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ABSTRACT In the existing robust iterative learning control (ILC) for 2-D discrete systems, they typicallly
require to satisfy a core hypothesis that the strict repetitiveness of tracking reference trajectory and system
model should be satisfied. This paper first investigates the robustness and convergence of a P-type ILC law
and a high-order ILC law for 2-D linear nonrepetitive discrete systems (LNDS) with arbitrarily bounded
reference trajectory and iteration-dependent reference trajectory described by a high order internal model
(HOIM) operator in iteration domain, respectively. It is theoretically proved by using the 2-D linear
nonrepetitive inequalities that the ILC tracking error and the control input robustly converge to a bounded
range, the bound of which depends continuously on the bounds of all the nonrepetitive uncertainties. If these
uncertainties are progressively convergent along the iteration domain, a precise tracking on the 2-D reference
trajectory can be achieved. Two illustrative examples are provided to demonstrate the validity of the presented
ILC law. Additionally, some comparative result on the practical dynamical processes is given.

INDEX TERMS 2-D linear discrete nonrepetitive systems (LNDS), 2-D linear nonrepetitive inequalities,

iteration-dependent trajectory, robust iterative learning control.

I. INTRODUCTION

Iterative learning control (ILC), as an effective and unsuper-
vised control method, has been extensively used in addressing
the finite-time-based trajectory tracking problem for systems
with nonrepetitive uncertainties, such as linear systems [1],
[2], [3], [4], stochastic systems [5], [6], multi-agent systems
[71, [8], and nonrepetitive systems [9], [10], [11]. In [9] and
[10], the ILC tracking problem for 1-D nonrepetitive dis-
crete systems with nonrepetitive uncertainties in initial states,
external disturbances, plant model matrices and desired refer-
ence trajectories was investigated. With an extended contrac-
tion mapping approach, robustly convergent results have been
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established. These aforementioned ILC results are designed
for 1-D discrete systems.

However, ILC results on 2-D discrete systems with non-
repetitive uncertainties are rarely reported. Among the few
exceptions are [12], [13], [14], [15], [16], and [17], which
mainly investigate the nonrepetitive uncertainties in boundary
states, reference trajectory, trial lengths, and external distur-
bances. In [12] and [13], the robust ILC tracking on non-
repetitive uncertainties from reference trajectories described
by a known high-order internal model (HOIM) operator and
boundary states was investigated. By using the HOIM-based
inequalities theory, the ultimate ILC tracking error can only
converge to a bounded range. In [14], a P-type ILC law
with compensation technique is presented to deal with the
robust tracking for 2-D repetitive discrete systems with
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nonrepetitive uncertainties arising from reference trajectory,
boundary states, and disturbances. With 2-D linear equalities
theory, the final ILC tracking error is robustly convergent to
be a bounded region. To this end, an adaptive ILC algorithm
is proposed in [15] to achieve the precise tracking for 2-D
repetitive discrete systems with nonrepetitive uncertainties
from boundary states and reference trajectory. Afterwards,
adaptive ILC algorithm applied to 2-D linear and repetitive
discrete systems are studied in [16] and [17]. Unfortunately,
in [15], [16], and [17], they require that the input matrix
is assumed to be positive-definite and 2-D discrete systems
considered is repetitive.

In practical applications, there have some 2-D linear non-
repetitive systems (LNDS) required to execute tracking con-
trol tasks with a repetitive mode, such as 2-D distributed
grid sensor networks [18], target echoes collected by a radar
[19], thermal process [20], and 2-D multi-functional robotic
manipulators [21]. In the 2-D distributed grid sensor net-
works, the vehicle path under surveillance equipped with
regularly spaced sensor nodes, the sensor number is denoted
by i. The sensor node signals are sampled in time for dis-
crete processing, and j denotes the sample number, which
is a 2-D discrete spatio-temporal system. Concretely, the 2-
D multi-functional robotic manipulator needs to pick up and
put down different loads for each repetitive operation such
that the parameter values of the 2-D robot manipulator may
be affected due to various loads at different iterations. Also,
to control the temperature of heater exchanger in 2-D thermal
process is to reach the desired temperature by repetitively
injecting the liquid in the inlet. Influenced by outside tem-
perature at each repetitive operation, the parameter values of
heater exchanger may be changed. Therefore, it is essential
and meaningful to investigate the robust ILC techniques for
2-D LNDS with iteration-dependent reference trajectory.

This paper aims to investigate the robust ILC tracking
problem of a P-type ILC law and a high-order ILC law
for 2-D LNDS with arbitrarily bounded reference trajectory
and HOIM-based reference trajectory, respectively. With the
help of 2-D linear nonrepetitive inequalities approach, it is
theoretically proved that the bounds of ILC tracking error
and the control input are shown to depend continuously on
the bounds of nonrepetitive uncertainties. Particularly, if all
the uncertainties converge with increasing iteration, the actual
tracking output can precisely track 2-D reference trajectory.
The main contributions of this paper are summarized in the
following.

1) Compared with the existing ILC algorithms for 2-D
repetitive discrete systems with iteration-dependent reference
trajectory, this paper first investigates the ILC designs to 2-D
LNDS with iteration-dependent reference trajectory.

2) Different from the adaptive ILC algorithm in [15], [16],
and [17], the proposed P-type ILC law and high-order ILC
law in this paper have no restrictions on the numbers of
control inputs and outputs.

3) 2-D linear nonrepetitive inequalities is first proposed to
analysis the robust ILC tracking for 2-D LNDS. Additionally,
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it is verified that the tracking performance of the high-order
ILC law outperforms the lower-order ILC law in dealing with
the tracking problem on HOIM-based reference trajectory.

The remainder of this paper is arranged as follows: Prob-
lem statement for 2-D LNDS is introduced in section II
Section III-IV show robust analysis of the P-type ILC law
(3) and the high-order ILC law (39) under Assumption 1.
Two simulation examples are provided in section V. Finally,
section VI gives some conclusions of this paper.

