point for distance calculations instead
of the computed center of mass of the user’s visited locations.
This will allow us to know the characteristic distance that the
user travels from their Home, which may have more physical
meaning than a computed center of mass of their trajectory.
Secondly, the radius of gyration metric currently produces
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FIGURE 3. Violinplots illustrating the DCD distributions of users on (a) Workdays, consisting of only Working users, and (b) Offdays, consisting of both
Working users on Offdays and Nonworking users on all days. (a) shows a moderately high correlation between DCD peaks and Home-Work distance of
each user, while (b) shows a higher density of Working users with higher median DCD.

one value per user. We propose to break down the dataset
into days and compute a value for each individual day, thus
obtaining a distribution of the daily distances traveled by the
user. Each day’s characteristic distance may be affected by
whether or not the user went to work on that day, which
is part of what we want to investigate. Lastly, we want to
investigate the locations that the users visit outside of Home
andWork. Therefore, we manually negate the contribution of
the Work and Home locations in the calculations by setting
their distances to zero and removing the count of Home and
Work visits from the total value of N a. As our proposed new
metric computes a characteristic distance for each day of the
dataset, we call it Daily Characteristic Distance (DCD).

The DCD for day d of the dataset is given by Equation 3:

DCDd =

√√√√ 1
nd

nd∑
i=1

fid × (Erid − Erhome)2 (3)

where nd is the number of unique POIs that the user traveled
to on that day, fid is the number of times the user traveled to
location i where i = 1, . . . , nd on that day, and Erhome is given
by the mean coordinates of the Home location of the user.
Fig. 2(b) illustrates the difference between radius of gyration
(one value per user) and DCD (a set of values per user). The
days without bars have a value of zero, indicating that on
those days the user traveled directly between Home andWork
without visiting any other location.

The obtained DCD distributions of all users are plotted
in Fig. 3. The Workday data of Working users is plotted in
Fig. 3(a), while the Offday data (consisting of Working users
during Offdays and Nonworking users on all days) is plotted
in Fig. 3(b). In Fig. 3(a), we have sorted the distributions in
ascending order of Home-Work distance of each user. From
this, we can see that there generally seems to be a relationship
between the Home-Work distance of the users and the loca-
tion of the peaks of their DCDdistributions.We calculated the
Pearson’s R-value between each user’s Home-Work distance
and the median of their DCD distribution and found that
there was a moderately high R-value of 0.746, with a p-value
of 2.90e−5.

For the Offday data, since there is no second location
outside of Home that was fixed for every user, we could not
apply this method. Instead, we have sorted the distributions
in ascending order of their median point and colored the
distributions according to whether the user is a Working or
Nonworking user. From Fig. 3(b), we can see that there is a
higher concentration of Working users (blue) at the side with
higher median DCD. This may indicate that Working users
tend to visit locations at further distances from their homes
as compared to Nonworking users.

To use this newmetric DCD as a clustering feature, we first
break down all the data for all users intoWorkday and Offday
data. We then separately compute the DCD values for each
day and plot separate histograms of the DCD values over all
relevant users on Workdays and Offdays, as shown in Fig. 4.
From these histograms, we visually obtain the four thresholds
of 0km (Home and/or Work only), 0 to 5km, 5 to 15km, and
>15km by observing suitable valleys.

Each user’s data is then broken down into Workday
(if applicable) and Offday data. For each type of data, we cal-
culate the percentage of DCD values that fall within each of
the determined thresholds. This gives us four features for each
type of data that add up to 1.0. An example of the features for
one user, User 2, is shown in Table 2.

These four features will be used in conjunction with
the 16 features derived from the Origin-Destination Matrix,
explained below:

2) ORIGIN-DESTINATION MATRIX
From each user’s trajectory, we can extract distances from
each user’s Home (and Work location if applicable) to the
other POIs that the user visits. For Offdays, we can sim-
ply use the distance from Home to that POI as there is no
other location that is common to all users. However, there
is an additional important location for Workdays, which is
the Work location of the user. Therefore, on Workdays, the
distance value of each POI, referred to as minimum distance,
is taken as the minimum of the distances between the POI
and the user’s Home location and between the POI and the

VOLUME 10, 2022 125391



Z. Koh et al.: Clustering and Analysis of GPS Trajectory Data Using Distance-Based Features

FIGURE 4. Histograms of the number of days within the whole dataset of
(a) DCD value on Workdays, and (b) DCD value on Offdays. Note that
(b) has been cropped vertically to show greater detail - the leftmost bar
has an actual value of 3312, of which 3137 have a value of 0.

