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ABSTRACT Recently proposed improvements in the field of Computer Vision refer to enhancing the feature
processing capabilities of Single-Task Convolutional Neural Networks. A typical Single-Task network con-
sists of a backbone and a head, where the feature extractor is usually optimised using the gradient provided
by the head. Inevitably, the backbone specialises for the given task. This sort of approach does not scale well
for learning multiple tasks at once while having the same input. As a response, there is an increasing interest
in Multi-Task formulations. Since most Multi-Task architectures employ a single shared backbone, when
gradients from different tasks are propagated back to it, it can result in its oversaturation. Thus, this problem
may be solved using Multi-Backbone feature extractors. Hence, as a strategy proposed to compensate for
these shortcomings, we introduce MBMT-Net, a Multi-Backbone-Multi-Task-Network architecture based
on a development strategy that infuses backbones with more diverse and specialised processing capabilities.
MBMT-Net consists of parallel pre-trained backbones whose outputs are concatenated and offered to the
Multi-Task heads that shall benefit from richer and more diverse features with decreased number of network
parameters when compared to traditional Multi-Task architectures. Our strategy is architecture independent,
and it can be applied to different types of backbones and parsing heads, which greatly extends the domain
of configurable features, finally enhancing existing Single- and Multi-Task model building strategies and
outperforming them when using the Multi-Backbone design. As a result, while having a deficit of 12.16M
parameters, MBMT-Net reaches state-of-the-art performances, and surpasses the previously best semantic
segmentation Multi-Task model in terms of Mean Intersection over Union when evaluated on NYUv2 data
set.

INDEX TERMS Computer vision, convolutional neural network, depth estimation, multi-backbone, multi-
task, semantic segmentation, surface normal prediction.

I. INTRODUCTION
The growing interest in Computer Vision (CV) [1] is devel-
oping upon the rapid progress of computational means for
very complex learning models. At the same time, the research
motivation lies on the need of process automatisation in
several domains in which Machine Learning (ML) is applied.

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhipeng Cai .

Furthermore, the present offers us many open questions, and
unsolved problems, that we can tackle using ML models,
especially the ones that perform multiple tasks at once by
employing several means to extract essential features. Conse-
quently, there is a strong desire to improve the current state of
knowledge and outperform humans’ decision making process
in difficult tasks.

Recent advancements in the field of CV refer to enhanc-
ing the feature processing capabilities of Single-Task (ST)
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Convolutional Neural Networks (CNN). Consequently, novel
approaches were proposed, as the interest in real-life ML
applications grew. For addressing the problem of finding
the most suitable designs, researchers developed models
based on single-task architectures. Therefore, such networks
achieved state-of-the-art results in solving dense prediction
tasks such as our tasks of choice, namely Semantic Seg-
mentation (SS), Depth Estimation (DE), and Surface Normal
Prediction (SNP). However, the problem formulations may
be suboptimal in regards of the learning context the models
are put in. A typical ST network consists of a backbone and
a head, where the feature extractor is usually optimised using
the gradient provided by the head. Inevitably, the backbone
specialises for the given task. This sort of approach does not
scale well for learning multiple tasks at once while having the
same input. As a response, there is an increasing interest in
Multi-Task (MT) formulations.

On the one hand, since the CNN architecture search is an
intensively researched topic, many papers have focused on
improving and designing new building blocks [2], [3]. A rea-
son for that is the powerful hardware components which we
are provided with. They facilitate training deep networks [4],
and properly developing CNN architectures. Hence, such
breakthroughs lead towards state-of-the-art results on most
popular data sets. On the other hand, we believe that while
the lower-level layers improve various structural elements
of a model, on a higher level there may still be room for
increasing performance. That may consist of macro model
fine-tuning, such as combining several building techniques
to boost the benefits, or to cover each others’ shortcomings.
Consequently, additional training time supervision [5], aux-
iliary losses [6], specialised learning mechanisms [7], and
richer learning contexts could be implemented in order to
maximise the gains of a network, at the expense of building
more complex systems. Among the mentioned techniques,
the latter may prove to be effective especially in MT contexts,
and it involves the least development resources, by combining
several model parts together. Nonetheless, recent works on
MT learning have to add extra parameters to the CNN [8],
so that their architectures could specialise on several tasks
that, when jointly trained, help each other perform bet-
ter when compared to the standalone counterparts. Consid-
ering that, without employing supplementary mechanisms,
or changing the ST models’ default components, MT net-
works rethink the learning contexts so that they could benefit
from jointly training several related tasks at once.

Multi-task networks have gained popularity in the recent
years, once the demand of complex image processing sys-
tems took off. Therefore, they differentiated themselves from
traditional encoder-decoder architectures by including more
parsing heads responsible with solving particular tasks that
are related to each other. The features learned in this com-
mon context will be successfully used for all the tasks in
order to increase the performance. In doing so, the core
concepts underlying dense prediction tasks are deepened in
the embedded feature representation, which results in a higher

level of robustness when observing certain frequent patterns.
As a result, the multi-task learning context offers various
verification means, leading to more confident predictions.

Hence, the usefulness of MT-CNNs becomes obvious, due
to the sheer collaboration between the parsing heads and the
shared backbone, which resembles the human way of learn-
ing related tasks in parallel. However, this type of networks
could only learn so much out of these contexts because of
the oversaturation problem. As shown in our experiments
from Section VI, this is a real issue that considerably affects
model performance. This phenomenon is a consequence of
insufficiently complex ML models, that are progressively
requested to perform more than they are able to manage.
Without an appropriate backbone size, the training progress
of the models would stall at some point in time. That happens
because the heads would not be able to benefit from the
condensed representations, as underfit models yield insuffi-
ciently processed features. This problem also appears in a
different scenario, when the backbone is deep enough, but
the too shallow heads cannot particularise the general feature
maps. Regarding this statement, we have performed extensive
experiments in this direction for non-dense prediction tasks
learning, and we have not been able to learn anything unless
we used the thoroughly processed multi-scale features.

The ideas that motivate us to research this direction are
the following. Firstly, learning multiple tasks at once ensures
a better image context understanding. Secondly, for keeping
under control the model’s number of parameters, the layer
dimensions should be reduced, which results in oversatura-
tion. In the third place, what we consider that a multi-task
architecture lacks is collaboration between multiple back-
bones. When increasing the number of parsing heads, such
architectures hardly scale well, and oversaturation occurs.
A potential solution is to add backbones to capture more use-
ful features. Besides the saturation problem, every encoder
must learn a different task, for offering the rest of the net-
work more contextual information, without losing significant
details. In doing so, the model would have additional verifica-
tion possibilities regarding the assumptions each standalone
network must make, which ultimately aids the joint training
schedule to build knowledge on correct and consistent foun-
dations.