Il. PROBLEM STATEMENT

Consider the ILC issue for 2-D linear nonrepetitive discrete
systems (LNDS)[12], [20], operating over a fixed region i =
0,1,2,---, Ty —1andj=0,1,2,--- ,Th — 1:

x(@+1,j+1)
= A+ L+ 1, ) + Az k(6 xic Q. )
+A3 k(i j + Dxi (i, j + 1) + B, pu (@, j), (D)
yi(i, j) = Ci(i, pxi(i, ), @

where i and j are discrete indexes along the horizontal direc-
tion and the vertical direction; k = 0, 1, 2, - - - represents the
iteration number; ux (i, j) € R, xx(i,j) € R”, and yx(i,j) € R
denote the control input, system state, and system output,
respectively; A1 (i + 1,j) € R™", Ayi(i,j) € R™%,
Az (i, j+ 1) € R™ Bi(i,j) € R™!, and Ci(i,j) € R
are nonrepetitive parameter matrices. In practical 2-D LNDS
(1)-(2), i.e., chemical reactors, heater exchangers, and pipe
furnaces, the independent indexes i and j usually represent
space locations and time instants, respectively [25].

A. ROBUST ILC OBJECTIVE
For 2-D LNDS (1)-(2), the objective of robust ILC is to design
an updating learning algorithm on u (i, j), such that the ILC
tracking error and the control input can robustly converge
to a bounded range, the bound of which depends on the
boundedness parameters on all the uncertainties, i.e.,
limsup [lex (i, HI| < be, limsup [lug(i, DIl < by, (3)
k—+o00 k—+o00
where b, > 0 and b,, > 0 are two constants. The used norm || -
|| of this paper is Euclidean norm. When all the nonrepetitive
uncertainties converges along the iteration direction, the sys-
tem output tracks the desired reference trajectory perfectly,
ie.,

lim [ye(i, ) = ya.x(i, )] = 0. 4
k—+4o00

To investigate the robust ILC problem for 2-D LNDS (1)-
(2), the following Assumptions 1-3 and Lemmas 1-2 are made
correspondingly.

Assumption 1: For the 2-D LNDS (1)-(2), let

||)’d,k(l,])|| E bda l= O’ 13 ) Tl’ .]= 0’ 19 ) T2’
||Al,k(i+ 19j)|| S bAlv i = 01 1» M) Tl - 17
Jj=01,---.Tr -1,
lA2 (i, DIl < ba2,i=0,1,---,T1 —1,
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j=0,1,--- T —1,

A3k(G.j+ DIl < baz, i=0,1,--- . Ty — 1,
j=0,1,-- T —1,

1Be(G. Pl < bp,i=0,1,---, T1 = 1,

j=0,1,---, T, — 1,
ICkEDI < be,i=0,1,--- T,

j :;0’1’... , 1o,
k(@ Ol < by, i=0,1,---,T1 =1,
Xk O < byys j=0,1,---, T2,

where by > 0, ba1 > 0,bar > 0,ba3 > 0,bg > 0, bc > 0,
by, > 0, and bxo_,- > 0 are some finite bounds.

Remark 1: In the ILC field of 2-D systems, Assumption
1 is essential and reasonable on the boundedness of 2-D
reference trajectory, parameter matrices, and boundary states
in iteration domain, which is key relaxation on the strictly
repetitive requirement provided in traditional ILC for 2-D
systems.

Assumption 2: For any given 2-D reference trajectory
va(i,j), under boundary states xz(0,j) = x0(0,7) and
xq(i, 0) = x0(i, 0), there exists a unique input uy(i, j), i =
0,1,2,---, 71 —-1,j=0,1,2,--- , T, — 1 to make

xq@+1,j+1)
= A1+ 1, )xa( + 1, )) + A2, xa (i, ))
+A3(,j + Dxa(i,j+ 1) + B(, pua(i, j),
ya(i,j) = C(@, pxa (i, J),
where x(0, j) and xo(i, 0) are fixed functions with respective
tojand i.

Remark 2: Assumption 2 is a reasonable and basic assump-
tion that it can guarantee our tracking task be achievable,
which is popular in [22]. However, it is worth pointing out
that Assumption 2 may be difficult to achieve in some cases,
because it is usually hard to determine the unique desired
input ug4(i, j) for the 2-D reference trajectory. To avoid using
the Assumption 2, an alternative analysis approach for ILC
is to directly consider the tracking errors ex(i + 1,j + 1) and
ex+1(+ 1,74 1)in [9] and [24].

Assumption 3: Let the reference trajectory yg x (i, j), system
parameters Ay x (i + 1,7), A2« (i, ), A3 x (@, j + 1), Bk (i, j) and
Ci (i, j), boundary states xx (i, 0) and x¢ (0, j) be the progres-
sively convergent, i.e.,

lim ygx(i,)) = ya(i. ),
k—+o00
i=0717"'7T17j=0717“'7T25
llm Al,k(i+1’j)=A1(i+1’j)’ i=0711"'5T1_13
k—+00
j=0917"'7T2_15
lim A (i, )) = A2, )),i=0,1,---,T1 — 1,
k—+o00
Jj=01,--.Tr -1,
llm A3,k(l7.]+1)=A3(l’j+1)a l=0,1,",T1_1,
k—+o00
j=0717"'7T2_13
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lim B(,j) = BG,j), i=0,1,---,T1 —1,
k——+00
j=071"" 5T2_]’
lim Ci(i,j) = C(, j),
k——+o00
i=0,1,---,T1,j=0,1,---, T2,

lim x(,0) =x(,0), i=0,1,---,T1 =1,
k—400

lim 'xk(05.]) = xO(OaJ), _]= 07 15 T T27
k—+o00

for some iteration-invariant matrices/vectors y, (i, j), A1(i +
L, ), A2(i, ), A3(i. j + 1), BG, j), and C(i, j).