TABLE 2. Example of the four DCD features for Workday and Offday data.

user’s Work location. This is to detect any specific locations
that users may go to, that is not nearby to either their Home
location or Work location and hence ‘‘out of the way’’ from
the user’s point of view. After extracting these distances sep-
arately from theWorkday and Offday data, the corresponding
histograms are plotted. These can be seen in Fig. 5. We obtain
the thresholds visually by selecting suitable valleys in the
histograms. The thresholds for Workdays are 0km (direct
trips between Home and Work), 0-2km, 2-8km, and >8km,
while the thresholds for Offdays are 0-1km, 1-5km, 5-15km,
and >15km.
After getting these thresholds, the trips made by a user are

now categorized based on these thresholds. We are interested
in the combinations of movements that users make from
threshold to threshold, and whether these will be a signifi-
cant distinguishing factor between different users’ mobility
patterns. Taking an example of a user with Workday data,
a trip consists of going from location A to location B, where
threshold A is on the row of the matrix and threshold B is
on the column of the matrix. If A is located within 0-2km
and B is located within 2-8km, the number corresponding to
the ‘‘0-2km’’ row and the ‘‘2-8km’’ column will be increased
by 1. After the trips are all counted for a user, the matrix
is normalized by the total number of trips counted for that
user, such that all 16 elements of this matrix add up to 1.0.
This is to make the data comparable between different users.
An example of the resultingmatrix using theWorkday thresh-
olds can be seen in Table 3. The Offday matrix and features
are computed similarly.

We do not count trips occurring on different calendar dates
(i.e. from the last POI on one day to the first POI the next
morning), and we also do not count trips that occur within
the same subzone (e.g. Home to Home).

These 16 features are then concatenated with the four fea-
tures from the aboveDCD calculations to form the 20 features

FIGURE 5. Histograms of the number of POIs visited over the whole
dataset of (a) minimum distance between Home and Work to that
location on Workdays, and (b) distance from home to that location on
Offdays.

TABLE 3. Example of the 16 OD matrix features for Workday and Offday
data.

used in clustering, whichwill be discussed in detail in the next
subsection.

B. PROPOSED CLUSTERING PROCESS
After extracting the features for each user as in the above
subsection, we performed some initial test clustering, using
Euclidean distance as a distance measure between users,
to obtain the sum-of-squared errors (SSE) plot. This plot was
used to decide on the number of clusters, k , to be used as the
input parameter for k-means clustering [25].

The SSE plot measures the sum of all squared errors
from the clustered points to their respective cluster centers
after being grouped using each value of k . As the value of
k increases, the SSE naturally decreases, but a good value
for k would be one located at the ‘elbow’ of the plot, just
before the decrease in SSE becomes less than proportionate
to the increase in k . The SSE plots for our dataset can be
seen in Fig. 6, where Fig. 6(a) shows the plot using the data
fromWorkdays, while Fig. 6(b) shows the plot using the data
from Offdays. From both SSE plots, the ‘elbow’ of the plot
indicates that a good value of k to use would be k = 3. The
detailed results are plotted in the following sections, with the
Workday results presented first before Offday results.
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FIGURE 6. SSE plots used to derive (a) the optimal number of clusters for
Workdays and (b) the optimal number of clusters for Offdays. Both plots
indicate 3 as a suitable value for k , the number of clusters.

V. WORKDAY CLUSTERING AND ANALYSIS
This section focuses on the results obtained from clustering
the Workday data of working users. The eventual aim of this
clustering is to separate users into different clusters based on
their workday data. Further analysis is then performed on the
identified clusters, which consists of the DCD violinplots for
each user in each cluster, as well as user commonality and
average frequency heatmaps, which are explained in detail
later on. The same process will be repeated for the Offday
data in the next section.

A. CLUSTERING RESULTS—CENTROID VALUES
The centroid values of each cluster are shown in Fig. 7. These
values represent the average percentage of trips within each
threshold (for the first 16 values in the O-D matrix) and
the last 4 values represent the percentage of days for each
user that have DCD values within each of the 4 distance
thresholds, as described in Section IV-A. The clusters are
named W1, W2, and W3 respectively (W stands for Work-
day). Visually, it seems that the clusters are separated mainly
based on the percentage of Home/Work trips out of the total
number of trips taken by the user, with cluster W1 having
the highest average percentage of direct Home-Work trips
at 77% followed by W2 with 42% and W3 with 21%. The
DCD features below each OD matrix show that there are
similar average percentages of Home/Work Only trips and
Home/Work Only days.