In this paper we are proposing a solution for building
MT-CNNs, and achieving appropriate fitting by develop-
ing an architecture-invariant strategy. It consists of replac-
ing the single shared backbone with multiple shallower,
specialised backbones. In the proposed multi-backbone
(MB) and multi-task architecture, namedMBMT-Net (Multi-
Backbone andMulti-TaskNetwork), the pre-training is done
in ST networks, then each backbone is put together in
the MB-MT-CNN, and optionally frozen. When frozen, our
training schedule dramatically reduces the GPU memory
consumption. This allows training the network on lower-end
hardware without sacrificing the final performance, but
increasing it instead. We conceptually prove the effective-
ness of our strategy by implementing MBMT-Net, a three
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backbones and three heads CNN that we experiment with
on the pre-processed NYUv2 data set [9] offered by [10].
Yudong et al. [11] are also using multiple backbones, as in
our proposal. However, our approach differs from the pre-
vious one [11], as we aim to allow any combination of
processing units in the learning context, not just identical
structures. Moreover, our goal is to preserve the number
of the multi-backbones parameters similar to the one of a
traditionally structured MT model, without trading perfor-
mance off. Additionally, what differentiates our MBMT-Net
approach from other methods in MT learning is that the usual
single shared backbone is replaced with multiple specialised,
independent ones.

As a result, our method describes an MT-CNN design
alternative, having a broader range of applications, and
extension opportunities for further research in the Dis-
tributed Artificial Intelligence (DAI) field. To the best of our
knowledge, the MBMT-Net architecture is new in the CV
literature.

In summary, the paper is addressing the following research
questions:

RQ1 How to enhance the performance of dense prediction
tasks by using the multi-task learning paradigm? In this
respect, we are introducing theMBMT-Net model.

RQ2 Towhat extent does theMBMT-Net improve the perfor-
mance of current state-of-the-art approaches in dense
prediction tasks?

RQ3 Is the performance improvement achieved by MBMT-
Net with respect to existing solutions statistically sig-
nificant?

The rest of the paper is organised as follows. Secondly,
Section III briefly discusses the architecture designs of
CNNs. Thirdly, Section IV puts forward themethodology fol-
lowed in the experiments, and presents the changes specific
to the MBMT-Net architecture. The data set and the experi-
mental setup employed for the evaluation of the MBMT-Net
model are presented in Section V. Then Section VI presents
the experimental findings, and underlines the improvements
brought in this study. Eventually, Section VII aims to summa-
rize the conclusions of our study, to pinpoint the answers to
the introduced research questions, and to identify directions
for future improvements.

II. TASKS IN FOCUS
This section outlines our choice regarding the tasks we have
selected to solve. In doing so, we summarily explain how each
of them is generally supposed to be approached.

A. SEMANTIC SEGMENTATION
Semantic Segmentation (SS) is one of the most popular in the
research community. It requires a model to process an input
image, and assign each pixel the semantic class it belongs
to. Mainly, it is used to classify regions, and understand the
scene, so that other systems could make decisions based on
the findings [12], [13].

B. DEPTH ESTIMATION
Another difficult dense prediction task is Depth Estimation
(DE) [14], which is recognised in the literature as being ill-
posed, since depth cannot be fully recovered from a single
image without environment-specific assumptions. Compared
to the previous one, this is often formulated as a regression
problem, as the depth values are continuous, and they belong
to a pre-determined interval [15], [16].

C. SURFACE NORMAL PREDICTION
The third task is Surface Normal Prediction (SNP), which is
also a regression task, and it supposes that each point in the
raw image is assigned an RGB value corresponding to angles
of the surface normal vector in the 3D space. This is useful
in determining the shape of the objects, which increases
the predictions consistency when having priors about the
scene’s content. However, it requires finer grained context
understanding, because many features of the objects present
in the scene are occluded. Nonetheless, depending on the
nature of the data set, when reconstructing the initial image
resolution,modelsmay requiremore than basic interpolations
to preserve the information when solving critical importance
tasks [17], [18].

III. RELATED WORK
This section introduces, and describes the tasks we are going
to focus on in the experiments. Furthermore, in order to
better understand the architectural decisions we make in the
MBMT-Net development, we will present several state-of-
the-art architectures that led us to the final shape of ourmodel.

A. SINGLE-TASK NETWORKS
CNNs have been used many times with great success in solv-
ing CV dense prediction tasks. Many papers refer to them as
the ‘‘workhorses’’ of neural networks. Therefore, we focused
our attention on working with such models in this paper.

A robust architecture we considered is EfficientPS [19],
that employs a two-way Feature Pyramidal Network
(FPN) [20], which uses the multi-scale features more effec-
tively. The authors’ contribution can be observed in the
novel SS parsing head, which consists of dense prediction
cells [21], and residual pyramids. Thanks to the model’s abil-
ity to capture fine features, long-range contextual features,
and because it correlates the distinctly captured features,
it improves object boundary refinement. Hence, this CNN
model has great potential for being used in multiple dense
prediction tasks, since the elaborated context understanding
techniques would provide reliable, and consistent feature
processing, regardless of the CV task.

B. MULTI-BACKBONE NETWORKS
Motivated by the idea of modeling extra dependencies
between higher-level features, a couple of recent articles
use several encoders in their multi-backbone architectures.
Their advantage is that of being able to extract richer and
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finer-grained features from data, through the thorough pro-
cessing of the input, which results in higher overall model
performance.

The first paper to introduce a technique of assembling
several identical backbones is CBNet [11], therefore signif-
icantly increasing the number of parameters. Their goal is
to include higher-level features into succeeding backbones,
to boost its context understanding, and final receptive field.
This is achieved by using the help of skip connections that
are similar to transposed convolutions, as the compound
backbone structure resembles an unraveled, limited cycle
Recurrent Neural Network (RNN) [22].

The best performing classification model that uses com-
pound backbones is the improvement of the former one,
namely [5]. Its architecture is implemented using an
optimised feature sharing scheme across encoders via skip
connections at training time. Instead of the former model,
at evaluation time, the additional backbones are removed for
the latter architecture variant. This strategy is constrained to
use identical backbones, as the feature maps sharing cannot
be performed otherwise.