Remark 3: Assumption 3 is an extension to the progres-
sively convergent condition deriving from ILC for 1-D dis-
crete systems and has been used in ILC for 2-D repetitive
systems [12], [14]. It is worth noting that Assumption 3 is not
essential in achieving the robust ILC objective (3) but neces-
sary in ensuring the perfect ILC tracking on 2-D reference
trajectory, which is the same as those for robust ILC of 2-D
repetitive systems.

Lemma 1: Let nonnegative real sequences {di} and {wy}
satisfy the following inequality:

N-1

di+1 < Zpk—hdk—h"‘wka k=N-1,N,N+1,...,
h=0

with pp_p, > 0. If o, px—1,..., pk—Nn+1 make p =

221:_01 Pk—n < 1, then, the condition lim supy _, , o, Wk < Weo
implies
limsupdy < Wi
k— 400 l1—p
The proof of Lemma 1 is similar with that of Lemma 2.1 in
[23], and is thus omitted.
Lemma 2: For the following 2-D linear nonrepetitive

inequalities overj =0, 1,2,--- , 7o — 1:
Ni—1 Nr—1
G+ 1D < D Disame—n®) + Y Dax—i()
h=0 h=0
XYk—n(j) + ar()),
Ni—1 Nr—1
Vier1() < Y Dakonmi—n() + Y Dag-n(i)
h=0 h=0

XYk—n() + Be(),

where Dy x—n()), D2 k—r(), D3 k—n(j) and Dy x—(j) are non-
negative and bounded functions. o (j) and B (j) are nonnega-
tive and bounded functions, i.e., [[ax (DIl < bq, | B DIl < bg.
Let boundary states 1;(0) and ¥ (j), k = 0,1,2,--- ,N» —
1 be bounded, if Y%  Dayx—s() < 1 is satisfied, then,
we have

limsup (Il < By, j=1,2,-- . Tn,
k—+o00
limsup | (DIl < By,
k——+o00

In particular, as limy_, ;o0 ax () = limg_s 100 Bc(j) = 0, ) =

0,1,2,---,T> — 1, and limg , 1 o 7% (0) = O, there is

lim yx(G)=0, j=0,1,2,---,Tr—1.
k——+00

j=0,1,2,---, T — 1.
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The proof of Lemma 2 can follow that of Lemma 3 in [12],
so it is omitted.

Remark 4: Lemma 2 is a 2-D linear nonrepetitive inequal-
ities and can be used to analysis the robustness and conver-
gence of high-order ILC law [13] for 2-D repetitive discrete
systems. In traditional ILC results for 2-D repetitive discrete
systems, the used analysis approach can not be applied to the
nonrepetitive case. To this end, the 2-D linear nonrepetitive
inequalities approach in this paper is necessary to be devel-
oped.

In this paper, the following P-type ILC law for 2-D LNDS
(1)-(2) is used for i = 0,1,2,---,71 — 1 and j =
0,1,2,---, T, — 1:

w16 ) = ur (i, j) + Li (@, pex (i + 1, j + 1), &)

where the learning gain L (i, j) is to be designed.

Ill. ROBUST ANALYSIS OF THE P-TYPE ILC LAW (5)
UNDER ASSUMPTION 1
In this section, we will investigate the robustness property
of the ILC law (5) for 2-D LNDS (1)-(2), and the following
Theorem 1 is presented.

Theorem 1: Consider the 2-D LNDS (1)-(2) under
Assumption 1, and let the ILC law (5) be applied. If the
learning gain Ly (i, j) is chosen to make

11— L@, G+ 1,/ + DB, j)| < 1, Q)

then, the robust tracking objective (3) can be achieved.
Proof: Using the P-type ILC law (5) and considering (1)-
(2), it yields
w41, J) — uk (i, J)
= LG, Pyax+1,j+ 1) = Celi+ 1,j+ 1)
xxp(@+1,j+ 1)]
= Le(, yaxG+ 1,7+ 1) = L@, )G+ 1,7+ 1)
X[AraG+ 1+ 1, ) + Az x (i, xe(i, )
+A3 kG, j + DG j+ 1) + B u(i. )] (7N

wherei = 0,1,2,---, Ty —landj=0,1,2,---,T> — 1.
Taking the arrangement on (7), it becomes

up+1(0, j) = [1 = Ly (i, DCr @ + 1, 7 + DB, Hluk (@, j)
+or (i, j), (8)
where
U]
=L@, Dyax+ 1,7+ 1) = L, DGk (i + 1,7+ 1)

x[A1kG+ 1, pxi(i + 1, ) + Ak (i, (i, )
+A3x (i, j + Dxe(i,j+ D). )

Taking the norm on both sides of (8), we obtain

g1 G DI < 11 = LG, NCie (i + 1, j + DB (. )l
Xk G DI+ NG PNl (10)
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With regard to ¢y (i, j) given in (9), from Assumption 1, there
is

oG DI
< ballLiGi DI + bellLiG I (bar x4+ 1, )l
+baz |l DI + bazllxe,j+ DI). Y

Substituting (11) into (10), it generates

1D
< =L@, NCr (G 4 1, j + DB @, Pl lur (@ Pl
+ba|ILi (i, DIl + be lLe @ DI (bar kG + 1, )

+bazllx (i, HIl + bazllxi(i,j+ DI)- (12)
Let
Uk () =[Nlux O, DI, N (L) -+ N (Ty — l,j)II]T, (13)
X () = [l (LI @D+ Ika(Tl,j)II]T. (14)

Then, (12) can be rewritten as

Uk+1()
< @MUY + P2k (DXk (G + 1) + O3 (DXk ()
+D4 1 (Nxk (0, j + DIl + D5 (D Ilxc (0, )]

+ D6k (), (15)
where
a©,j) 0 0
0 a (0, j) 0
=] 0O 0 a}(0, j)
0 e 0
0
0
0

0 aXTy—1,))
ad(i,j) = |1 — Ly (i, HCr(i + 1,7 + DBi(, j)l,

0 0 0 0
al(l,j 0 0 0
Q) =| 0 @2, O o
0 o 0 a1 0
al(i,j) = basbe LG j)ll,
a20,)) 0 0
al(1,j) a(l,)) 0
o) =] O  ®2H G2.)
0 0
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a(Ty —1,j)  a(T) —1,))
ai(i, j) = beba LG, ), @i, j) = bebao | LG, ),