Users from Cluster W1 have a large majority - on average
72% - of their Workdays where they do not visit any other
locations. The average percentage of their days spent with
DCD at each distance threshold decreases with increasing
distance.

Looking at Cluster W2, the DCD features are roughly
evenly spread across the first three distance thresholds. Since
there is a higher value of DCD being within 5-15km as
compared to 0-5km, while the percentage of trips from the
OD matrix indicate a higher emphasis on minimum distance
between 0-2km, it is likely that some of the locations, which
are 5-15km from their Home, are actually within 0-2km
of their workplace, leading to a lower value for minimum
distance.

For Cluster W3, the DCD features have a surprisingly high
average value of 55% in the 5-15 km threshold as compared to

12% and 31% the other two clusters. It also has a much lower
average value of 8% in the 0-5km threshold, as compared to
15% and 27% in the other clusters. As the average percentage
of Home/Work direct trips from the OD matrix is also quite
low at 21%, it can be interpreted that the users in this cluster
usually travel quite far from their Home and Work locations.

Overall, the clusters can be described as mainly Home/
Work Only (W1), frequent short trips in terms of Minimum
Distance (W2), and mostly longer trips (W3).

B. CLUSTER ANALYSIS—DCD VIOLINPLOTS
Fig. 8 shows the DCD violinplot for each individual user in
each cluster, sorted in ascending order of their Home-Work
distance. These violinplots do not show the percentage of
days spent only betweenWork andHome, as we are interested
in the POIs that are not Home and notWork. From this figure,
we observe from the yellow highlighted portion that most
of the users in cluster W1 have a low Home-Work distance,
below 5km. This may be a factor in these users having the
highest percentage of direct trips between Home and Work
out of the three clusters on Workdays. The users in cluster
W2 have Home-Work distances in the middle range, and
usually the peaks of their DCD distributions are located close
to the Home-Work distances. This is also reflected in their
OD matrix, in which this cluster has the highest percentage
of trips within 0-2km of either their Home or Work location
out of the three clusters. For Cluster W3, two out of the four
users have a large Home-Work distance of over 20km. Three
out of the four users have DCD peaks near their Home-Work
distance, but those are not reflected in the centroid ODmatrix,
perhaps because they travel to other places that are the same
distance from their Home as well as their Work location.
These DCD plots are in agreement with the DCD features for
ClusterW3, as the bulk of their DCD distributions are located
within the 5-15km range.

C. CLUSTER ANALYSIS—USER COMMONALITY AND
AVERAGE FREQUENCY
The next two parts of cluster analysis, what we will call
User Commonality and Average Frequency, are shown
in Fig. 9 (a) and (b) respectively. Both of these types of
analysis use the same distance thresholds for minimum dis-
tance that were used for the OD matrix features, broken
down into each of the ten different POI categories that were
labeled in the data. To represent User Commonality, each
square in Fig. 9(a) shows the percentage of users within the
cluster who fulfilled each minimum distance and POI label
combination at least once in their trajectory. The aim of this
is to see whether there is anyminimum distance and POI label
combination that is favored by the users in each cluster. The
value of each heatmap square ujk , in row j and column k ,
is given by Equation 4:

ujk =
njk
nc

(4)
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FIGURE 7. Centroid values of the three clusters obtained from clustering Workday data. Cluster W1 has the highest percentage of trips directly between
Home and Work, as well as the highest percentage of days spent only at Home or Work. The other two clusters W2 and W3 are in descending order of
percentage of trips directly between Home and Work.

FIGURE 8. Violinplots illustrating each user’s DCD distribution within each cluster on Workdays.

where njk is the number of users within the cluster who visited
a POI at distance threshold j with label k , and nc is the total
number of users in that cluster.

Meanwhile, Fig. 9(b) shows the Average Frequency, taken
as a percentage of the user’s total trips and averaged over all
users in the cluster, of each minimum distance and POI label
combination. The value of each heatmap square fjk , in row j
and column k , is given by Equations 5 and 6:

Pijk =
pijk
pi

(5)

fjk =

∑nc
i=1 Pijk
nc

(6)

where Pijk is the percentage frequency of user i vis-
iting a POI at distance threshold j and with label k ,
pijk is the number of POIs that user i visited at distance
threshold jwith label k , pi is the total number of labeled POIs

visited by user i, and nc is the total number of users within the
cluster.