C. MULTI-TASK NETWORKS
In contrast to the aforementioned topic, multi-task [23] net-
works use multiple parsing heads so that each of them focuses
on simultaneously learning, and performing separated tasks.

The feature extractor part of the model can look differently,
but most of the times there is a single shared backbone.
It provides all the parsing heads with condensed feature repre-
sentations they can further particularise to solve their specific
task.

Nevertheless, there are two multi-task building strategies,
which refer to the way they share parameters [24], [25],
[26]. Firstly, Hard Parameter Sharing refers to using a single
backbone (SB) which is shared by all the parsing heads. This
is particularly useful for training multiple tasks together, as it
acts as a regulariser, and the compressed representation the
model learns should better generalise for the specific tasks.
Secondly, Soft Parameter Sharing does not have any fully
shared component, but it rather has an own structure for each
task, and during learning, it penalises the difference between
the models’ parameters. The constrained layers are therefore
encouraged to have similar weights values for related param-
eters. However, this significantly increases the parameter
usage and slows down the training. Although less sophis-
ticated, the hard parameter sharing is often sufficient for
establishing a favourable learning environment, and enhance
the robust feature extraction abilities of a model.

Consequently, a recent multi-task architecture (MTAN)
that sets a new state-of-the-art (SOTA) performance for
multiple dense prediction tasks has been introduced by Liu
et al. [10]. It is built using a hard parameter sharing strategy,
and it consistently benefits from several novelty elements,
such as the soft-attention mechanism, overall multi-task loss,
and dynamic task convergence speed adjustment. We also
found the latter improvement very useful in our MT learning

context, and implemented it to balance task learning, so all
the individual parsing heads have the chance to learn together,
and avoid early and asynchronous convergence rates, which
would determine easier tasks to overfit.

Having presented the multi-backbone, and multi-task
approaches, we can see the importance of these improve-
ments, and the potential of combining structural pieces of
the both. As a result, these two model building strategies
bring their advantages to the same learning context. However,
there are multiple difficulties in building such models, since
putting together the processed feature maps may require extra
caution.

The development of a robust multi-task model is difficult,
and represents a challenging research topic. A robust model
must be capable of processing large volumes of data, not
oversaturate, and efficiently manage its resources.

In the literature, there are diverse approaches for solving
CV problems using CNNs. During the last years,MT learning
has benefited from great attention in the research community,
as it achieved results superior to the single-task models,
thanks to the joint learning context. However, no model in
the literature is implemented using an architecture similar to
the one we proposed for solving CV tasks.

IV. METHODOLOGY
In this section we are introducing MBMT-Net architecture.
It is a CNN consisting of three backbones and three heads.
Our goal is to offer a solution for building MT-CNNs,
by developing an architecture-invariant strategy. What differ-
entiates our approach in multi-task learning is that the usual
single shared backbone is replaced with multiple specialised,
independent backbones.Moreover, we chose a two-step train-
ing schedule that allows us to capture more useful features.
Firstly, we pre-train each backbone in ST networks, then each
of them is put together in the MB-MT-CNN, and option-
ally frozen. When frozen, our training schedule dramatically
reduces the GPU memory consumption. This allows training
the network on lower-end hardware without sacrificing the
final performance, but increasing it instead.

An extensive study is necessary for multi-backbone archi-
tecture usage in multi-task learning context. However, the
overall performance in this scenario is proportional to
the number of parameters. Nonetheless, by using multiple
encoders with reduced depth, we support feature diversity
in the condensed representation. Therefore, this offers the
task-specific parsing heads a more robust concatenated fea-
ture map that shall gather visual cues from all the separated
representations, which may cover each others’ insufficiently
informative extracted patterns. Additionally, we focused on
designing the multi-backbone blueprint in a low-coupled
fashion. There is only one constraint regarding the final shape
of the independent encoders, so that the resulting tensors can
be merged together. Therefore, the architecture blueprint has
a great extension potential, as any backbone can be used,
as long as it provides output feature maps compatible with
the others.
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FIGURE 1. Development methodology of MBMT-Net.

Therefore, we are introducing in the following the method-
ology for developing theMBMT-Net architecture, and setting
up the training, and evaluation.

Figure 1 schematically describes the process we have
followed, in order to achieve the final MBMT-Net results.
In the beginning, we decided on performing several dense
prediction tasks at once. Then, we have have chosen the
EfficientPS [19] architecture. It is easy to extend and it suits
the performance requirements to compete with MTAN [10].
Consequently, we decided to adapt EfficientPS to amulti-task
learning context, and to perform the same tasks as MTAN on
NYUv2 [9].

Afterwards, we have continuously improved our archi-
tecture, and fine-tuned the hyper-parameters to achieve the
best results. More on the training methodology will later
be explained in Section IV-B. Hence, by performing a grid
search on the possible values of several parameters, and com-
paring models’ performances from one iteration to another,
we obtained the optimal setup for our MBMT-Net architec-
ture. Additionally, we have changed layers, activation func-
tions, and upsampling means. Eventually, we obtained the
final MBMT-Net architecture depicted in Figure 2. Finally,
we performed several more trainings of the models, and
compared the final results toMTAN [10], which is the current
SOTA multi-task architecture.

A. ARCHITECTURE DESIGN
With the aim to develop a novel approach for solving CV
tasks, our MB-MT model designing strategy on CNN archi-
tectures will be further introduced. Starting from the intuition
that a model would perform better when provided with the
means of regarding the same scene from different perspec-
tives, we believe that it would use the insight to validate
extracted patterns, yielding robust results. Additionally, the
major benefit for such a model is that it would build up
what we call a certain degree of intuition, and common
sense of the MBMT-Net network, that us humans also use
unconsciously. Hence, having learned multiple recurring pat-
terns of the different CV tasks, the MBMT-Net model we
propose would be able to more confidently solve difficult
problems.

Considering that we are working with multiple feature
maps, the output values of the multi-backbone have to be
merged together. This raises the question of which feature

maps merging technique is the most suitable for our problem.
Hence, we are going to approach three of the most com-
mon ones, namely concatenation (CAT), addition (ADD), and
multiplication (MUL). We will later refer to these operations
in Table 1, in the MT variants and architecture abbreviations,
by adding -CAT, -ADD, or -MUL at the end of an archi-
tecture abbreviation. For instance, MBMT-Net-CAT refers to
the MBMT-Net architecture that employs the concatenation
operation for feature maps merging.