[ bebas || Li (0, )] ]
0
D44 () = 0 :
- O -
[ beba2|ILi (0, Il ]
0
D5 4(j) = 0 :
- O -
Cbibg O 0 ... 0
0 biby O ... 0
Do) =] O 0  brbg . . e
: ) 0
L0 0 0 brby

On the other hand, taking the norm on both sides of (1),
there is

x4+ 1,7+ DI
< batllxi (i + L DI+ bazllxe (i, DIl + basllxe (@, j+ DI
HIBr (@, DI G DI 7)

From (13)-(14), (17) can be formulated as

V(XG4 1)
< W (DX () + Y3 k(DU G) + Ya ik (DIxe 0,7+ DI

+Ws k(D Ilxk (0, NIl (18)
where
I, 0 0 .. 0
—ba3 I, 0 ... 0
V() = 0 —baz I 2
. 0
B 0 e 0 —bgy I,
[ bay 0 0 .. 0
bay  bap 0 . 0
Wk()=| 0  bax bar - c
: T .0
B 0 S 0 bay  ba

VOLUME 10, 2022

U= 0 0 bg . |,

S
K 0 0 by
[ baz baz
0 0
Wy 1 () = 0, W51 () = 0
0 0

Since W1 () is a nonsingular matrix, multiplying by W L ,i 6))
on both sides of (18), it obtains
XG4 1) < W (DY (DX () + Wi (D3 k(DU ()
+‘1’1_,;1(i)\1’4,k(i)||xk(0,j + DIl
+‘I’1_,11(i)‘1’5,k(i)||xk(07]')||- (19)
Inserting (19) into (15), it yields
Uk+1()
< (@140) + P2x(DW1 () W3 4 () Ur ()
+H(P3x() + Pok DV (DW2£ (D) Xk ()
+H(Pa k() + P2k (DY L (DWa k(D)) 20, ) + Dl
+(®5.4() + Pok DV (DWs.£()) 10, )|
+P6,1()- (20
For (19) and (20), according to Lemma 2, if ||®(j) +

D2k (DV1 4 (DW3 ()Nl < 1 (equivalently, |1 — Li(i, )Cr i +
1, j+ DBi(, j)| < 1), we have

lim Supk_>+oo Xk(]) = ﬁX’
limsup;_, , o, Ux() < Bu,

j=]127"'7T21
j=051725""T2_15
2D

where Bx > 0 and By > 0 are two positive constants. From
(13) and (14), we further obtain

lim sup [lxx (i, NI < Bx, (22)
k— 400
lim sup |lux (i, NIl < Bu- (23)
k—~+00

Using Assumption 1 and (22), we have

lim sup [lex (i, )l
k—+4o00

= 1;m sup ||ya.k (i, j) — Cr(i, )i (i, j)

—>+00
< by + be limsup (i, HI| < ba +bepx 2 Be,
k——+o00

where S, is associated with the boundedness parameters by,
ba1, baz, bas, bc, b, by, and bxoj presented in Assumption
1. The proof of Theorem 1 is completed.

From Theorem 1, it provides the boundedness result on
ILC tracking error and the control input for 2-D LNDS
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(1)-(2) under Assumption 1. While a progressively conver-
gent condition on the reference trajectory, system parameters,
and boundary states is imposed on the 2-D LNDS (1)-(2),
a perfectly convergent result is given. There is the following
Theorem 2.

Theorem 2: Consider the 2-D LNDS (1)-(2) under
Assumptions 1-3, and let the ILC law (5) be used. If the
learning gain L (i, j) is chosen to make (6) be satisfied, then,
the perfect tracking objective (4) can be accomplished.

Proof:Fori=0,1,.--- ,Ti—landj=0,1,--- ,Tr—1,
define

Suy (i, J) = uq(i, j) — ur(i, j), (24
andfori=1,2,---,Tyandj=1,2,---,T>,
Sxi (i, ) = xq(i, j) — xx (@, J). (25)

Using (25) and inserting (1) with Assumption 2, there is

6xk (i + 1,j+ Dl

= [lxg(+1,j+ 1) —x G+ 1,7+ DI

= [|[A1G+ 1, )xa( + 1, )) + Az, xa (i, )
+A3(i,j+ Dxa(i,j+ 1) + B(, jua(i, j)
—Ar kG + 1, Px@ + 1, ) — Aok (6, Pxx (0, )
—A3 (i, j + Dxi (i, j+ 1) — Br(i, pu (i, )|l
lALkG+ L DINSx G+ 1, DI+ A1 G+ 1,))
—A1G+ L, Dxa G + LD+ A2k G DIHSxk G DI
HA2,k (G, J) =A@ DIxa @ DI+ 1143 £, + D]
X |8xk (i, j + DIl + 143 4G, j + 1) — A3(, j + Dl
X |Ixa (i, j+ DI+ 11BrG DI Sur G DI
+1BG, j) — Bi(@, Nllua @, NI, (26)

where |lxq(i, DIl < bxa and [Jug (i, HI| < bua-
Subsequently, applying (5) and considering (1), we deduce

IA

Sup 11, )
= Sur(i, j) — LG, P[yasG+ 1, j+ D —yai+1,j+ 1)
+CE+1,j+ DxgG+ 1,7+ 1)
—Crli+ 1, j+ Dxe(i+ 1,j+ D]
= Sup(i,j) — LG, plya G+ 1,j+ 1) — yaGi + 1,j + 1]
L@, pICG+1,j+ 1) —Cr(i+1,j+ 1]
xxq(i+1,j4+ 1) — L, NCr(i + 1, + 1)
x&xp(@+ 1,7+ 1)
= [1 = Le (G, HCi (i + 1, j + DB (i, ) |8ur (i, j)
+Wi (i, ), (27)
where
Wi (i, j)
= —Li(i, Pyax+ 1 j+ 1) —yali+ 1,j+ D]
L@, pICG+1,j+ 1) —Ce(i+ 1, + 1)]
xxg(@+1,j+ 1) — L, HCr(G+ 1,5+ 1)
x[Al(i + 1, jxa(i 4+ 1,)) + Az(i, xa(i, j)