The advantage of using these two analysis metrics is that
they both make use of the data available within the clusters,
and thus do not require an external source of ground truth,
to highlight meaningful differences between the clusters that
may not be apparent at first glance.

FromFig. 9(a), it can be seen that there is no single distance
threshold and POI label combination that is visited by 100%
of the users in each cluster, except for Shopping Malls at
a minimum distance of >8km for Cluster W3. However,
quite a high percentage of users in the other two clusters
visit this distance threshold/POI label combination as well.
Other common combinations that appear in all three clusters
are: Neighborhood Center, Shopping Mall, and Residential,
all within the 0-2km threshold. The distinguishing features
of the clusters can be summarized as follows: Cluster W1
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FIGURE 9. Heatmaps for each of the three Workday clusters showing (a) User Commonality and (b) Average Frequency. The colormap scales for (b) are
narrowed to 0.25 to better show the contrast between the different squares.

has a visible percentage at Recreational at >8km minimum
distance as compared to the others. More of the users in
cluster W2 visit Attractions at a minimum distance of larger
than 8km as compared to the other clusters. Users in Cluster
W3 have a higher frequency of trips to various places over a
variety of distance thresholds, such as Parks, Recreational,
and Residential areas within the 2-8km range, as well as
Healthcare, Neighbourhood Center, and Shopping Mall in
the >8km range.

From Fig. 9(b), it can be seen that the POI label with
common frequency among the three clusters is Neighborhood
Center at 0-2km. Cluster W1 has highest Average Frequency
at Residential POIs within 0-2km and Shopping Malls at
>8km. In comparison to Cluster W2, which has the highest
relative frequency of shopping mall trips at 0-2km, this indi-
cates that the users in Cluster 1 may be more willing to go
a further distance on their shopping trips. Cluster W2 has a
visible frequency at Healthcare at 0-2km, something which
is not seen in the other two clusters. The users in Cluster W2
may visit Healthcare locations more frequently, and it makes
sense that they would primarily visit Healthcare locations that
are nearer to either their Home orWork locations. ClusterW3
has a visible frequency at the Park and Recreational POIs
within the 2-8km threshold, which is not observed in the
Cluster W1 and Cluster W2. This may indicate that users
in Cluster W3 make trips to areas related to leisure more
frequently than the users in the other clusters.

Comparing the two parts of Fig. 9, we can see that although
there are some distance and label combinations that have
more users in each cluster that visit them, it does not neces-
sarily mean that they visit them frequently. The label/distance
combinations that are visited frequently are a subset of those
that are visited commonly by users.

VI. OFFDAY CLUSTERING AND ANALYSIS
This section describes the results obtained from clustering
the Offday data of all users. The process is the same as
the one used for the Workday data in Section V. The three
clusters here are labeled O1, O2, and O3, with ‘O’ standing
for ‘Offday’.

A. CLUSTERING RESULTS—CENTROID VALUES
The values of each cluster’s centroids are plotted in Fig. 10.
We can observe that these clusters show similar trends to the
Workday clusters in that there are those that stay mostly at
Home Only (O1), those that make mostly short trips (O2),
and those that make mostly longer trips (O3). The users in
Cluster O1 spent 71% of their Offdays only at their Home
location. Cluster O2 users spent on average 21% of their days
at their Home location, and 58% of their days have a DCD
value of 0-5km. The average percentages for Cluster O3 are
more evenly split between the Home Only and the first two
distance categories, with the highest being 39% of days with
DCD values of 5-15km.

When observed together with each cluster’s corresponding
OD matrix, we see that Cluster O2 actually has the highest
average percentage of trips within 0-1km at 46% compared
to 32% for Cluster O1. Additionally, we see that the percent-
ages of trips going between the 0-1km threshold and further
thresholds is actually higher in Cluster O1 than Cluster O2.
A possible reason for this could be that although the users in
O1 stay at home only for more days than those in O2, they
tend to travel further when they do go out, whereas those in
O2 could go out on more days but stay within 0-1km for most
of their trips. The users in cluster O3 seem to have more of
a balance between staying at home and going out to near or
further places.
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FIGURE 10. Centroid values of the three clusters obtained from clustering Offday data. Cluster (a) has the highest percentage of days spent at Home only,
while cluster (b) has the highest percentage of days with DCD between 0 to 5 km, meaning they went to at least one other non-Home location. Cluster
(c) has the highest percentage of days with DCD in the 5 to 15km range, indicating that they generally travel the furthest on Offdays.