Our work stands as a proof of concept that should empha-
size the benefit of multiple backbones in a multi-task learning
context. Table 1 summarizes the usage, and components of
the models that use EfficientPS variants. We note that the
notation B1 used in the last column from the table means a
single backbone, while the notation MBn (with n > 1) refers
to n backbones (i.e., MB3 refers to three backbones). The
MT architectures use the Dynamic Weight Average (DWA)
weighting scheme presented in [10]. By observing the rate of
change of the loss for each task, it adjusts the task weighting
over time. In further experiments we will refer to the models
using their corresponding abbreviation.

The research we are performing tackles more complex sce-
narios than the automated neural architecture search (such as
AutoML [27], [28]) could handle. Not only that we perform
hyper-parameter tuning, and training schedule tuning in our
experiments, but our contribution also refers to proposing a
generalised model building strategy. Instead of searching for
the best model to solve our problem, we aim to improve the
concept of multi-task learning via our approach.

For implementing our models and running the experi-
ments, we have used the PyTorch [29] framework. The input
resolution of the models is 288 × 384 pixels, as Liu et al.
[10] offered us the NYUv2 images directly converted into a
convenient format, so that we could create a fair benchmark.
All the EfficientNet [30] backbones variants have been down-
loaded from the links provided by the authors and pre-trained
on ImageNet [31]. EfficientPS [19] model has been used as a
starting point for our analysis.

The two-way FPN proposed in EfficientPS [19] is depicted
in Figure 2 through the blue and purple branches. While
the former branch follows the conventional FPN aggregation
scheme, namely from right to left, the latter downsamples the
higher resolution features to the next lower resolution in the
opposite direction.

Some of the more complexMBMT-Net building blocks are
presented in Figure 3. Firstly, the modified Dense Prediction
Cells (DPC) module used by us employs Leaky ReLUs as
activation functions instead of their original ReLUs. It is a
more effective variant of the Atrous Spatial Pyramid Pooling
(ASPP) module. Secondly, the Large Scale Feature Extractor
(LSFE) module is employed in order to efficiently capture
fine features. Eventually, the Mismatch Correction Module
(MC) aims to mitigate the mismatch between large and
small-scale features when aggregating the extracted features.

Regarding the ST designs, we have removed the Instance
Segmentation Head, as we reduced the complexity from
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FIGURE 2. Architectural overview of MBMT-Net. The figure is based on the one presented in.

FIGURE 3. Topologies of various head-specific architectural components of MBMT-Net.
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TABLE 1. The architectures used in our experiments.

TABLE 2. Summary of the parsing head specific convolutions.

panoptic segmentation to semantic segmentation by using
only the EfficientNet-b2 encoder [30], and the Semantic Seg-
mentation Head from the original network. The output are
the semantic logits in the case of SS. For the other two tasks
(i.e., DE and SNP), we changed the last two convolutions, and
activation functions to fit the kind of problem we deal with.

The differences between the three can be clearly visualized
in Figure 2, as it presents the fully convolutional MBMT-Net
having 3 backbones, and 3 parsing heads for the SS, DE,
and SNP tasks. Thus, the architectural differences are the
following. While SS head employs a 1 × 1.2D convolution
layers (Conv2D)which compresses 512 to nb_class channels,
activated by a softmax function, the DE and SNP heads use
twoConv2D layers, namely a 3×3, reducing 512 to 256 chan-
nels, and a 1×1 similar to the SS one, but with no activation.
We also note that the number of classes (nb_class) varies
between the tasks, as DE outputs single-channel distances,
and SNP outputs the 3-channels angle values encoded into an
RGB map.

Table 2 briefly presents the architectural design of the three
parsing heads. We must mention that the output of the final
convolutions is upsampled 4 times via bilinear interpolation.
Additionally, after upsampling, the SNP head’s output is
divided by its Frobenius norm.

Then, for the SB-MT experiments, we decided to use an
EfficientNet-b5 backbone. The two-way FPN output feature
maps are offered to each of the SS, DE, and SNP heads which
process them and output their predicted masks.

Eventually, in the MB-MT experiments, a weaker back-
bone variant of the EfficientNet, namely the b2 was used so
that the total number of encoder parameters would add up
to roughly the same as the one for the single EfficientNet-
b5. Each of the EfficientNet-b2-s are pre-trained in an ST
context until the loss flattens, then they are put together in

the MBMT-Net. Their outputs must be channel-wise concate-
nated, and fed into the two-way FPN module. In the end,
the resulted pyramidal features are then fed into each of the
heads, which yield their dense predictions.

Table 3 reflects the number of parameters each model has,
and the number of FLoating Point OPerators (FLOPs) it
uses. Its aim is to underline that the MT-Net, andMBMT-Net
variants have roughly the same number of parameters,
which makes them easier to be compared. We also point
out that in our training schedule, the number of parame-
ters theMBMT-Net-CAT/-ADD/-MUL has have dramatically
decreased (compared to the number of parameters ofMT-Net)
due to the pre-trained encoders. See experimental results in
Table 6, that we interpret in Section VI. Furthermore, the
number of FLOPs greatly varies for each of the compared
models. It can be clearly noticed that of all the multi-task
architectures, our MBMT-Net variants have the lowest num-
ber of FLOPs, and less than one eighth of the number of
FLOPs of state-of-the-art MTAN [10].

B. TRAINING STAGE
Considering themultiplemodels we areworkingwith, we had
to be thorough in our trainingmethodology.Moreover, for our
research to be replicable, the step-by-step guild towards the
full training setup is formulated in the following paragraphs.

We aimed to exhaustively test architecture variants with
different hyper-parameters. Since the complexity of testing
architectures against each other may affect the validity of the
research, we had to perform multiple rounds of training, with
different seeds.

The training of the models has been performed on a
single Nvidia GPU. Due to hardware issues we faced,
we had to adapt the EfficientPS implementation, so that
the InPlace-ABN layers had to be converted to regular
Batch-Norm layers [32], since the GPUs we trained the mod-
els on did not support the mapillary implementation [33].
Consequently, this increased the memory consumption, and
decreased the efficiency by a bit.

As we have previously mentioned in Section IV, we have
followed a cyclic process of improving our architecture. For
that to be possible, we had to clearly determine the steps to
follow in the process.
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TABLE 3. Analysis of the number of parameters for the architectures involved in the experiments.