125020

+A3@,j+ Dxa(i,j+ 1) — A+ 1 G+ 1, )
A2l ) = Asli + D+ 1)
B ) = B, luatG. ) |-

Taking the norm on both sides of (27), and using (18), we have

I8ur+1G D
= =L@, NCr G + 1, j + DB (@, Pl Sux (@, |
W@ DI, (28)

where

RZAAW
< MLk G DI yax G+ 1, j+ 1) = yaGi + 1, j+ D

+ballCG+1,j+1) = Celi+1,j + D]
Lk (@, )b [bAl 6 (i + 1, |
HIAL G+ 1,)) — A1+ 1L, Dlbra + Dazlldxi (i, )]
A2,k ) — A2, DlIbra
+bazl|6xk (i, j + DIl + 1A3 4G, j + 1) — As(@, j + D
Xbya + |BG, j) — Bk(i’j)||bud]~ (29)

Additionally, Using Assumption 1 and (1), we have

lexG. Dl
= ||yax(i. ) — Cel, i ) |
= ||yax(i. ) — yai.j) + CG, pxa(i. j) — Crl, i, )|
= ya.x(. ) — ya(i, j) + [CG. j) — Ck(G, )Ixa(i, j)
+Cre (i, lxali, ) — x|
< yax (i j) = yaGi Dl + 1CG. j) — Crl f)lba
+bc |8, - (30)
Let
8Xk(j)
= (I8 (L DI 182 P, -+, 18T HI] . BD)
8U())
= [18ux O DI, N8ux (LI -+ Nour(T1 — LI
(32)

Similar to the proof of Theorem 1, the form of (28) with
(29) is similar with that of (10) with (11), and so is (26) to
(12). Then, using Lemma 2, if the condition (6) is satisfied,
we obtain

lim 8X:(j)) =0, j=1,2,---,Ts, (33)
k—+o00

lim 8U () =0, j=0,1,2,---,Th—1. (34
k—~+00

From (31) and (32), it yields

lim |[éx (@, )Il = O, (35)
k——+00

lim ||§ux(i, || = 0. (36)
k—+o00
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From Assumption 3, using (30) and (35), there is

llm “ek(l’,])” :07 l= 1727"' 7T17 J= 1’27"' 7T2'
k—+o00
(37

The proof of Theorem 2 is completed.

Remark 5: For practical 2-D LNDS (1)-(2), we may iden-
tify or estimate the nominal information on C(i,j) and
By (i, j) to determine the learning gain L (i, j) in the P-type
ILC law (5). Let

By (i, j) = B(, j) + 6Bk (i, )), Ci(i, ) = C(, j) + 8 Cr (i, j),

where B(i, j) and C(i, j) are the nominal system matrices, and
8By (i, j) and 6 Ci (i, j) are bounded nonrepetitive uncertainties
of them such that [[§Bx(i, DIl < Bsp(i.)), I8CkG DI =
Bsc(i,j). Correspondingly, we employ iteration-invariant
learning gain L (i, j) = L(i,j). The convergence condition

(6) becomes as
11— LG HCGE+ L, j+ DB Pl + Bes(i DILGE, I < 1,

where Bcp(i, /) = Bsp(, NIICGE+1, j+ DI+ Bsp(i, NBsc i+
1,j+ D)+ Bsc(i+ 1,j+ DB, ))|. The identified nominal
matrices play a dominant role in implementing P-type ILC
law. Therefore, we may reasonably obtain |C(i + 1,j +
)B(, j)| > Bca(i, j), which guarantees (6) with the selection
of L(i. ) = warrrrmmy:

Remark 6: In Theorems 1 and 2, the proposed P-type ILC
law may be difficult to address the robust ILC problem of
the iteration-dependent reference trajectory generated by a
HOIM strategy, which is illustrated by simulation example.
To this end, a high-order ILC law is designed to deal with
this HOIM-based reference trajectory, which is denoted as

M
Yarr1Gf) =Y hmyak-mG.j), k=M,  (38)

m=0
where yq x(i,j), k = 0,1,2,--- , M are the initial reference
trajectories; hy, m = 0,1,2,--- , M are the coefficients

designed to describe the variation of the 2-D reference tra-
jectory in iteration domain, such that all roots of the stable
characteristic polynomial S(z) = 2+ — hoe¥ — M1 —
- -+ — hyr = 0 lie in the unit circle except at least one simple
root on the unit circle [12].

In this section, a high-order ILC law for 2-D LNDS (1)-(2)
is given as follows:

M
w1 ) =Y Btk (i J)

m=0
M
+ ) Lok er—mi+1,j+1),  (39)
m=0

where L, x(i,j), m = 0,1,2,--., M are the learning gains
to be designed.

VOLUME 10, 2022

IV. ROBUST ANALYSIS OF THE HIGH-ORDER ILC LAW
(39) UNDER ASSUMPTION 1
To analysis the robustness and convergence of the pro-
posed high-order ILC law (39) for 2-D LNDS (1)-(2) under
Assumption 1 and (38), the following Theorem 3 is presented.
Theorem 3: Consider the 2-D LNDS (1)-(2) under
Assumption 1 and HOIM-based reference trajectory (38), and
let the high-order ILC law (39) be applied. If the learning gain
Ly, 1 (i, j) is chosen to make

M
> " lhm = Lin e )Coom(i + 1. j + DBi—m(i )l < 1, (40)
m=0

then, the robust
achieved.