FIGURE 11. Violinplots illustrating each user’s DCD distribution within each cluster on Offdays.

B. CLUSTER ANALYSIS—DCD VIOLINPLOTS
The violinplots representing the DCD distribution of each
user within each cluster have been plotted in Fig. 11. Sim-
ilarly to before, the Home Only days are not reflected on this
plot as we are more interested on days in which the users do
go out.

Cluster O1 and Cluster O2 both contain dominantly Non-
working users, while the bulk of the Working users are in
Cluster O3. Qualitatively speaking, Cluster O1 seems to lie
in the middle of Clusters O2 and O3. The median DCDs of
the users in Cluster O2 are limited to the 0-5km range, which
agrees with the DCD features observed in Fig. 10 and further
emphasizes that this group of users makes mostly short trips.
Although the median values of Cluster O3 are not always
higher than those in O2, the bulk of the DCD distributions for
Cluster O3 lies above 5km, which is the distance threshold for
longer trips in this case.

C. CLUSTER ANALYSIS—USER COMMONALITY AND
AVERAGE FREQUENCY
User Commonality and Average Frequency of each cluster is
obtained as described earlier in Section V-C, and plotted in
Fig. 12. From Fig 12(a), we observe that there are the same
three main POI labels that are commonly visited by users,
namely Neighborhood Center, Shopping Mall, and Residen-
tial. There is a higher percentage of users in Cluster O3 who
visit Parks and Recreational areas between 1-15km, as well
as visiting Attractions that are in the 5-15km range from their
homes. This may imply that users who have a higher median
DCD tend to visit a variety of locations on Offdays, which are
also further from their Home locations.

Looking at Fig. 12(b), we see that for all three clusters,
the three highest frequency labels are the same as the high-
est commonality labels. However, for Shopping Malls, the
highest frequency distance threshold differs for each cluster.
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FIGURE 12. Heatmaps for each of the three Offday clusters showing (a) User Commonality and (b) Average Frequency. The colormap scales for (b) are
narrowed to 0.17 to better show the contrast between the different squares.

For Cluster O1, the frequency is higher for Shopping Malls
in the 1-5km range. For Cluster O2, the frequency is concen-
trated at the 0-1km range for ShoppingMalls and similarly for
Neighborhood Center and Residential areas.We can infer that
the frequent short trips for this cluster are mainly for the pur-
pose of visiting locations with those three labels. For Cluster
O3, the frequency is prominently concentrated at Shopping
Malls in the 5-15km range, and the frequency for Residential
areas is much lower than for the other two clusters. This
implies that shopping malls are a common destination further
away from their home and work for these users in Cluster O3.

VII. CONCLUSION
In this paper, we investigated the differences between theGPS
trajectory patterns of Workday and Offday data, as well as
Working and Nonworking users. To do so, we proposed a
newmobility metric based on radius of gyration, namedDaily
Characteristic Distance (DCD), to zoom in on the locations
outside of Home andWork if applicable that the users visited.
We discover that Working users’ median DCD on Workdays
is highly correlated to the distance between their Home and
Work locations, and that Working users generally have a
higher median DCD on Offdays as compared to Nonworking
users.

We then used features derived from DCD in conjunction
with those derived from the users’ Origin-Destination matri-
ces to cluster the users in our dataset. We find that we can
group users’ mobility into three types for both Workdays and
Offdays. The three types are mainly those that mainly stick
to Home (and Work if applicable), those that make frequent
short trips, and those that make longer trips. We also propose
two new types of metric for cluster analysis, namely User
Commonality and Average Frequency, to better assess the

labels and distances of different locations that are favored by
the users in different clusters. We discover that three main
POI labels are favored regardless of cluster - Neighborhood
Centers, Shopping Malls, and Residential areas, but the main
differences between clusters are the distance thresholds of
these POI labels, as well as the presence or absence of some
other labels such as Attraction, Parks, and Recreational areas.
Urban planners could use this framework on their own target
datasets as a case study to discover the types of places that
would be beneficial to locate nearby their intended residential
environment. It is important to note that, while our proposed
framework is general, the results that we have obtained are
dependent on our data that we have gathered in Singapore,
and thus results may differ widely if our framework is used
on data from other countries.

Currently, our work examines the users’ data and clusters
them separately for Workdays and Offdays. There could be
more insights to be drawn from linking both the Workday
and Offday mobility features of the individual Working users
together and examining the resulting features for new corre-
lations. This could be a part of future work.
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