Therefore, we decided to train ST-Nets on the three tasks
of choice, then the MT-Net, and eventually our MBMT-Net.
We must mention that we only present the remarkable, and
interesting results in this paper, sincemany of the experiments
have not yielded relevant results to us. However, among the
performed experiments we count training all the architectures
with different backbone layouts, ranging from EfficientNet-
b0 to -b5, using a varying number of backbones in MBMT-
Net, and freezing and unfreezing parts of the models.

The reason why these experiments did not make it in the
paper is that the models could not have been well com-
pared, because of either the number of parameter vary-
ing too much, or because the results met our expectations,
and did not provide further insight into the architectures
development.

That being said, we decided to fully train (i.e. no frozen
layers) the ST-Nets. Then, we fully trained the MT-Net on
all the tasks simultaneously. Both the pre-trained, and scratch
backbone variants proved to yield the same performances.
Eventually, when it came to MBMT-Net, we implemented
our proposed training schedule, namely that we used the
pre-trained backbones from each of the ST-Nets that we have
frozen, and only trained the decoder part of the network till
the loss flattened. Not only that this schedule dramatically
reduced the GPU memory consumption, but it also increased
the performance by a bit, compared to the fully trained
MBMT-Net.

C. TESTING
After considering the training methodology, we are going to
specify howwe are going to perform the testing stage. Firstly,
the pre-processed NYUv2 data set is split into 795 training
and 654 testing samples, which gives us approximately a
55%-45% training-testing split. The same ratio, and testing
methodology is employed in paper [10]. Similar to the results
presented by Liu et al. [10], our models have not been trained
on augmented data.

1) PERFORMANCE EVALUATION METRICS
The evaluation measures employed for assessing the perfor-
mance of ourMBMT-Net model on a training data set are the
ones also considered by Liu et. al [10]. Because we address
the same problem as they do, we are going to evaluate the
models, by employing the same testing methodology that is
used in [10], so our work is comparable to theirs. For easier
comprehension of the tables, we use acronyms for the metrics
that we will put forward.

Before introducing all the metrics, we must mention what
each notation represents. On a certain testing data set, the con-
fusion matrices for nb_class SS object classes are computed,
where nb_class is the number of distinct semantic classes the
NYUv2 data set has. As in any binary classification task,
the confusion matrices consist of four values (TP, FP, TN,
FN ), where: TP represents the number of true positives, TN is
the true negatives number, FP counts the false positives, and
FN records the false negatives. These numbers are obtained
from Furthermore, n is the total number of pixels that have a
valid value in the ground truth mask, and all predi (predicted
pixels) and gti (ground truth pixels) are considered to be valid
– where i is a pixel’s index, considering the flattened image
representation.

For each of the considered tasks (SS, DE, SNP) we further
describe the performance metrics employed in the testing
stage.

a: SEMANTIC SEGMENTATION
The metrics used for performance evaluation in SS tasks are:
• Mean intersection over union (mIoU )
For each class c ∈ nb_class, the Intersection over Union
measure IoUc is computed as shown in Formula (1).

IoUc =
TP

TP+ FP+ FN
· 100 (1)

Then, the mIoU measure is being obtained by taking
the mean of the IoUc values (Formula (2)). Thus, the
values of mIoU range from 0 to 100, higher meaning
better.

mIoU =

∑
c∈nb_class

IoUc

|nb_class|
(2)

• Pixel accuracy (PAcc)
The PAcc uses the accuracy formula obtained from the
corresponding confusion matrix. The metric for a single
class is computed according to Formula (3).

PAccc =
TP+ TN

TP+ FP+ TN + FN
· 100 (3)

PAcc is the mean among all the considered classes.
Consequently, it ranges from 0 to 100, and the higher
it is, the better the model.

b: DEPTH ESTIMATION
The metrics used for performance evaluation in DE tasks
are:
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• Absolute error (AbsErr)
The Abs represents the average of the absolute value
of the differences between any two pixels on the same
position of the predicted and ground truth dense masks,
as given in Formula (4). Thus, the values of AbsErr
range from 0 to 1, where 0 means the match is perfect
between the predictions and the ground truth data.

AbsErr =
1
n
·

n∑
i=1

|predi − gti| (4)

• Relative error (RelErr)
Similarly to AbsErr , RelErr is obtained by further divid-
ing each of the sum terms of AbsErr by the ground
truth value, as given in Formula (5). RelErr also ranges
from 0 to 1, where lower is better.

RelErr =
1
n
·

n∑
i=1

|predi − gti|
gti

(5)

c: SURFACE NORMAL PREDICTION
All the measurements used for performance evaluation of
the SNP task are computed from the base error, which is
defined in Formula (6). First, the element-wise multiplication
between the prediction and ground truthmatrices is computed
(the content of the innermost parenthesis).We are considering
all the RGB pixels in one image that have a valid equivalent
in the ground truth mask. Then, these values are clamped
to the [-1,1] interval, so that the arc cosine function is well
defined on the interval. Then, the result of the arc cosine is
converted into degrees. Thus, assuming that i is the index of
a pixel (that has a valid value in the ground truth mask) in the
flattened image representation, we are computing the error
Erri as shown Formula (6).

Erri = degrees
(
arccos

(
clamp[−1,1] (predi · gti)

))
(6)

The following metrics are employed for performance eval-
uation in SNP tasks:
• Mean angle distance (Mean)
The value of this metric is computed as shown in For-
mula (7). Because of the conversion to degrees, and the
fact that on a plane we can see only half of the possible
angle values, Mean ranges from 0 to 180, lower values
suggesting a better performance.

Mean =
1
n
·

n∑
i=1

Erri (7)

• Median angle distance (Med)
Med is computed according to Formula (8)

Med =

 sErr(n+1)/2 n mod 2 = 1;
sErrn/2 + sErrn/2+1

2
otherwise

(8)

where sErrn is the n-th element of the increasingly
sorted, flattened matrix. The value range of Med is 0 to
180, where lower means better performance.

FIGURE 4. NYUv2 semantic label distribution.

• Mean number of angles having an error less than α
(MNAα)
Considering that α is an error threshold measured in
degrees, the mean number of angles having an error less
than α is computed as in Formula (9).