Proof. Using (39) and considering (1)-(2), it yields

tracking objective (3) can be

M
w1, ) = Y Bt (i )

m=0

M
= Y Log (o Dyag-m(i+ 1, j+1)

m=0

—Cr—m(i+1,j+ Dxx—m(+ 1,7+ 1]

M
=Y Lkl yak-m(i+1,j+ 1)

m=0
M
= Lk DCromli+ 1, j+ 1)
m=0
X[ AL+ 1 i+ 1,)
+A2,k—m(ivj)xk—m(iej)
+A3 k—m(i, j + Dxg—m (i, j + 1)
Bl Pt ) (41

wherei = 0,1,2,---, Ty —landj=0,1,2,--- , 7> — 1.
Arranging (41), it becomes

up+1(, J)
M
= Y U — Lk DChom(i + 1,j + DBk (i, )]
m=0
xttg—m(i, j) + Pr (i J), (42)
where
M
Gu(iof) = D Lkl j)yak—m(i+1.j+ 1)
m=0
M
— D Lkl DChomli+ 1,j+ 1)
m=0

X[ AL+ 1 i+ 1)
+A2,k—m(iﬂj)-xk—m(i7j)
FA3 komlinj + D j+ D] @3)
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Taking the norm on both sides of (42), we obtain
lug+1G D

M
< D 1 = Ly g (i YChm(i + 1, j + DBi—m(i, )|

m=0

X[ ug—m, DI+ Nl pr . DI (44)

Regarding to ¢ (i, j) given in (43), from Assumption 1, there
is

Nl Gi, )l

M
< babr + D +bebe Y (batlxen(i+ 1.7

m=0

o2\ Xk—m (G DI + bazllxk—m (i, j + 1)|I>- (45)
Substituting (45) into (44), it becomes

1 G DI
M

< = Lk (i )Chm(i + 1, j + DB (i, )|
m=0

X[tk —m(@, DIl + babr (M + 1)

M
tbcbr Y (barlonti + L) + bazleon(i, )

m=0

a3, + DI)- (46)

From the definitions on Ug(j) and Xi(j) in (13) and (14),
we obtain

Uk+1()

M M
<Y Pk mDUk-m() + D P2k m(DXi—m(G+ 1)

m=0 m=0

M M
+ ) O34 nDXk-m() + Y Pak—m(i)

m=0 m=0

M
x5k —m(0,j + DI+ Y ©5 k- m()xx—m(0, )|

m=0
M
+ Z e k—m()), 47
m=0

where @ i, P2k, P3k, Pak, Ps5k, and Pgy are given in
(15). Similarly, we still can get (19). Inserting (19) into (47),
there is

Uk+1()

M
< D (Prk-m() + Prk-m DV D W3 1)) Uk—m()

m=0

M
+ D (3 k-ml) + P2 k-m(DYT L (DW2,4(1)
m=0

X Xi—m(j)

125022

M
+ 37 (Pakem) + P2k-m(DYT ()W k()
m=0

X [lxk—m(0, j + DI

M
+ ) (P5.5-m() + P2k-m (DT (W5 1)

m=0

M
<[5k —mO. N+ Y P6k-m). (48)

m=0

where Wi x(j), W2x(), W3i(), War()), and Ws(j) are
given in (18). For (19) and (48), based on Lemma 2,
it Y00 191 k—m()+ P2i—m (DY L(DW3.G) < 1 (equiv-
alently, Y0 [y — Lin k(i ))Chom(i+ 1. j+ DBi—m(G, )| <
1), the robust ILC tracking objective (3) can be finished. The
proof of Theorem 3 is completed.

Remark 7: Similar to Remark 5, we use the estimated
information on Cy (i, j) and By (i, j) to select the learning gains
Ly, )),m=0,1,2,---, M inthe high-order ILC law (39).
The convergence condition (40) is reformulated as

M
> [l = LG, HCG + 1, + DBG, )

m=0

+Benli, DILm(, PI] < 1,

where Bcp(i, j) is defined in Remark 5. Thus, we may reason-
ably get |[C(i + 1,j + 1)B(, j)| > Bca(,)) Zﬁm/lzo hy,, which
guarantees (40) with L,,(i, j) = m

As the high order ILC law (39) is applied to the 2-D LNDS
(1)-(2) with x¢(0, j) and xx (i, 0) satisfying the HOIM-based
iterative boundary conditions, which is given as the following
Assumption 4.

Assumption 4: Let the system parameters Ay x(i + 1,)),
Ao (0, )), A3 k(i,j + 1), Bi(i,j) and Ci(i, j) be progressively
convergent, i.e.,

lim A+ 1,)) =A1G+1,)),
k——+00
lim A2,k(iﬂj) = AZ(i’j)a
k—+o00
lim Aszx(,j+1) = A3, j+ 1),
k——+00
lim Bi(i,j) = B(,)),
k—+400
lim Ci(i,j) = C(,)),
k— 400

and meanwhile, the boundary states xy (i, 0) and x4 (0, j) sat-
isfy the HOIM asymptotically, i.e.,

M
Jim. [xk+1(i, 0) = > hwxk—m(is O)} =0,

m=0
M

Jim |:xk+1(0, e XE)hmxk—m(O’j):| = 0.
m=

With Assumption 4, we present the following Theorem 4 to
provide the perfect tracking result on HOIM-based reference
trajectory.
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Theorem 4: Consider the 2-D LNDS (1)-(2) under
Assumption 4 and HOIM-based reference trajectory (38), and
let the high-order ILC law (39) be used. If the learning gains
Ly 1 (i, j) are chosen to make (40) and

M
Z lhm — Ci(i + 1, j + DB, DLk, DI < 1, (49)

m=0

be satisfied, then, the result of perfect tracking objective (4)
can be obtained.