MNAα =
1
n
·

n∑
i=1

count(Erri, α) · 100 (9)

The values of MNA range from 0 to 100, since it repre-
sents the proportion of predicted angles having a lower
error thanα. Therefore, higher is better. Additionally, the
values for the count function are computed as shown in
Formula (10).

count(x, α) =

{
1 x < α;

0 otherwise
(10)

V. DATA SET AND EXPERIMENTAL SETUP
The data set and the experimental setup employed for the
experimental evaluation of the MBMT-Net model are further
presented.

A. DATA SET
Our data set of choice is NYUv2, provided by [10]. It consists
of 1449 288 × 384 raw RGB images of indoors scenes.
We use them as input for the models, and their corresponding
segmentation, depth, and surface normal masks as ground
truth data. Due to its moderate size, we were able to exhaus-
tively perform experiments with various model configura-
tions to support our proof of concept, and decide on what
substantially improved the performance of the three tasks
(SS, DE, SNP).

Figures 4 and 5 depict the distributions of SS and DE
labels, respectively, in the whole NYUv2 data set provided
by [10]. The test and train distributions slightly vary, but they
closely follow the same patterns. We have not considered
invalid pixels in the data set, because it would have skewed
the results.
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FIGURE 5. NYUv2 depth values distribution.

Figure 4 presents us the semantic classes distribution,
namely, from 0 to 12, bed, books, ceiling, chair, floor, fur-
niture, objects, pict./deco, sofa, table, TV, wall, and window.
As expected, walls, the floor, furniture and different sorts of
objects make up the vast majority of semantically labeled
items. Considering that the less structurally complex, and
better described objects, such as beds, sofas, chairs, windows
or TVs are not that often seen in the NYUv2 data set scenes,
we may think that the class imbalance, especially for the
class objects, may negatively influence the overall semantic
segmentation results. This would happen because there are
too many types of household items labelled as objects, while
they have no relevant similarities between them, therefore
making it difficult for the ML models to learn. Nonetheless,
if different architectures could reliably predict items from
the less frequent group, it would certainly be a remarkable,
and robust one, with great potential for solving difficult class
imbalance problems.

As we can notice from Figure 5, most of the indoors scenes
have depth values in the 1 to 5 meters range. However, rarely,
there are isolated instances larger than 6 meters, which could
be explained by the existence of large rooms, or hallways.

B. EXPERIMENTAL SETUP
The experiments have been performed on a single Nvidia
GPU. We trained the model until the loss flattened out. Usu-
ally, this took less than the pre-set number of epochs but we
used 700 for consistency.

As previously shown in Section IV, a grid search
was performed for hyper-parameters optimisation. The
hyper-parameters considered in the grid search are presented
in Table 4, with their final values we have used in our exper-
iments.

The ST networks train both their encoder and decoder.
Afterwards, we use transfer learning for MBMT-Net, so that
it benefits from the pre-trained EfficientNet-b2 backbones.
The reported results refer to theMBMT-Net having frozen its
encoders during training. During experiments, we have tried

TABLE 4. Optimal training parameters resulted from the grid search.

both pre-trained and cold start trainings and the results did not
improve having the encoders also involved in the process.

For the MT-Nets, we implemented the DWA procedure
presented in [10] and we set the temperature parameter to
2.0. The temperature parameter controls the softness of task
weighting, meaning that a higher temperature would assign
equal importance to all the performed tasks. Liu et al. [10]
empirically found that 2.0 is the optimum value across all
tasks. The rest of the training procedure is identical to the
one used in [10]. The results are compared to MTAN DWA
trained on the three tasks as well.

In what concerns the losses, SS is learned using
Depth-Wise Cross Entropy, DE is optimised using L1 Norm
and for SNP the Dot Product between the predictions and
ground truth labels is considered. Furthermore, all the losses
consider binary pixel validity masks for evaluating the dif-
ferences only of the pixels that have a valid corresponding
ground truth label.

VI. RESULTS AND DISCUSSION
In this section we are going to highlight the main find-
ings of our experiments carried out with the goal of eval-
uating the performane of the MBMT-Net model introduced
in Section IV. First, an ablation study is conducted in
Section VI-A in order to determine the best performing
MBMT-Net architecture. Then, Section VI-B presents the
results of our final MBMT-Net architecture compared to the
state-of-the-art model for multi-task learning [10]. An inter-
pretation of our results and comparison to related work are
described in Section VI-C. Extensive implementation details
may be seen in the code available on the MBMT-Net GitHub
repository [34].

A. ABLATION STUDY
This section presents our line of reasoning that led to our final
MBMT-Net architecture.
While our approach may not be scalable enough to allow

many more backbones, it is the best we have experimented
with. This is due to the fact that addition (ADD) and multi-
plication (MUL) feature map fusion techniques extend their
domain of values by severalfold in relation to the number of
backbones. Although concatenation (CAT) results in more
FLOPs being used in the two-way FPN, the output of the
MBMT-Net backbone has the same shape as the one of the
MT-Net. As a result, concatenation scalability does not affect
the parsing heads’ runtime performance. Even though the
number of parameteres and FLOPs for ADD/MUL is lower
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TABLE 5. Ablation study of several MBMT-Net variants.

than for CAT (Table 3), the range of values greatly increases.
The resulting feature maps’ values are going to dramatically
increase, up to the point of overflowing the data type repre-
sentations, therefore resulting in severe performance issues.
This underlines the fact that ADD and MUL approaches are
not scalable with the number of backbones, and with the
encoders’ complexity.

Table 5 aims to underline our contribution regarding the
structural elements of the final MBMT-Net architecture.
We evaluate the models when we eliminate backbones, the
pre-training step, both, or change backbone output fusion
strategy. The best performance is highlighted in green, and
the second best one is colored in yellow.

Firstly, we note that the first column is colored with blue
or red, meaning the training has been done from a cold start
or pre-trained, respectively. Secondly, not to overcomplicate
the notations, the default feature maps merging operation
is concatenation (CAT) unless specified otherwise. Besides
the color hints, we differentiate the MB3 variant training
schedule by specifying whether it was trained from a cold
start (cold), or it was pre-trained (pre).

The last three rows of Table 5 aim to help us select the most
suitable feature merging operation. As depicted, the MBMT-
Net variants employing addition or multiplication as back-
bone output fusion severely underperform. The results con-
firm our intuition that algebraically merging the feature maps
is an ill-posed problem, especially when varying the number
of backbones. Consequently, the rest of the experiments are
performed using channel-wise concatenation (CAT).

Subsequently, the top first three rows present the results of
the experiments performed using MBMT-Net without one of
the three pre-trained backbones. It is notable that even though
the backbones do not take part in the whole learning process
of the model, the missing features are essential. For training
the decoder part of the network, it appears that the decreased
number of parameters dramatically affects the overall perfor-
mance. Additionally, by covering all scenarios for the two
backbones MBMT-Net, we can clearly agree that the number
of pre-trained backbones is suitable for the chosen tasks, and
it effectively helps the model learn useful features.

Then, in order to prove the importance of the training
schedule (pre-training the backbones especially), the rows
nominating MB3 colored in blue and red compare training
schedules impact on the performance of the finalMBMT-Net-
CAT architecture (the architecture depicted in the last row

from Table 5). Hence, we notice that the MBMT-Net trained
from a cold start considerably underperforms. That may
happen because of the architecture’s inability to propagate
much larger or smaller gradients into each of the backbones.
This results in the encoders learning about the same fea-
ture maps, which defeats the purpose of the multi-backbone
model. Nonetheless, if we were to train the decoder part of
the network according to our proposed schedule (encoder
pre-training, freezing, decoder training), the results are a lot
better.

B. RESULTS
As a result of the previously conducted ablation study, the
finalMBMT-Net architecture variant which performs the best
is the one that employs the CAT feature maps merging oper-
ation.

Table 6 summarizes the results for ST-Nets, MT-Net,
MBMT-Net variants, and the SOTAMTANmodel [10].While
all the ST-Nets are in the same EfficientPS column, their
architecture and number of parameters differ as explained in
Section IV-A and previously mentioned in Table 3. There are
missing values for theMTAN tasks loss, as they have not been
reported by Liu et al. [10].

One of the first findings is that theMT-Net is outperformed
by the ST-Nets in SS and SNP regarding not only the losses,
but also the rest of the metrics. This may be explained by the
appearance of oversaturation of the single backbone, which
cannot generalize well for all the tasks at once. However
insignificant the differences may seem, it is to be noted that
the ST-Nets employ the EfficientNet-b2 compared to the
MT-Net which uses the EfficientNet-b5. The difference of
encoder parameters is almost 17.4M more in the case of MT-
Net. Needless to say, all the trainings have been done until the
loss flattened and multiple checkpoints have been evaluated,
yielding similar results, with little variance.

Considering the aforementioned arguments, our decisions
in developing this model building strategy can be regarded as
favourable for achieving robust and effective networks.

Therefore, our MBMT-Net approach proves superior to
the traditional single-backbone MT-Net, completely out-
performing it and every ST-Net. Thanks to the multiple
pre-trained backbones that provide the network with more
diverse features, we may conclude that the feature extraction
means become more robust. Consequently, the concatenated
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TABLE 6. Results of the architectures described in Section IV compared to state-of-the-art MTAN model [10] on the three tasks of choice.

condensed representation is infused with pattern detection
capabilities of the three tasks, which complements the insuf-
ficiency of the others to correctly make predictions. Further-
more, our implementation uses less parameters than MT-Net,
which implies there is no additional complexity to support the
improvement in this regard.

By designing such MB-MT architecture, we manage to
compete with MTAN [10] and achieve results close to the
best for SNP, but still lacking at most 2 percentages in all
themeasurements. Nevertheless, the DE performance reaches
equal values for RelErr and a little worse for AbsErr. Finally,
we are able to surpass the state-of-the-art MTAN mIoU
value by a considerably wide margin of 7.69%. This may
be explained by the sheer processing potential of the chosen
EfficientPS architecture, as we can see any of our architecture
variants have better SS mIoU -s. Additionally, by infusing
our concatenated feature maps with the complementary pat-
tern recognition means, we successfully increase the base-
line performance of the ST-Net by 3.61% and by 3.97%
when compared to the MT-Net. Moreover, we emphasize on
the importance of employing multiple separated backbones.
The specifically trained encoders can substantially increase
the performance and overcome the oversaturation problem.
Considering that, our architecture design strategy shall act
as a robustness booster, as the diverse features may act as a
regulariser in the multi-task context.

Overall, ourmodel did not consistently outperformMTAN.
However, considering the 12.16M parameters deficit, the
MBMT-Net architecture proved to effectively benefit from
our design choices. Nevertheless, further experiments using
larger multi-backbones have to be performed to conclude the
findings.

A more elaborated side-by-side comparison between
MT-Net and MBMT-Net can be observed in Figure 6. There
we have five sample images from NYUv2. For each image
we have considered displaying the raw image (Raw), ground
truth masks (GT),MBMT-Net prediction and MT-Net predic-
tion. From top to bottom, the tasks are semantic segmentation
(SS), surface normal prediction (SNP), and depth estimation
(DE). If we take a closer look into the plots, we can easily

notice some differences between the qualitative performance
of the two models. First, considering semantic segmentation,
we can easily see that our model, MBMT-Net, preserves the
shape consistency more than MT-Net. While for MT-Net,
all of the predicted SS masks contain irregular spots in the
middle of the objects, MBMT-Net tends to better understand
the scene composition, and aggregate parts of the objects
together. Furthermore, this fact can be also noticed in the
SNP predicted masks. Not only that the shape consistency is
clearly visible, but MBMT-Net also offers more distinguish-
able depth of field, preserving the volume of objects, and
more reliably reconstructing the surfaces. Another important
aspect is that NYUv2 has a lot of unlabelled pixels, which
challenges the learning capabilities of our models. However,
from what we can see in the SNP plots, MBMT-Net can
better generalise than MT-Net. To support this statement,
we look at the structural integrity of objects. More precisely,
the edges and corners of sharper objects are more prominent,
and better represented. Thanks to the general knowledge of
the environment provided by the pre-trained backbones, our
MBMT-Net benefits from, it unarguably better distinguishes
thinner objects, and it respects the space between objects,
without blurring or filling it, as MT-Net does (e.g. table
legs). Moreover, these characteristics offer MBMT-Net its
robustness, and consistency across multiple tasks (i.e. it can
be seen that all the structures from SS appear in SNP and DE,
and vice-versa. However, MT-Net is inconsistent, as some
features flicker across the performed tasks.

C. DISCUSSION
Yudong et al. [11] are also using multiple backbones in their
proposed CBNet architecture, as in our proposal. However,
our approach differs from the previous one [11], as we aim
to allow any combination of processing units in the learning
context, not just identical structures. Our additional goal was
to preserve the number of multi-backbones parameters simi-
lar to the one of a traditionally structured MT model, without
loosing performance.