Proof. Using e (i, j) = yax(i,j) — (i, j), considering
(38), (1) and (2), there is

err1i+ 1,7+ 1)

M
=Y hayag-mli+ Lj+ D= yenal+1,j+ 1

m=0

M
=Y hulek—m(i+ 1 j+ D+ yem(+ 1.j+ D]
m=0
—Crr1@+ 1,74+ DG+ 1,74+ 1)
M

=Y hwer-m(i+1j+1)

m=0

M
+ " hnChomli+ 1j+ D[ ALm(i+ 1)

i 1)+ Az i D0 )

+A3 k—m(i j + DXk, j + 1) + Be—m (i, J)
Xiti—n(i, )| = i+ 1j+ D[ AL +1.)

X X1+ 1)) + A2 k1 (G k1, )

A3 1 G+ D1+ 1)+ Bt G g1, ))]

M
=Y hmer-m(i+1.j+1) = Celi+ 1,j+ DB )

m=0

M
X1 )+ Y G+ 1.j+ 1)

m=0
X[ ALkl L0+ 1) + A )
XXk (is )+ Ao+ Dt + 1)
Bl Dtkon(is )| = Cipr G+ 1,7+ 1)
X[ ALk G 1w G+ 1) + Ao G.))

X1 (1) + Az 1@+ D G+ 1)

HCeG@+ 1,7+ DBi(i, j) — Cep1 i+ 1,7+ 1)

XBit1(i, NIk 11(, ). (50)
Using the high-order ILC law (39), there is

ex+1i+1,j+1)
M
=) lhw = Cili+ 1, j + DBl )L (i, )]
m=0

Xeg—m(i+ 1,j+ 1) + 0k (. ), (S
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where
Ok (@, )

M
= > hnCimi+ 1+ D[ A +1.5)

m=0
XXp—m(i + 1, J) + A2 k—m (&, Dxk—m(i, )
A3 ke D+ 1)
M

+ > halChomli+ 1, + DBk, j)

o
Gl 1 DBy D
~Cip i 1+ D[ AL G+ 1 s G+ 1)
+A2 k10, Pxe41, J) + Az k10, + 1)
X100, + |+ [Celi+ 1, + DBiG, )
—Crati+ 1+ DByt G Dl 1Go - (52)

Similar with Theorem 3, according to (41) and (51), if the
learning gain L, (i, j) is selected to satisfy (40) and (49),
then, the perfect tracking objective is obtained. The proof of
Theorem 4 is complete.

V. TWO ILLUSTRATIVE EXAMPLES
In this section, to illustrate the effectiveness and feasibility
of the P-type ILC law (5) and high-order ILC law (39) for
2-D LNDS (1)-(2) under Assumptions 1-4, two simulation
examples are presented.

Example 1: We consider the 2-D LNDS (1)-(2) with

Ap@+1,))

 [0.0139 +0.1sin(27 (i +/)/10)  0.01 + m

i 0.01 0.03 |’
Az (i, ))

_ [0.0139  0.02— 0.1 cos(27(i +)/10)

B L 0.01 0.04 4 my ’
Az (i, j+1)

. [0.01 + m3 0.02

T | 00139 03+40.1sinQr( +,)/10) |’
Bi (i, ))

T 2

~ [ 0.1cos2m (i +)/10) +may |’

Cr (i, J)
= [—1 —0.5sinQ2n (i +j)/10) + ms i ] ,

where mj(k), my(k), m3(k), ma(k), and ms(k) are randomly
varying at the intervals [—O0.1,0.1], [0, 0.2], [-0.1,0.1],
[0,0.1], and [—O0.1,0.1], respectively. In the P-type ILC
law (5) with the initial control input up(i,j) = 0,1 =
0,1,2,---,19,j = 0,1,2,---,19, let the learning gain
Ly (i, j) be selected as L (i, j) = —0.1, which satisfies the con-
vergence condition (6) in Theorems 1 and 2. The following
indexes EE and SSj are used to evaluate the accuracy of ILC
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FIGURE 1. The profile of the tracking error index EE; with k under the
P-type ILC law (5).

140
120
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Iteration number k

FIGURE 2. The profile of the control input index SS; with k under the
P-type ILC law (5).
tracking error and the control input,

20 20

EEy =) 3 |va ki, j) — yiGi. )

i=1 j=1

19 19
SSk =Y > lmG.jl.

i=0 j=0

3

Case 1: Under Assumption 1, let the 2-D reference trajec-
tory and boundary states be given as
yd, k (i, J) = sinm (i 4 j)/10) + me(k),
i=0,1,---,20,j=0,1,---,20,

. 0.5 .
%0,/ = |:sin(1') +m7(k)] J=01 20,
(i, 0) = [_s;‘;é(()]'jm)], i=1,2 .20,

where mg(k), m7(k), and mg(k) are randomly varying at the
intervals (—1, 1), (—1,1) and (0, 2). As a result, the pro-
file of the tracking error index EE} with k is presented in
Figure 1, and the variation situation of the control input index
SSi with k is shown in Figure 2. Obviously, it is observed
from Figures 1-2 that the ultimate ILC tracking error and the
control input converge to a bounded range. Consequently, the
robustness of the P-type ILC law (5) under Assumption 1 is
validated.

Case 2: Under Assumption 3, let m(k) = (0.1)FF1,
ma(k) = (0.2, m3(k) = (O.DF, ma(k) = (0.5,
me(k) = (0.2, my(k) = (0.3), and mg(k) = (0.2)%.
The 2-D reference trajectory yg30(,j), i = 0,1,---,20,
j = 0,1,---,20 is shown in Figure 3. Consequently,
Figure 4 shows the profiles of ILC tracking error ek (i, j) at
k = 3,5,7,30. And the profiles of the tracking error index
EE} with k and the control input index SS; with k by using
the P-type ILC law (5) are presented in Figures 5 and 6. It is
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yogofii)

FIGURE 3. The 2-D reference trajectory y4 30(i,j) fori =0,1,...,20 and

j=0,1,...,20.
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FIGURE 4. The profiles of ILC tracking error ey (i, j) at k = 3,5, 7, 30.
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FIGURE 5. The profile of the tracking error index EE; with k under the
P-type ILC law (5).
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FIGURE 6. The profile of the control input index SS; with k under the
P-type ILC law (5).

observed from Figures 4-6 that the system output yi (7, j) can
precisely track the 2-D reference trajectory. Therefore, the
convergence of the P-type ILC law (5) is verified.