Although a quantitative comparison cannot be con-
ducted, as our approached tasks are different from the ones
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FIGURE 6. MT-Net vs MBMT-Net comparison on the three tasks of choice.
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TABLE 7. Relative improvements of MBMT-Net with respect to MT-Net and two other state-of-the-art architectures (MTAN and EfficientPS), considering
all the proposed metrics.

CBNet [5], [11] tackled, the contributions regarding the back-
bones’ structure can be qualitatively compared. Instead of
adopting CBNet communication scheme that resembles a
multilayer perceptron, we have no communication between
the backbones till the very end. Thus, we manage to keep the
number of parameters and FLOPs relatively low compared
to their work. Furthermore, our approach is better scalable
with the depth of the backbones, while the CBNet scheme
increases exponentially with the number of layers, and with
the number of used backbones. Additionally, while their
scheme is restrictive, and the backbones must have the shape,
our structure allows for any combination of architectures.
This makes us believe that our work is more suitable for
deeper models, especially in multi-task learning contexts.

While MTAN [10] is the state-of-the-art for multi-
task learning, EfficientPS represents the state-of-the-art for
panoptic segmentation. The architecture itself makes use of
one backbone, and two parsing heads that are used to predict
a single, complex task. If we were to consider the de-merged
output of its two heads, we can also look upon the architec-
ture from a multitask learning perspective. That being said,
EfficientPS can be regarded as the newer SOTA in multitask
learning.

On top of the EfficientPS architecture, we have build our
MBMT-Net specifically for performing the same tasks as
MTAN. Moreover, our contribution consists of analysing and
combining the two approaches, so that the DWA ensures
better task convergence, the stronger Two-Way FPN extracts
richer features, the two-step training schedule specializes
our own multi-backbone architecture, and the concatenation
feature maps merging operation yields the best results, while
also being the most scalable approach.

We can say that according to our results, having multiple
feature maps of the same input proved to be a reliable and
robust source of information for themulti-task network. Since
every pre-trained backbone outputs a different condensed
representation for each task, by channel-wise concatenating
them it is emphasized that the features are now more con-
sistent. This results in robust and reliable sources, therefore
significantly increasing the performance when jointly used in
multi-task models for solving dense prediction tasks.

Table 7 captures the MBMT-Net improvements relative
to the other state-of-the-art architectures. Let us consider
that for the performance metric P we denote by Pour the
value of P provided by our MBMT-Net model and by Pother
the value of P provided by another architecture (MTAN)
[10], EfficientPS, [19], MT-Net). The improvement impr
(expressed as a percentage) achieved by our MBMT-Net
model in terms of the performance measure P is computed

as in Formula (11):

impr=


100 ·

Pother − Pour
Pother

if P has to be minimised;

100 ·
Pour − Pother

Pother
otherwise

(11)

On the one hand, it is clearly visible that the traditional
MT-Net is inefficient in infusing the shared backbone with
relevant feature extraction means. Taking that into account,
with a 1.84% improvement in parameters,MBMT-Net scores
higher than MT-Net, especially regarding mIoU, where the
improvement is of 19.02%. On the other hand, MTAN still
represents a tough competitor to our model, regarding overall
performance. However, by looking at the total parameter
count improvement of 26.32%, we can confidently say that
MBMT-Net has the capacity to compete with computation-
ally expensive architectures even when having notably less
parameters.

Moreover, our approach may prove useful especially in
DAI contexts, since each backbone and each head may be
instantiated on a separated GPU. That would facilitate the
processing of more information at a time, without additional
latency. As each backbone uses less parameters now, the over-
all multi-backbone processing time would be less than the
one of a single and larger backbone in a DAI context. Addi-
tionally, each head could perform the processing in a non-
sequential schedule, only the scatter and gather operations of
sharing the feature maps between the GPUs representing the
bottleneck in regards of hardware-specific bandwidth.

For verifying if the improvement achieved by our MBMT-
Net model is statistically significant, a one tailed paired
Wilcoxon signed-rank test [35], [36] was applied. The sample
of performance metrics values obtained by the MBMT-Net
model has been tested against the sample of values obtained
by the other architectures (MTAN, EfficientPS, MT-Net).
A p-value less than 0.01 was obtained, showing that the
improvement achieved by MBMT-Net is statistically signif-
icant, at a significance level of alpha = 0.01.

VII. CONCLUSION AND FUTURE WORK
To summarise, we have introducedMBMT-Net, an alternative
to the traditional hard parameter sharing multi-task model
architecture. MBMT-Net consisted of parallel pre-trained
backbones whose outputs are concatenated and offered to
the MT heads. By doing so, the decoders benefit from richer
and more diverse features with decreased network parameters
when compared to traditional MT architectures. Our strategy
is architecture independent, and it can be applied to different
types of backbones and parsing heads, which greatly extends
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the domain of configurable features, finally enhancing exist-
ing Single- and Multi-Task model building strategies and
outperforming them when using the Multi-Backbone design.

First of all, we have shown how pre-training less complex
backbones and putting them together offers better perfor-
mance than using a single larger backbone. Second of all,
we mentioned that our training schedule offers the possibility
to train the models on lower-end GPUs, since freezing the
backbones dramatically decreases the memory consumption,
without trading off performance. Eventually, as an answer
to RQ1, it turned out that MBMT-Net architectural style
increases the performance of each evaluated task when com-
pared to both the ST and single backbone MT networks,
without supplementary parameter complexity. Furthermore,
the triple backbones pre-training proved to be greatly benefi-
cial both quantitatively and qualitatively, as Figure 6 shown
us. Moreover, RQ2 is being answered by having achieved
scores comparable to previous models’ results. Additionally,
we have set a new state-of-the-art performance in multi-task
learning, asMBMT-Net outperforms previously best models,
while having a significant parameter deficit.

The last research question, namely RQ3 is affirmatively
answered by having performed the Wilcoxon signed-rank
test, which confirms our improvement compared to the other
models.

Regarding future improvements, we consider that the
MBMT-Net model introduced in this paper represents a proof
of concept. Its aim is to emphasize the multi-backbone impor-
tance, and motivate further research in this field of multi-task
learning. This would eventually lead our real-time computer
vision systems to extend their processing capacity to another
level, allowing for powerful fine-grained feature extractors
that may grant vehicle autonomy.

Besides that, in a DAI context, our model building tech-
nique would be of great interest for reducing latency while
processing more data, which could be seen as a good starting
point for real-time performance systems development.
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