Example 2. Consider some practical dynamical linear pro-
cesses with repetitive operation [20], [22], which is given as

2 Tr(w, 1) ATr(w, 1) ATk(w, 1)
—— =a W, )————— +a (W, ) ————

owot ’ at ow
+aok(w, Tr(w, t) + br(w, O)fk(w, 1),  (53)

where fi(w, t) is the control input; T (w, t) denotes the tem-
perature; ap x(w,t), aix(w,t), azx(w,t), and br(w,t) are
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coefficients. Let
Xk (i, ) = Tr(iAw, jAD), ui (i, J) = fr(iAw, jAL),

where Aw and At are sampling step sizes for space variable
w and time variable ¢. Then, (53) can be discretized into the
following 2-D LNDS

xe@+ 1,7+ 1)
= [1 + a2 x (G, DAF]x (P + 1, )
+lao kG, DAWAL — ay ki, HAw — ap k (i, At — 1]
XX (@, j) + [1 + a1 kG, AWl (6, j + 1)
+bi (i, ) AwAtuy (i, j). (54)

Let Aw = 0.1, At = 0.1, apx(i,j) = —1455 +
110sin[27 (i 4+ j)/10)] 4+ 100ma k, a1 x(i,j) = —9.5 +
sin[2 (i +7)/10)] + 10m3 x, az £ (i, j) = —9 + 10 sin[27 (i +
N/10)] + 10my i, br (i, j) = 23.5 + 10cos[2x (i 4+ j)/10)] +
10my k, and yi (i, j) = 2xi(i, j), where my(k), ma(k), mz(k),
and my(k) are randomly varying at the intervals (—0.1, 0.1),
(0,0.2), (—0.1,0.1), and (—0.1, 0.1), respectively. The fol-
lowing 2-D HOIM-based reference trajectory yg i(i,j) is
given as:

Ya k1)) = V2Ya 1 ) = Ya k-1, J),
va.0(i,j) = 2cos[27 (i — j)/10],
va. (i, j) = cos[0.27 (i + j)].

Under the high-order ILC law (39) with uo(i, j) = u1(i,j) =
0,i=0,1,2,---,19,j = 0,1,2,---, 19, let the learning
gains I'y (i, j) and I'; (i, j) be selected as I'y (i, j) = 0.6 +
0.01i + 0.01j and I'2 (i, j)) = —0.9 + 0.01i 4 0.01j, which
satisfy the convergent condition in Theorems 3 and 4. We use
the maximum absolute tracking error index MMy, to evaluate
the tracking performance, i.e.,

MM, = max max LD —ye(@, ).
k i=1,2,~--,20j=1,2,~-,20|yd’k( D =y, )|

Case 1: Under Assumption 1, let the boundary states be
given as

4100, /) = V2500, j) — x—1(0, ) + i g,
x0(0, ) = 2cos(0.27j), x1(0,j) = cos(0.27}),
X130, 0) = V2x(6, 0) — xg— 1, 0) + na g,
x0(i, 0) = 2co0s(0.27i), x1(i, 0) = cos(0.27i),

where ny ; and ny ; are uniformly varying at (0, 0.2). The
profiles of MMy with k under the high-order ILC law (39) and
P-type ILC law (5) is shown in Figure 7. Apparently, we can
be seen from Figure 7 that compared with P-type ILC law (5),
the high-order ILC law (39) can well address the robustness
ILC tracking on HOIM-based reference trajectory.

Case 2: In Case 1, let mi(k) = (0.DFL, mok) =
02K m3(k) = (0.2, and my(k) npp = (0.1)FF1,
ni(k) = (0.1 ny(k) = (0.2)¥*+!. The ILC tracking errors
ex(i,j) at k = 5, 10, 20, 70 and the 2-D reference trajectory
va,70(,j),i=0,1,---,20,j=0,1, ---,20are presented in
Figures 8 and 9, respectively. Obviously, the effectiveness of
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—P-type ILC law (5)
—The proposed high-order ILC law (39)

0 50 100 150 200 250 300
Iteration number k

FIGURE 7. The profiles of the tracking error index MMy, with k under the
high-order ILC law (39) and P-type ILC law (5).

FIGURE 8. The ILC tracking error ey (i, j) at k = 5, 10, 20, 70 under the
high-order ILC law (39).

Yy 7o)

FIGURE 9. The 2-D reference trajectory y4 70(i,j) fori =0, 1,...,20 and

j=0,1,...,20.

40
—P-type ILC law (5)
—The proposed high-order ILC law (39)

0 10 20 30 40 50 60 70
Iteration number k

FIGURE 10. The profiles of the tracking error index MM, with k under the
high-order ILC law (39) and P-type ILC law (5).

Theorem 4 is validated. Additionally, we give a comparison
result on the proposed high-order ILC law (39) and the P-type
ILC law (5) ug4+1(, j) = u (i, j) + (0.6 +0.01i 4- 0.01)ex (i +
L,j+1,i =0,12,---,19,j = 0,1,2,---,19, which
is shown in Figure 10. It is verified that the tracking perfor-
mance of the high-order ILC law outperforms the lower-order
ILC law.

VI. CONCLUSION

In this article, the robust and convergent properties of the
proposed P-type ILC law and the high-order ILC law for
2-D LNDS with iteration-dependent reference trajectory have
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been proved. With 2-D linear nonrepetitive inequalities, the
ultimate ILC tracking error robustly converges to a bounded
range. Certainly, the proposed ILC analysis approach, as a
new tool, is applicable to some nonrepetitive systems, i.e.,
spatially distributed or interconnected systems. Additionally,
this paper discloses that high-order ILC law not only is
adapted to the variation of 2-D HOIM-based reference trajec-
tories but also can accommodate the nonrepetitiveness from
boundary states and system parameters.
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